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Abstract

We consider the additive martingale W;(\) and the derivative martingale 9W;(\) for one-
dimensional supercritical super-Brownian motions with general branching mechanism. In the
critical case A = \g, we prove that /tWW;(\g) converges in probability to a positive limit, which
is a constant multiple of the almost sure limit OWy(Ag) of the derivative martingale OW; (o).
We also prove that, on the survival event, limsup,_,., vtW;(\g) = oo almost surely.

Résumé: Nous considérons la martingale additive W;(A) et la martingale dérivée OW;(A)
pour les super-mouvements browniens surcritiques unidimensionnels avec mécanisme général de
branchement. Dans le cas critique ou A = Ag, nous prouvons que \/th(Ao) converge en prob-
abilité vers une limite positive, qui est un multiple constant de la limite presque sire dW,(Ag)
de la martingale dérivée OW;(Ao). Nous prouvons également que, dans I’événement de survie,
lim sup,_, o vVtW¢(Ao) = oo presque siirement.

AMS 2020 Mathematics Subject Classification: 60J68; 60F05; 60F15.

Keywords and Phrases: Seneta-Heyde scaling; super-Brownian motion; spine decomposition;
skeleton decomposition; additive martingale; derivative martingale.

1 Introduction

Let {Z,,,n > 0} be a supercritical Galton-Waston process with Zy = 1 and mean m = EZ; € (1, c0).
It is well known that {m~"Z,;n > 0} is a non-negative martingale and thus converges almost
surely to a limit W. The Kesten-Stigum theorem says that W is non-degenerate if and only if
E[Z1log Z1] < co. Seneta [25] and Heyde [16] proved that if E [Z; log Z1] = oo, then there exists a
non-random sequence {cy }n>0 such that Z,, /¢, converges almost surely to a non-degenerate random
variable as n — oo. This result is known as the Seneta-Heyde theorem and the sequence {c,} is
therefore called a Seneta-Heyde norming.

A branching random walk is defined as follows. At generation 0, there is a particle at the origin
of the real line R. At generation n = 1, this particle dies and splits into a finite number of offspring.
The law of the number of offspring and the positions of the offspring relative to their parent are
given by a point process Z. Each of these offspring evolves independently as its parent. Let Z,
denote the point process formed by the position of the particles in the n-th generation. Biggins
and Kyprianou [3, 4] considered the non-negative martingale W, () := m(0) ™™ [ exp(—0z)Z,(dz),
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which is referred to as the additive martingale, where m(0) = E [ exp(—6z)Z;(dz). They proved
that, if m(0) > 1 and m(f) < oo for some 6 > 0, then the limit of W,,(6), denoted by W (#), is non-
degenerate if and only if log m(6) —6m/ () /m(6) > 0 (supercritical) and E [W;(8) log, W1 ()] < oo,
where log, = := max{logz,0}. They also showed that, when logm(0) — 6m/(6)/m(6) > 0 holds
but E [W:(6) log, W1(0)] = oo, there exist a Seneta-Heyde norming {c, }n>0 and a non-degenerate
random variable A such that W,,(0)/c, converges to A in probability as n — oo.

For the critical case of logm(0) — 0m/'(0)/m(6) = 0, without loss of generality, we assume that
m() = 6 = 1. According to [3, 4], the additive martingale W,, := W,(1) = [exp(—z)Z,(z)
converges to 0 almost surely, as n — oo. The study of the additive martmgale W, in the
critical case relies on analyzing another fundamental martingale. Under the assumption that
E [ zexp(—z)Zi(dz)] =0, Dy := [wexp(—x)Z,(dz) is a mean 0 martingale which is referred to
as the derivative martingale. Convergence of the derivative martingale was studied by Biggins and
Kyprianou [5]. In order to state their result, we introduce the following integrability conditions:

02 :=E [/ :Uge_”CZl(dx)] < o0, (1.1)

E [( / e—le(dx)> log?. < / e—wzl(dx)ﬂ < o0, (1.2)
B[( [ (@) 21000 )1og, ([ (@) 2100 )] < (1.3

Biggins and Kyprianou [5] proved that under the assumptions (1.1)-(1.3), D,, converges almost
surely to a non-degenerate non-negative limit D, as n — 0o, see also Aidekon and Shi [1, Theorem
B]. Hu and Shi [17, Theorem 1.1] proved that there exists a deterministic sequence (ay)n>1 such
that, conditioned on survival, % converges in distribution to some random variable W with W > 0
a.s. It was further proved in Aldekon and Shi [1] that, under the assumptions (1.1)-(1.3),

1i_>m VnW,, = U in probability. (1.4)

They also proved that limsup,,_, . v/nW, = +oo almost surely conditioned on survival. Under
the assumption that the associated random walk is in the domain of attraction of an a-stable law,
o € (1,2), He, Liu and Zhang [15] proved n'/®W,, converges to C'Dy(a) in probability, where
C > 0 is a constant and Dy () is the limit of the derivative martingale under different moment
conditions. For the subcritical case logm(6) — m/(6)/m(0) < 0, Hu and Shi [17, Theorem 1.4]
gave some convergence results for log W,,(0).

A branching Brownian motion (BBM) can be defined as follows. Initially, there is a single
particle at the origin. It lives an exponential amount of time with parameter 1. Each particle
moves according to a Brownian motion with drift 1 during its lifetime and then splits into a
random number, say L, of new particles. These new particles start the same process from their
place of birth behaving independently of the others. The system goes on indefinitely, unless there
is no particle at some time. Assume that the BBM is supercritical, i.e., EL > 1, and 2E [L — 1] = 1.
Let Z; be the point process formed by the position of the particles at time ¢. The non-negative
martingale W;(6) = e~ (@=1)%/2 [ exp(—0z)Zi(dz) is called the additive martingale and plays an
important role in the study of BBMs. It is known that the limit W () of W;(0) is non-degenerate



if and only if |#] < 1 (supercritical case) and E [Llog, L] < oo, see [6, 23]. Another key object
for BBMs is the derivative martingale D; := [ zexp(—z)Z;(dx) in the critical case § = 1. Yang
and Ren [27] proved that D; converges almost surely to a non-degenerate non-negative limit Do,
as t — oo if and only if E [L logfF L] < 00, and if E [L logi L] < o0 holds, Dy > 0 almost surely on
the event of survival. Fluctuation of the derivative martingale D; around its limit D, was given
by Maillard and Pain [22]. The analog of (1.4) is also valid for BBMs, see [22, (1.7)].

In this paper we consider supercritical super-Brownian motions in R. A super-Brownian motion
arises as the high density limit of branching Brownian motions or branching random walks. Let
By(R) (respectively BT (R), respectively B; (R)) be the set of all bounded (respectively non-negative,
respectively bounded and non-negative) real-valued Borel functions on R. Let M(R) denote the
space of finite Borel measures on R. For any f € B, (R) and u € M(R), we use (f, u) or u(f) to
denote the integral of f with respect to p whenever the integral is well-defined. For simplicity, we
sometimes write ||u| := (1, p).

We will always assume that B = {(By)i>0;1l;,2 € R} is a Brownian motion on R. Let the
branching mechanism 1 be given by

Y(N) := —ak + A +/ (e**’” —1+ Aa:) v(dz), A>0, (1.5)
(0,00)
where 8 > 0, a = —¢/(0") and v is a o-finite measure supported on (0,00) with f(o o0 (T A

2?)v(dz) < oo. There exists an M (R)-valued Markov process X = {(X;)i>0; Py, u € M(R)} such
that i
P, e*Xt(f)} - e*u(Utf)’ t>0,f€ B;(]R),

where (¢,2) — U f(x) is the unique locally bounded non-negative map on Ry x R such that

Ucf(z) + 11, -/0 w(Utsf(Bs))ds] =1I.[f(By)], t>0,z€R.

This process X is known as a super-Brownian motion with branching mechanism . For the
existence of X we refer our readers to [10, 11, 12] or [21, Section 2.3].

The super-Brownian motion with branching mechanism 1 is called supercritical, critical or
subcritical according to ¢'(0%) < 0, ¥/(07) = 0 or ¢/(0"7) > 0. In this paper we concentrate on
supercritical super-Brownian motions, i.e., we assume ¢/ (0%) < 0. We always assume that 1)(c0) =
oo which guarantees that the event £ := {lim; , || X¢|| = 0} will occur with positive probability.
Let A\* be the largest root of the equation 1(\) = 0. For any y € M(R), P, () = e~ Iull,

In this paper we shall also assume that

o0 1
/ V3 Y (u)du

Under condition (1.6), it holds that (see, for instance, [20]) £ = {3t > 0 such that || X¢|| = 0}.
Denote by 0 the null measure on R. Write M°(R) := M(R) \ {0}. Set cy = —¢/(0F) /A + /2
and define

d¢ < oo. (1.6)

Wi(A) == e ?2e™ X)), t>0, AeR.

Then according to [20], for any p € MO(R), W(A) := {Wy()\) : t > 0} is a non-negative P,-
martingale and thus has an almost sure limit W (). W(A) is called the additive martingale. By



[20, Theorem 2.4], W () is also an L*(P,,) limit if and only if [A| < Ag and f[l,oo) r(log r)v(dr) < oo,

where \g = /—2¢/(01).

Another important martingale W (\), called the derivative martingale, is defined as follows:
OW(N) := (At + e M) X)) ¢ > 0.

Under condition (1.6), Kyprianou et al. [20, Theorem 2.4] proved that when |A| > Ao, W3 () has a
P, almost surely non-negative limit W (A) for any u € M°(R), and when |A| > Ao, OWs(A) =0
[P, almost surely. When |A| = A\g (called the critical case), 0Woo(A) is almost surely positive on £¢
if and only if

/ r(logr)?v(dr) < co. (1.7)
[1,00)

In this paper we concentrate on the critical case |[A\| = X\g. Due to symmetry, without loss of
generality, we assume A = )\g. The derivative martingale 9W;(\g) plays an important role in the
study of the extremal process of super-Brownian motions, see [24].

The additive martingale W;(\g) converges to 0 as ¢ — oo. The goal of this paper is to find the
rate at which Wy(\g) converges to 0. For simplicity, we write

Wt = Wt(Ao), BWt = 8Wt(>\0), 8Woo = 8Woo()\())

Let {(X7)>0; Py, v € M(R)} be a superprocess with the same branching mechanism ¢ in (1.5)
and with a Brownian motion with drift Ay as spatial motion. Then (f, X}*°) = (f(Xot + -), X;) for
any f € B;(R). Note that cy, = Ao, we can rewrite W; and 0W; as

W; = (e, X)), oW, = (-0 X0,

Write P as a shorthand for Ps,. Throughout this paper for a probability P, we will also use P
to denote expectation with respect to P. The main results of this paper are the following two
theorems:

Theorem 1.1 If (1.6) and (1.7) hold, then

2
lim VtW, = \/78WOO in probability with respect to P.
t—o0 T

The following result says that the above convergence in probability can not be strengthened to
almost sure convergence.

Theorem 1.2 If (1.6) and (1.7) hold, then on E°,

limsup VtW; = 400 P-almost surely. (1.8)

t—o00
We end this section with a description of the strategy of the proofs of Theorems 1.1 and 1.2, and
the organization of this paper. In the remainder of this paper, we always assume that (1.6) and (1.7)
hold. In Section 2, we introduce the exit measures, the N-measures and the spine decomposition of
super-Brownian motion. We also give some basic properties for Bessel-3 processes. We also use exit
measures to define a variant W, ¥ (see (2.9)) of the additive martingale W; and a variant V, ¥ (see



(2.10)) of the derivative martingale OW, by killing the particles hitting —y before time ¢. These
ingredients will be used in the proof of Theorem 1.1. In this section, we also introduce the skeleton
decomposition for super-Brownian motion, which is used in the proof of Theorem 1.2.

In Section 3, we prove Theorem 1.1. We will use the spine decomposition to give a copy of W, ¥

o ~ WY
and a copy of V; Y, denoted as W, ¥ and V, Y, respectively. We first prove the mean of %
t t
. . VWY
converges to \/2/m as t — oo in Lemma 3.2. Then in Lemma 3.3, we prove that W converges

to \/2/7 in L?, which is the key to the proof of Theorem 1.1. Due to the weak moment condition
on the Lévy measure v in (1.7), to prove Lemma 3.3, we need to define a family of “good” sets E;
with probabilities tending to 1 as ¢ — oo (see Lemma 3.6). On the set E; we prove a sharp upper
bound for the ratio of these two modified martingales in Lemma 3.7. This sharp upper bound is
crucial for the proof of Lemma 3.3. Although the proof of Theorem 1.1 is similar to that of the
corresponding result for branching random walks given in Aidékon and Shi [1], more efforts are
need to deal with F; since the spine decomposition of super-Brownian motion is more complicated.

In Section 4, we prove Theorem 1.2. A key for the proof of the corresponding result for branching
random walks given in [1] is the asymptotic behavior for the minimal position of branching random
walks given in [1, Theorem 6.1]. The fact that the spatial displacement of a branching random walk
in each generation can be regarded as a point process is used crucially in the proof of [1, Theorem
1.2]. However, a super-Brownian motion in R has a density with respect to the Lebesgue measure
and thus can not be regarded as a point process. We overcome this difficulty by using the skeleton
process. Roughly speaking, we choose a sequence of random times and use the fact that the skeleton
process observed at these random times is a branching random walk. In Lemmas 4.1 and 4.2, we
show that this branching random walk, after a suitable translation, satisfies the conditions of [1,
Theorem 6.1], i.e., conditions (1.1) (1.2) and (1.3) above. So we can apply [1, Theorem 6.1] to get
the asymptotic behavior of the minimal position of this shifted branching random walk, which, in
turn, is used to get the conclusion of Theorem 1.2.

2 Preliminaries

In this section, we will introduce some useful results that will be used later.

Recall that {(Bt)t>0; Iz, 2 € R} is a Brownian motion. For any xz € R, we define 7, = inf{t >
0: B, = x}. It is well known that {e*B=28t/2 ¢ > 0} is a positive IIp-martingale with mean 1. We
define a martingale change of measure by

drTy°

— /\oBt—)\gt/Q 21
Il e . (2.1)

0(Bs:0<s<t)

Under H()]‘O, {B¢,t > 0} is a Brownian motion with drift Ay staring from 0. For any y > 0, we define
IT, by
y+ By

= Lit<r_y)- (2:2)
o(Bs:s<t) Yy !

dt,

Under ﬁy, {y+ B :t > 0} is a Bessel-3 process starting from y and the density of y + By is

filz) = —

= me_(x_y)2/2t<1 — 6_2xy/t)1{x>0}. (23)



2.1 Branching Markov exit measures

For any r > 0 and = € R, let {(By)i>r; H;\gj} be a Brownian motion with drift A\ started at = at
time 7. Hé‘f’m is the same as I1)°. Let S = [0,00) x R, B(S) be the Borel o-field on S, O C B(S) the
class of open subsets of S and M (S) the space of finite Borel measures on S. A measure pr € M(R)
is identified with its corresponding measure on S concentrated on {0} x R. According to Dynkin [9],
there exists a family of random measures {(Xqg,P,);Q € O, € M(S)} such that for any Q € O,
w € M(S) with supp p C @, and bounded non-negative Borel function f(¢,z) on S,

P, lexp {—(f. Xo)}) = exp {~(VP. ) |
where VfQ(s, x) is the unique positive solution of the equation
VRGs.) 41 [ 6 (VR0 B dr = Taf (7 B,),
with 7 :=inf {r: (r, B;) ¢ Q}. By [11, (1.20)], we have the following mean formula:
Bulf, X0) = [ T € (7, B)] n(dsdo) (24)

For y > 0,t > 0, we define D' | := {(s,2) : s <t,—y < x}. Then the random measure Xg% is
-y
concentrated on D" := ([0,) x {—y}) U ({t} x [~y,+0oc]), and for any u € M([0,00) x R) with
supp p C [0,t) x [~y,+00), and f € Cy(DL,) with f(s,z) = f(0,z) =: f(x) for all s >0,

Py [exp {~ (7.5 )} =exn {~ 07" (1w}

where U f_ y’t(s, x) is the unique positive solution of the integral equation

ATy
U ) 410 [0 (U7 B ) dr =T (B ) () €DE, (25)

with Dt_y being the closure of Diy. By (2.4) and the homogeneity of Brownian motion, for any
z € R, we have
Ps, (f, X} ) =LY |20 f(Byy, )] (2.6)
)

By the time homogeneity of Brownian motion with drift Ag, (2.5) can be written as
it \ (t—s)AT—y it \
Uf . (Sa .’E) + Hmo A @b <Uf ¥ (T + s, Br‘)) dr = Hzo [f(B(t—s)/\T,y)]a (571‘) € Dt—y
Put u;y(t —8,x) = Uf_y’t(s, x). The above integral equation can be written as

(t—s)AT—y
uV(t = 5,2) + TO9 /0 0 (w7t~ - .B,) ) dr = I [f(Byypr )], (s.2) € DT,

which is equivalent to
SAT—y
u;y(s, ) + I / Y (u;y(s -, BT)) dr = I1° [f(Bsar_,)l,  (s,x) € DL, (2.7)
0
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The special Markov property (see [11, Theorem 1.3], for example) implies that, for all D , C Dt_y
A A A
]P),U« |:<fa XD?:y>‘fD0£Z:| :PXgOr <f’XD%y>’ (28)

where ]:g‘i =0 (Xi\joi s <t,x < y) .
In the f‘l)roof of Theorem 1.1, we will use modifications of W; defined below. For any y > 0,
define

WY = <e—Ao.1(_ym)(.),Xg%y>, t>0. (2.9)

2.2 N-measure and spine decomposition for X*°

Without loss of generality, we assume that X is the coordinate process on D := {w = (w)>0 :
w is an M(R)-valued cadlag function on [0,00)}. We assume that (Fu, (F¢)t>0) is the natural fil-
tration on D, completed as usual with the F-measurable and P,-negligible sets for every u €
M(R). Let W{ be the family of M(R)-valued cadlag functions on (0,00) with 0 as a trap and
with limg o w; = 0. Wg can be regarded as a subset of D.

Under condition (1.6), Ps, (X:(1) = 0) > 0 for any z € R and ¢ > 0, which implies that there
exists a unique family of o-finite measures {N,;2 € R} on W such that for any y € M(R), if
N (dw) is a Poisson random measure on W(‘f with intensity measure

Nu(du) = [ No(dwy(do).

then the process defined by

~

Xo=p, X := / wN (dw), t>0,
Wy

is a realization of the superprocess X = {(X¢)i>0;Pu, 0 € M(R)}. Furthermore, Ny ((f,wy)) =
Ps,(f, X,) and N [1— exp{—(f,w)}] = —logPs, [exp{—(f, X,}}] for any f € Bf (R) (see [21,
Theorems 8.22 and 8.23]). {N,;z € R} are called the N-measures associated to {Ps_;x € R}. One
can also see [13] for the definition of {N,;z € R}.

Next, we recall an important spine decomposition for super-Brownian motions. The spine
decomposition is related to a martingale change of measure. Fix y > 0, define V,” ¥ by

Vili=((y+ e o XN ), 1> 0. (2.10)
-y

From [20, Section 7], we know that V, ¥ is a positive P-martingale with mean y. Define Q¥ by

dQ—v 1__
Ly s 2.11
dP 7 y t ( )

We say {(£)1>0, (X™)i0, (X®))i50, (X))i>0; ﬁ_y} is a spine representation of {(X¢)¢>0;Q 7Y}
if the following are true:

(i) The spine process is given by £ := {&,t > 0} such that {(&§ + Xot + y)t>0; Iﬁ_y} is a Bessel-3
process starting from y.



(ii) Given (¢; @*y) let A be a Poisson random measure on [0, c0) xD with intensity 28d¢Ng, (dw).
For t > 0, define X f[o 1 Jp we—sN (dt x dw). X (1) is referred to as the continuous immigra-
tion.

(iii) Given (£;P¥), let {R; : t > 0} be a point process such that the random counting measure
>_t>00(t,R,) 18 & Poisson random measure on (0, 00) x (0,00) with intensity dérv(dr), let D™ be
the projection onto the first coordinate of the atoms {(s;,r;)} of this Poisson random measure
and D™ := D™ N [0,t]. Given £ and R, independently for each s € D™ and r = R,, a process
{X™5 P, } is issued at the time-space point (s,&s). For t > 0, define Xt(m) = D sepm XiZ%
X(m) ig referred to as the discrete immigmtion

(iv) (X', P7¥) is a  copy of (X,P) and (X',P¥) is independent of &, X®) and X™.

For t > 0, define Xt X, + X( n) + X(m) By [20, Theorem 7.2],

{(Xe)iz0; PV} 4 {(Xt)i>0;Q 7V}

{(Xt)tzo; P~¥} is called a spine representation of {(Xt)t>0; Q7 Y}
Now we give a spine representation of {(X;);>0; Q¥}. Define

0= {€9,t > 0} := {& + Aot t > 0},

then {f{\(’ +y,t>0; ﬁ*y} is a Bessel-3 process starting from y.

We construct {(£0);>0, (X™20),50, (XM)A0), oo ((X0), )t>0,]P Y}, called a spine representa-
tion of {(X}°)¢0}, as follows:

(i) The spine is given by £ = {& + Aot,t > 0} such that (£ + y,ﬁ’*y) is a Bessel-3 process
starting from y.

(ii) Continuous immigration. Given &, the continuous immigration Xt(n)’)‘0 is defined such

that Vf € B, (R),
(f, X /\O / / (- + Aot — s) + Aos), wi—s)N (ds x dw) = (f(-+/\0t),Xt(n)>.
0,t]
Define w*® by (f,w20) = (f(- + Xos),ws). Then the random measure N0 defined by

/ / ), w0 YN0 (ds X dw/\o : / / (- + Xo(t — 8) + Xos), wi—s)N (ds x dw)
0,1] [0,]

is a Poisson random measure with intensity 25d¢tN o (dw?0).
t

(iii) Discrete immigration. Given £, the discrete immigration X ;" 20 immigrated at time s
is defined such that Vf € B;f (R),

(Fo X020 = (F( 4+ Mol — 5) + A0s), X700 = (f(- + dot), X120,

The almost surely countable set of the discrete immigration times in [0, ] is also given by D™
in the spine decomposition of {(X;):>0;Q7Y}. Define Xt(m)”\0 = ZseD;“ X Ao
(iv) {(X?0);,t > 0} is defined by

(fo (X)) = (f(- + Aot), X]), f € Bf(R).

For any t > 0, define
X0 = (XPoy 4 X0 4 x ™A (2.12)



Proposition 2.1
{(X2)20: PV} £ {(X)20:Q 7Y} (2.13)

Proof: By the definition of X, X\ and th_l’j”\o,

(F. X200 =(FC+ Mot X7+ (F+ 20, XM+ 3 (F(+ M), X750
seDym

=(f(- + Aot), Xy).

This says that {(X0);>0, P7¥} is a shift of {(X;);>0, P~} with constant speed Ag. Also note that

Q¥ [exp {~ (£, X2 }] =@ lexp {—(£(- + Mot), X)}) = B [exo { (1 + 2ot), i) }] -

Thus we have
QY [exp { (£, 0 }| =B [exp {~(£. X1 }] .

which says that {(X);>0,P~¥} and {(X);50, Q~¥} have the same marginal distribution. By the
Markov property of both processes, we have (2.13). O

2.3 Skeleton decomposition for X

In this subsection, we recall the skeleton decomposition, which is also called the backbone de-
composition in some papers, see Eckhoff et al. [14] for an explanation of the terminologies. This
decomposition was first proved by Duquesne and Winkel [7, Theorem 5.6], where only the genealog-
ical structure was considered, and later generalized by Berestycki et, al [2]. This decomposition
will be used in the proof of Theorem 1.2.

Recall that X = {(X¢)¢>0;Pu, 0 € M(R)} is a supercritical super-Brownian motion and £ =
{lim/—, 0 [| X¢|]] = 0}. Under condition (1.6), & = {||X¢|| = 0 for some ¢ > 0}. For any p € M(R),
we define Pi by

PE() o= Pul-|€).

Then by [2, Lemma 2], {(X})t>0; Pi} is a super-Brownian motion with branching mechanism

GH(A) = A+ A) = —a*A + A% + /

0] <e_/\x -1+ )\x) e N y(dx),

where

af=a—20\ — /(0 - x (1 - ef)‘*x) v(dx) = —¢'(\%).

We denote by {N¢ : z € R} the N-measures associated to {ng :x € R}

Let Mg (R) be the space of finite atomic measures on R. According to Berestycki et al. [2], there
exists a probability space, equipped with probability measures {P, y,u € M(R),n € My(R)},
which carries the following processes:

(1) {(Zt)1>0, P}, the skeleton, is a branching Brownian motion with initial configuration 7,
branching rate 1/'(\*), and offspring distribution with generating function

1

)= Son

P (A (1—s))+s, se(0,1). (2.14)



The law of this offspring, denoted by {p, : n > 0}, satisfies pp = p1 = 0 and for n > 2,

_ ; *\ 2 *\ M ﬁ —\*x
Pn = N (AF) {ﬂ()\ ) 1{n:2} + () /(o,oo) n!e I/(dx)}.

For the individuals in Z, we will use the classical Ulam-Harris notation. Let 72 denote the set
labels realized in Z and let N C T# denote the set of individuals alive at time ¢, for u € N7, we
use z,(t) to denote the position of u at time ¢. The birth time and the death time of a particle u
are denoted by b, and d,, respectively.

(i) {(XF)i20, P} is a copy of {(Xi)iz0;P5).
(iii) Three different types of immigration on Z: N = {Iyg,t > 0} TP = {I,]?g,t > O} and
B = {ItB ,t > 0}, which are independent of X¢ and, conditioned on Z, are independent of each
other. The three processes are described as follows:

e Given Z, independently for each u € TZ, let N¢* be a Poisson random measure on (by, dy| xD
with intensity 2/4dtx Niu( " (dw). The continuous immigration I N¥ is a measure-valued process

N /
b

/ wi_ N (ds x dw) .
ueT?

(bu,du]N[0,t]

e Given Z, independently for each u € 7%, let {RY : t € (by,d,]} be a point process such that
the random counting measure Zte(bu,du} d(t,ry 1s a Poisson random measure on (by,dy] x
(0,00) with intensity dtre=*"v(dr) and let {(s?’“,ri) : 4 > 1} be the atoms of this Poisson
random measure. The discrete immigration 1 P° is a measure-valued process on R such that

=30 30 X

uETZ 5P <t

where X (2% is a measure-valued process with law Pe (s2)"
T2y (8]

e The branching point immigration I? is a measure-valued process on R such that
B 3,
17 =3 laeo X 0,
ueT?

here, given Z, independently for each u € 7Z with d, < t, X% is an independent copy of
X issued at time d, with law ngu 5’ where Y, is an independent random variable with
distribution 7o, (dy), O, is the number of the offspring of w and {m, (dy),n > 2} is a sequence
of probability measures such that

1 * * Yy
) = s { OO P L sy + 7 Lt |

We define Ay = {A;:t >0} on R by

A=XE4+TV 41T 112, t>o0.

10



For p € M(R), we denote the law of a Poisson random measure with intensity A*dp by 9, and
define P, by

P, ‘:/P(u,n)mu(dn)'

According to [2, Theorem 2], for any p € M(R), {(A¢)i>0; Py} is equal in law to {(X¢)¢>0; Pu}. The
branching Brownian motion {Z;,t > 0} is referred to as the skeleton process, and {(A¢)i>0; Py} is
called a skeleton decomposition of {(X¢)i>0; Py}

2.4 Properties of Brownian motion and Bessel-3 process
Recall B = {(B¢)¢>0;11;, 2 € R} is a Brownian motion and 7—, = inf{t > 0: B; = —y} for y € R.

Lemma 2.2 Forxz > —y,

wta)/Vi 1, 12
I (t < 7— :2/ - z, t>0.
IE( y) 0 m
Proof: This can be easily obtained by the reflection principle of Brownian motion. O

Proposition 2.3 There exists a constant C such that

o0
/ 11, (Bs <z, H%in B, > 0) ds < C(1+ )1+ min{z,z}), z,z>0.
0 rel0,s

Proof: First note that, for any h,t > 0 and y € R, we have

supIl,(r < B, <r+h)=s /Hh L o)/ gy < /Hh du h (2.15)
u T T = su e u u = . .
rng i == relg r V27t o reg r Vart /2wt

Next, for any 0 < a < b, z > 0,t > 0, by the Markov property, we have

II, <Bt € [a,b], min B, > O>
rel0,t]

<TI, in B, >0 I, ( Bys € [a,b], min B, >0]. 2.16
< (Ter[%’ltr}g] )Zlip ( 2/3 € [a ]re%lértl/g] ) (2.16)

It follows from Lemma 2.2 that

2 =z 6 z
II,| min B,>0) < \/> = 2.17
(re[o,t/s] ) m™\/t/3 TV (217)

The second term of right-hand of (2.16) is bounded by

B = b i B, >0
1, (Bago € oot min Be >0)
H

IN

<se[%1121t/3}(35 — Bayyz) > —b,Bo — Boyyz € [y — b,y — a]>

= IIy <s€%1tr}3}B > —b, Bgt/3 €ly—by— a])

11



< <s§f51§}3] By > b> ilelpﬂ v(Bys € [y — by — a))

6b b—a _3bb-a)

\/\/271'15 T ot

(2.18)

where By = Byt/3—s — Bay/s is a Brownian motion for s € [0, 2¢/3]; we used the Markov property of
B at time ¢/3 in the second inequality of (2.18), and the last inequality of (2.18) is due to (2.17)

and (2.15). Combining (2.16)-(2.18), we obtain

/54 zb(b — a)
IT, <Bt € [a,b], rrél[(l)n]B > O) P R z>0.

If z < z, by the strong Markov property at 7., we have

(o] o
/0 II, (BS <z, Tren[(i)g] B, > O> ds =11, [/0 1B, <z, min, ¢ (o, 37_>0}ds]

oo oo
<IL |:/ 1{Bs<$, min,g(r, s Br>0}d5:| =11, |:/0 1{Bs<$, min,.¢[g, o] Br>0}d5:|
Tx

:/ 11, (BS <z, min B, > O) ds.
0 r€(0,s]

Using (2.19) and (2.20), we obtain that

o (o]
/ HZ<BS<:17, minBr>O>ds<fL‘ +/ H(B <z, minBT>O>ds
0 r€(0,s] €lo

< a? +/ \/ —ds<C’1 (14 2)?

for some constant C; > 0. If x > z, by (2.17) and (2.19), we also have

(o)
/ I1, (Bs <z, min B, > 0> ds
0 r€[0,s]
2

</ II, <II11D]B >0>d8+/ Hz<Bs<x, n}(i)n]Br>0>ds
2 re|0,s

/ \/E b \Z/ﬂds<02(1+m)(1+z)

(2.19)

(2.20)

(2.21)

(2.22)

for some constant Cy > 0. Combining (2.21) and (2.22), we arrive at the assertion of the proposition.

a

The following is a direct consequence of [18, (3.1)]. From now on, we use R, to denote [0, c0).

Lemma 2.4 Suppose that {(nt)tZO;ﬁxax € R4} is a Bessel-3 process. If F is a non-negative

function on C(]0,t],R), then

X
IL; [F (Bs,s € 0,1]) Lvsepo,8.501] = Il EF(US,S €0,¢))|, zeR;.

Lemma 2.5 If {(n:)t>0; ﬁy, y € Ry} is a Bessel-3 process, then

O, 72 <2, t>0,y>0.

;a
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Proof: Using the inequality 1 — e™® < x and the density of 1, given by (2.3), we have

~ - oo _ o0 _ 2.’1]2 o2 9
I, [n; 2} :/0 x 2fnt(w)dx§/_oox Q.t\/ﬁe (z—y) /Qtdx:?

a

Lemma 2.6 Suppose that {(n:)i>0;11,,y € Ry} is a Bessel-3 process. Then for any event A; with
limy o0 11y (As) = 1, we have
lim #I1, [n; *1a¢] = 0. (2.23)

t—o00

Proof: For any € > 0, we have

10, [n; %1as] <11, {77{21%1{%25\/2}} +1I, {nt_Ql{nt<5\/f}}
_ 1 ~ 1
< 1,(4) - ; + i, [m 21{m<€ﬁ}} . (2.24)

By the same estimate for the density of 1y in Lemma 2.5,

7 2 E\/Z 2
HZ/ [nt_ 1{m<s\/f}:| :/O x fﬁt(x)dx

Vi 9 [Vt % 1
t Jo 2t tJo V2t Vort

Combining (2.24) and (2.25), letting ¢t — oo, we get

lim sup tﬁy [77,52 1 Af} <

t—o00

ol

Since ¢ is arbitrary, we get (2.23). O

3 Proof of Theorem 1.1
Proposition 3.1 For any y > 0, we have

Bv [ e aa Xy | = T

where

Proof: The main idea comes from [20, Theorem 5.1]. Let C, (0D",) be the set of bounded
non-negative continuous functions on 8Dt,y. We only need to show that for any g € C;r (8Dt,y),

(em Qo0 (-4 y), X )

P {exp {—955‘0 - <g,)~q\)‘£y>}} =PV exp {—(g,f(g%l)} = 1. (3.1)
t

13



By (2.13) and the definition (2.11) of QY, the right hand side of (3.1) is equal to

befo {03 )09 5 )] =22 2 o (-t )

f\/O‘F]

with g, (t,z) = g(t, z)+ye~ (Aot (44 Interchanging the order of expectation and differentiation,

we get that

10
the right hand side of (3.1) = —— —¢ “s7 (t0) ,

y Oy Y=o+

where ug? satisfies (2.7) and ug,’ = ug?. Thus,

: : I v 0
the right hand side of (3.1) = —e % "% —u y(t,O)‘ . (3.2)
Yy oy 9 y=0+

Let my¥(t,x) := 87ugW Y(t, )]y o+ - Replacmg f by g, in (2.7), taking derivative with respect to 7,
and then letting v — 0+, we get that my " is the solution to the equation

tAT—y
m;y(t, ZL') + Hi\o /0 77[/ (u;y(t -, Br)) m;y(t -, Br)d,,« — H;\() [e*(/\0+9)3t/\r—y (Bt/\T—y + y):| .
Note that Biar_, +y =0 when t > 7_,. The solution to the above integral equation is given by
t
m,Y(t,z) = I [e()‘OJre)Bt (Bt +y) exp {—/0 V' (ug (s, Bi—s)) ds} < T_y:| . (3.3)

By the definitions (2.1) and (2.2), we have

t
m,¥(t,0) = [e_é)‘gt_eBt (Bt + y) exp {—/0 ' (ug¥(s, Bi—s)) ds} < Ty:|

t
:yﬁy [e_é’\gt_eBt exp {—/ Y’ (uy¥(s, Bi—s)) ds}] .
0

Using (3.2) and (3.3), we have

the right hand side of (3.1) = e~ % ', t)H { —A3t/2-0B: exp{ / V' (uy¥(s, Be—s)) ds H . (34)

80]

Next we deal with the left-hand of (3.1). Applying Campbell’s formula, we get
P |exp { —(g, n) Ao ‘5)‘0 P |exp / / g, w%_ N (ds x dw?®
jexp {~to. 250" }|e] = sy 8N (e du)
_exp{ 2,8/ / <1exp{ (g, w Dt s)}) nggods}

:exp{—Z,B/O ~logPs ,, [exp{—@,xgg >H ds}
= Xp{—Qﬁ/Otu;y(t—s,fg‘o)ds}—exp{ 2/5/ (s, 0, s}. (3.5)

14




For X (™)Xo let m, : = | X76° Ao || denote by the initial mass of the discrete immigration for s € D™.

Then {ms:s>0}isa P01sson point process on (0, 00)? with intensity dtrv(dr). We similarly have

P~Y [exp{—(g,Xg?l”\o)} ‘5)‘0] =P |exp Z meu ¥ (t —5,600)

seD™

= exp { /Ot /(0 . (1 — exp {frug_y(s,fi‘fs)}) ru(dr)ds} . (3.6)

Combining (3.5) and (3.6), we get

t

-y (l‘l) Ao (m), >\0 Xo| 3 Gy o Y

B [oxp { ~(g, X500 + X020 } ] = exp{ /0 [ (uy(5.€2,)) —/(0)] ds} BT
Note that (X*)" is independent of ¢ and has the same law as X*0. So by (3.7),

[ et~ X3 )

g

Xp
= Ao/ (n)’)‘O (m))\O ‘ Ao
By e [exp{ 9. (O + X0+ X e
~ A ~
=B [ex { (9, (XY V| B [ B [exp { (g, X0 + X0 } |
-y
B _ t
= e U (LO)Py [696?0 exp {—/ [wl (ug (s, {\Os)) — 1//(0+)} ds}] . (3.8)
0
Recall that —/(0F) = A\2/2, {y+By, t > 0; Hy} is a Bessel-3 process starting from y and {f +y,t >
0; P~ Y} is also a Bessel-3 process starting from y. Thus, by (3.4) and (3.8), (3.1) holds. |

For ¢t > 0, define

W,V = (W, Y) + /M /D (e 1y o) () w Dt S>N*0 (ds X deO) + ) WESTY (3.9)

seDym

n —A0" T Y —A0" ’ 7A
(Wt y)/ = (6 Ao 1(fy,oo)(')a (X)\O)/Dt_y>7 Wtrilss V= <€ Ao 1(fy,oo)(‘)anlz723 0)'
By the spine decomposition (2.12), (W, ¥, ¢ > 0; Q™ ¥) has the same law as (W;y’ t > 0;PY). Recall
the definition (2.10) of V,”¥ and that (V, ¥, ¢ > 0;Q~¥) has the same law as (V; Y, > 0; P7¥). Note
also that

ViV = /Ot/ (y + e ’th S>N)‘0 (dsxdw)‘o) + Z | i

seDym

where

(V) o= (e (X0 b VT (g +)e ™ X,

Lemma 3.2 For any y > 0 fized, we have

y
hm\f}P’y L
W, Y+ VY

15



Proof: First notice that

7Y -y
t W,

V;/*y

Py

=Q™

V;:y

1 _
- ;]P)[Wt y].

Using (2.6), and noting that \3/2 = «, we have that for any f € B, (R),
Péz |:<f7 Xg(% >:| = Hi‘o |:€)\g(t/\T7y)/2f(Bt/\T7y)i| )
-y
Using the mean formula above with f(z) = e*’\oxl(_ym) (), we obtain that

1 B
= —P[W, Y] = ~T1y° [‘ng(tmywe 2B 1y o) (Binr_,)

Y 4

W, Y
‘Z—y

P_y

2

1 0T x2e/o 1 uVE e
:fﬂo[e ot/2g= Ao Bt } =TIyt < 7— —/ e~ 2 dx.
y 0 {t<r—y} y 0( y) v Jo \/ﬂ

lim VPV

t—o00

Thus .
tiy &

To complete the proof of the lemma, it suffices to show that

_ TW—Y\2
lim sup VtP™Y | — (WLE ——
Vi +w)v

t—o00 t—o00

t

It follows from Proposition 3.1 that
_ W

v

~ WY ~ WY
= limsup vt P7Y VNVt_ —PY A,j/v%
v,y WV

(3.10)

}:0.

(3.11)

Under I@_y, €Y + 4 is a Bessel-3 process starting from . So by Lemma 2.5, (3.11) and Jensen’s

inequality, we have

_ (W—y)2 _ I WY 2 - _ 1
PV | ——t 2L | <PV || =L =PV | (P | X
(V¥ + W, )V v oy
i 2
<P | <2
ity ¢
Therefore .
_ ~1\2
VPV v, ) =o(l), ast— oc.

This concludes the proof.

Next we prove the following result:

16
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Proposition 3.3

_ 2
~ tw, Y 2
i v | (YW 2) g (3.13)
t—o0 Wtfy + ‘/;fiy v
To prove (3.13), we first prove some lemmas. Let E; be events with lim; I?”_y(Et) = 1.

- N2
Combining (3.11) and the estimate P~¥ [(W;y/vt‘y) ] < 2 in (3.12), we get

f}—t—y + Wt—y ‘ny

WY
—PY Wi ] 1 ’)}‘Aot
WAV g0yl P
-2 /n—"— S LR - R A
WVl +y Vil 6ty Wl Ve +y

— Y - e | - W1
< [Py || =t Py || +PY |t
‘/t*y t0+y Wtfy_{_‘/;*yé't() _|_y

WY 15,
AT

1EtC

(£ +y)?

+PY : (3.14)

Note that, under Iﬁ_y, ft)‘o + y is a Bessel-3 process starting from y. Using Lemma 2.6 and the
assumption that P7Y(E;) — 1 as t — oo, we have
1
=0 <) . (3.15)
t
By (3.14) and (3.15), we conclude that
—~ 2
_ —y ~
PY <~_J/Vt ’V_y> <o <1> +PY
Vil w t

Next, we need to construct E; such that the right-hand side of (3.16) is bounded by 2/(nt) 4+ o0(1/t).
Let [0,00) 3 t +— k; be a positive function such that lim; . k;/(logt)® = oo and limy o0 ki /v/t = 0.
For instance, we can take k; = (logt)” for large t. For ¢ > 0 large, we define

e

(& +y)?

WY g,
Wil + Vv g +y

(3.16)

WO e Wy [ a0 A (dsxdu) 4 ST W,
[0,k¢) /I g seD™N[0,k¢)

w, vkt = / / €Ly ooy (), w5 JN (dis x dw ) + W,
t [ke,t] 1D>< (-woa) ) D—y> ( ) Z !

seD™MN[ky,t]

Pwlok) vy / / ((y+)e o, wi_ N (dsxdw)‘o) + Y vEe
[0,kt) /D v seD™N[0,k¢)

17



vlket] / / Y+ e th S)J\/)‘O ( 5 X dw>‘°> + Z |
kt,t]

seD™N[ky,t]

Recall that mg = ||X]rn % )‘0|| Define

=P <ed <k }ﬂ{ inf £} > kl/G} Ba= (] {me<eds'},

Elke.t] seD™A[ky, ]
Ei3:= {‘Z_y{kht] + Wt_%[kt’t] < tlg} ; E,:=FE1NE2NE 3.
Lemma 3.4 For any fized y > 0, it holds that
i sy B s ] <o

uelky’® ki

Proof: First, by Campbell’s formula, we have

P |

~ A
f;;\f = u} =P U {ms > eAOSSO/Q}‘f;?f =u

seD™N[ky,t]

< PV Ao _ <PV Ao _
— P Z l{m >e>\0§so/2} E =u ]P) Z 1{m5>e>‘0§?0/2} Ekt
s€D™MN[ky,t] seD™N[k¢,00)

Ao
=PV {/ ds/ (£ <210gr/)\0}7“1/(d7“)’§kf = u] . (3.17)

Since under Iﬁ’*y, €00 > —y for all s > 0, it holds that

L& <atogr/nor = (g0 <atogrno} ~ Hw<2ionr/xo} T Lido o100 L u221087/00)
= L0 catogr/noy * Hw<2ionr/no} T Lo o100, 00< 4

1{§£‘O<210gr/)\0} ’ 1{—y<210gr/)\0}' (318)

Plugging (3.18) into (3.17) and noting that —y < 2logr/\g < 7 > e *0%/2 we get that

/\0_ Yy )\O_
{ 9 u <IP’ [/kt ds/ @) <210gr/>\0} v(dr) ‘{ u]

Y Ao

-7 U ds/ s L gy AD[E = ]

:/ ds/ ru(dr)PY [ 2o < 2logr/)\0‘fkt‘) = u} . (3.19)
kz 67)‘0y/2

By the Markov property, when s > ky,

PV E’\O < 210gr/)\o‘§)‘0 = u] =Pt [68 g TU< 2logr/)\0] (3.20)

So (3.19) and (3.20) yield that

PY [ to §>\o = } < / ds/ TI/(dT)ﬁ’_(?/""u) [gj‘gkt +u< 210gr/>\0}
ki e~ *0y/2
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= / ds/ ru(dr)P~ W [ﬁi‘o +u< 210gr/)\0} . (3.21)
0 e—Aoy/2
Now by Lemma 2.4 and Proposition 2.3, (3.21) is bounded above by

P |:E1562 5;;\;) = u} < / ds/ rV(dr)IF’_(er“) [fi‘o +u < 2log r/AO]
0 e—roy/2

oo 0o 1
:L TV(dr)/O dsmﬂu—&-y (le{BS<y+2logr/)\o,s<‘ro})

—Aoy/2

0 o 21 A
< / TV(dT)/ dswﬂwy (Bs <y+2logr/X,s < 0)
e 0

—Aoy/2 u+y
C o0 9 .
< r(14+y+2logr/Ao)° (1 +min{y + 2logr/Xo,u + y}) v(dr). (3.22)
U+ Y Jo-rou/2

For any fixed € > 0, note that 2logr/\g < eu <= r < e=20/2 We suppose that ¢ is large enough
such that for any u € [ktl/g,kt], ut+y>1and 1 +eu+y < 2e(u+y). Thus,

eENou/2

C
Ao — < 2
& u] = y/e/\oy/2 r(1+y+2logr/Ao)*(1+y+ 2logr/A)v(dr)

+C(1+u+y) /OO
u+y e

eEXou/2

B |Ef,

r(1+y+2log 7“//\0)21/(d'r)

elgu/2

< C
U+ Y Je—roy/2
+C’(l%—u—l—y)/oo

u+y e

r(1+y+2logr/X)? (1 + y + eu) v(dr)

r(1+y+ 2log T/)\o)21/(d’l“)

elgu/2

§2Ca/ r(1+y 4 2logr/Xo) v (dr)

—Aoy/2
oo
+ 20/ NV r(1+y 4 2logr/No)?v(dr). (3.23)
e*"0%
Using condition (1.6) and taking t — oo, (3.23) yields that
" o0
limsup sup P7Y [Efz f,;\o = u} < Cs/ r(1 4y + 2logr/Xo)?v(dr).
ety e~ov/2
Since € is arbitrary, the desired assertion is valid. O

Lemma 3.5 For any fized y > 0, there exist constants T,C" > 0 such that for anyt > T,

- o -
PV BN Bia N Egle| < =, P V-as,

Proof: Recall that W, ¥ is defined in (2.9). Define W, ¥ by
Wi Y= (e XN,
t <€ Dt,y>

By (2.6), for any t,7 > 0 and z > —y, P, [Wt_y] = re~9%, which does not depend on t. By this

and the special Markov property (2.8), we see that W, ¥ is a non-negative P,s_-martingale. Note
that W, ¥ < W, Y. Similarly to (3.9), we define

Wm757_y = <€7)\0" vas?)‘0>'

t—s



Because Fi1 € o(& :t > 0), by the martingale property of W, ¥, we obtain that
]’fbiy 1Et 1/ /<e>‘0'1(y,oo)( ) Dt s>N)\O <d8 X dw/\()) 5)\0
" JIkeot) /D

<PV llEt / / (e wg; N (dsxdw)‘°> §A0]
k’t,t]

t
= 281p,, /,C Nexo <<e‘A° wpi-) @0>ds—2ﬁ1Eﬂ /k Ps (wisfe) as
t t S
t A 1/6 1/6
= 2B1p, , / e M08 45 < 28te Mok < 9Bk /4, (3.24)
k¢

where the second to the last inequality of (3.24) holds because on E;; we have { > ktl /6 for all
ki < s <t. Next, for s € D™ and recall that m, = || X5

)

~_ m787
P~y 1Et,1ﬂEt,2 E Wtfs

Yy >\ ™ E m,s,—Yy >\
5 O’m S ]P) Y 1Et,1ﬁEt,2 Wtfs é- 0

s€D™Nky 1] seDmA[ky, 1]
E A
= m,s,—Yy A _ - 0
= 1Et,1ﬂEt,2 ]P)m35€AO <Wt78 ‘5 O’m) = 1Et,1ﬁEt,2 E e 0és M
s€D™N[ky,t] ’ seD™[ky 1]

g0 — 220
<lg, Z e 0% /21{ms>1}+1Et,1 Z e N0 msl{msﬁl}

s€D™A[ky 1] seD™[ky 1]
y 1.1/8 1/6
e S ¥ > malpm,<y- (3.25)
seD™[ky 1] seD™[ky 1]

Taking expectation with respect to m in (3.25), we get

™ m,s,—y
P~y 1Et,1ﬁEt,2 § : Wt—s
s€DMA[ky,t]

g

/6 1o~ /6~
<e ok 2py | N e e R B ST g |60
SEDmﬂ[kt,t] SEDmﬂ[kIt,t]
t
€_>\0kt1/6/2/ ds /Oo rv(dr) )‘0’“1/6/ /
k)t 1 kt
/ o /
< te~Noki 6/2/ rv(dr) + te= ok by 6/ v(dr) < Cste™ "/ (3.26)
1 0

for some constant C3. Similarly, for large ¢ such that for all u > kl/ 3 , (y+u) < eMou/t we have

—Ao- A0 Ao Ao
llE“/ktt]/ (v + ) Wi N (s x dw) J¢ ]
- 2/81E“/k Ne <<(y+ e o) 5”) &

t A
&) ds = 2815, [ Ny + €

k¢

t
= 261Et,1/ Ps 2o (V;f:g
k‘z €s
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< 28te= k"1 < ggpe—rokt®/1, (3.27)

For large t such that for all v > k:tl/g, (y +u) < /4 we also have

™ m,s,—y
PY 1Et,1ﬁEt,2 § Vt—s
s€ D™k 1]

A A
Z —X0&° A Z —3X0€s0/4
- 1Et,1ﬂEt,2 € 0t (y + &so)ms < 1Et,1ﬁEt,2 € 0&s"/ ms
seD™N[ky,t] seD™N[ky,t]

/6 /6
< oMok /4 S A+ o—3hok;/¢ /4 Y mlp< (3.28)
seD™N[ky,t] seD™N[ky,t]

A — m,s,—y A
£ m| = 1Et,1ﬂEt,2 E Pms5§>\0 (V;—s ‘f 07m)
s€D™ [k, t] °

Taking expectation with respect to m in (3.28), we obtain that for some constant Cjy,

™ m,s,—Yy
P~Y 1Et,1ﬂEt,2 E : V;—s

1/6 o0 1/6 1
5)‘0 < te Mokt /4/ rv(dr) + te3Aok: /4/ TQV(dT’)
s€D™N\[ky,t] 1 0

< Cyte ok, (3.29)

Combining (3.24), (3.26), (3.27) and (3.29), we get that

]P)iy |:1Et’1ﬂEt,2 (‘Z_y{kt’t] + Wt_y7[kt7t})

s”] < (Cy + Cy + 4B)te ok /4,

On Ef 3 we have ‘N/t_y’[kt’t] + Wt_y’[kt’t] > 1/t2. Then for t large enough such that k‘tl/G > 161ogt/ o,
we have

€A0:| S t2]P> Y |:]‘Et,1mEt’2 (‘A}t_yy[kt,t} + Wt_y’[ktvt])

Py [1Et,1mEt,2mEtﬁ3 f)\o}
/6
< (C3 + Cy + 4B) 8320k /4 < (05 + Oy + 48)t7 1
The proof is complete. O

Lemma 3.6 For any y > 0, we have

. ~_y _
Jlim P7Y[E,] =1 (3.30)
and
lim inf P Y[E&° = u] = 1. (3.31)

t—o00 ktl/3§u§kt
Proof: First, by Lemma 3.4,

lim sup P {Efg

t—
o ue[ktl/?’,k’t}

&0 = u] =0. (3.32)

By Lemma 3.5, we have

lim sup PV [Et 1N Eyp N ES|6 = u} —0.
t—o0 1/3 ’ ’ ) t
ue[kt ’ki]
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Note that
Q=EUELUE U (BN EnEs). (3.33)

To prove (3.31), we only need to prove that

inf  PY[E|6° =u] 1, ast— oo (3.34)
uelk}’® k)

Recall that under Iﬁ’_y, y+ 530 is a Bessel-3 process starting from y. Now let 7 := 530 + y. Then
(n,P7Y) is equal in law with (n,II,). For any u € [k:t1 / s, k], by the Markov property and Lemma
2.4, we have
@_y[Et 1|§£‘ =u| > ﬁy+u min 7, > ktI/G +y
’ t - T’E[O,t—kt] B

1
= I [(Bt—kt +y+u)

— 3.35
y+u ( )

1{minT€[0’t,kt] B>k /S —u} |
Seta =u— k:tl/ﬁ > 0. Then using the fact that Il B, = 0 for any ¢ > 0, we have

0=TMoB(—krr_, = —allo(T—a <t — ki) + Mo(Br—k, L >t—ke})-
Also note that by Lemma 2.2,

—2*/24.

© 1
HO Teqg <t — kt) = 2/ (&
( 2 a/Ni—F V2T

Then the right-hand of (3.35) is equal to

1
——Tlo [Bi—p, 1r_y>t—ky + W+ W1 >1py]

y+u
1/6\  roo
(

- — e 3.36
yru Sk ik V27T (330)

By (3.35) and (3.36), we get

~ 2 k1/6 o0 1
P_y[Em]f,i‘tO =ul>1- Wtk ) / e "2 dg.
0

a y+ k'3 V2r

By the assumption on k;, we get (3.34).
Now we prove (3.30). We claim that

P vk <& <k =T,k +y<m, <k +y| =1, ast— oo (3.37)

In fact, by Theorem 3.2 of [26], lim;_oo log(n:)/logt = 1/2, ﬁy—a.s. Using the fact that k; — oo as
t — oo, we get (3.37) holds. Combining (3.37) and (3.32), we have

e e
lim PY[Eg,] = 0. (3.38)
Combining (3.37) and (3.34), we have
. B
lim PY[Ey, ] = 1. (3.39)

22



It follows from Lemma 3.5 that

. ~—y C —
Jim P [E, 3 0 By 0 Ef] =0, (3.40)
Using (3.33), and combining (3.38)-(3.40), we obtain (3.30). O

Lemma 3.7 For any y > 0, it holds that

- w, Y 1 2
limsup tP™Y | ———t—— 5 B <2
t—00 Wty—f—‘/tyfto—i—y m

Proof: First note that

o Ty, [kt T5—y,[0,k

ﬁ_{)fy NWty 1Et :]:F)fy NWty[t ] 1Et _’_ﬁfy NWty[ t) 1 )
Wt_y + V;f_y gt)\o +y Wt_y + Vt_y gtAO +y Wt_y + ‘/t—y gt)\o +y
For the first term on the right hand, we have
N_yv[ktvt} 2
PV NWt _ /\1Et <PV |— 1/t = 1 ,
Wil VTGS +y V] e )

here we used the property that E; C {& > k‘tl/G}, E; C E;3 and the equality Py [‘71,4 =
Q|

t

1] _1
_y} =y Hence,

Vi
- N_y7[kt7t} 1
lim tP~Y Nmff —— | =0
t—o0 WterV; y§t0+y
Therefore, we only need to prove that
- W_yv[oﬂkt) 1 2
limsup tP™Y | =t——x—— B | <2 (3.41)
t—00 Wty+‘/t y§t0+y e
Note that
Tr—,0,k T5—y,[0,k
]ﬁ*y NWt wl0k) g, < ﬁ)*y Wt wl0k) 1g,
Wt_y + ‘/t_y &'t)‘ﬂ _I_ Y - Wt_yv[ovkt) + W_yv[ovkt) gt)\o + Yy
B 7 wl0ke) ~ 1
<PV | — A 1,50 113 x sup P7Y 0 =ul. (3.42)
[Wt_yy[o,kt) + ‘/t_y;[o,kt) {§kt06[k’t k]t ue[kz/37kt] t)\o +y ke

In the last inequality we used the Markov property of €. Let {(1:)t>0, ﬁuﬂ,} be a Bessel-3 process
starting from u + y. By Lemmas 2.4 and 2.2, we have

~ 1 ~ 1 1
PV | |60 = | =My | —— | = i [1 ‘
t)\o ty gkt u u+y |:77t—kt:| Uty u+y | +{min,¢[o,¢—&,] Br>0}
1 2 fwrw/ViERe
= Iy (7_ >t—k) = ——e " 2dg 3.43
u+y 07— () t) y+u/0 \/%6 v (3.43)
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By (3.42) and (3.43), we get

~ Wt_yv[ovkt) 1E
PV | = =
Wt_y + ‘/t—y 62\0

. W Yy [0 kt)
<PV | — t = 1, 50 173
>~ Wtfy,[(],kt) + thy,[o,kt) {5’% E[kt kel }

X sup e 24z, (3.44)

[1/3 ]y—i—u

2 (y+uw)/Vi—ke 1
/ v 2T

Because lim_ o+ 2 [ _z2/2/\/27rd:z = +/2/m and (y + u)/+/t — k¢ converges to 0 uniformly on
u € [kt/ ,kt] as t — oo, we have

2 ruw)/Vizke 2
sup Vi — e Ay — ([ 2. (3.45)
s m

E[kl/S e y+tu

Using the Markov property at time k; again, we get

. Wt Yy [0 kt)
-y
P Wt_yv[ovkt) + ‘Z—y7[0,kt) 1Et

N W [0,k¢)
>PY | — _ 1 yan | inf PTY[BGY = ul. (3.46)
R AN G 1 v ke

Because Wt_y’[o’kt)/(wt_y’[o’kt) + @_y’[o’kt)) -1p, <1, the left-hand of (3.46) is bounded above by

-~ W_y1[07ki) - /W_yv[ovkt) — ~ 1
—y t -y t ~ -y Y hl
d [”W“ty,[o,kt) Ty to | <F W, vk | w0k Lol vsyy | TF {Vt = t]

- W_y7[07ki) 1~ 1 -~ /W_y7[07kt) 1
-y ~ Py —PY ~ —
<P Vt v,[0,kt) 1Et1{‘/t_y>1/t} + tP f}t—y =F ‘ny,[o,kt) 1Etl{V[”>1/t} + ty’ (3.47)

~ -1
where in the last inequality we used the Markov inequality for (Vt_y> . Fix a constant n € (0, 1),

[ktv

on E; N {V;"¥ > 1/t}, we have, for large ¢ such that ¢ > n~, V, % 1< nV, Y. So when t is large,

using (3.47), we have

~ [ Wt y,[0,k¢) ] 1 1

WY
-y - -y 14

f}tfy

“ty 1-—n

By (3.10), we have

~ W wl0ke) 2/7 1
P [V[N/t—y:[ﬂ,kt) + f}t—y,[O,kz) g | < (1—n)Vt to <\/5> , ast—roo. (3.48)

By (3.31), (3.44), (3.45), (3.46) and (3.48), we finally get that

N_y’[ovkt)
~ 1 2
lim sup tP~Y Nuit ~ Er .
100 W, Y+ Vg m(1—=n)
Since the above holds for any small n € (0,1), (3.41) holds. The proof is complete. O
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Proof of Proposition 3.3: Applying Lemmas 3.2 and 3.7, and (3.16), we get

— 2
-y
v sup B (m_ 2)

t—00 ‘A/;_y —+ Wt_y ™

—~ 2
~ tw, Y 2 2 ~
= limsup ¢ P7Y )[72 e 2\/7 lim < P7Y
t—o0 ‘/t_y + Wt_y ™ T t—00

which means that (3.13) holds. O

Proof of Theorem 1.1: Let R* and R* be the smallest closed set containing J,~ suprltAO
and (J,~ Supp)N(t)‘O, respectively. Then by [20, Corollary 3.2], under condition (1.6), P(inf R* >
—o00) = 1. So for any 0 < n < P(£°), there exists K > 0 such that P(inf R* > —K) > 1 — 7. Let
y := K be fixed and define €, := {inf R* > —K} and Q, := {inf R* > —K}. Then

W] 2}§0’

Vt—y + Wt—y T

P(Qx NES) > P(Qk) + P(E) —1>1—n+PE) —1> 0.

For any € > 0, put

W,y 2 ~ WY 2
Gt = ’\[t—\/>‘>€ , Gy= ’~_\/f\,_—\/>‘>€ .
‘/t y+Wt Y T V; y+Wt Yy e
Define P**(-) = P(-|Qx N &°). By (3.13) we have limy_,oo P7¥[Gy] = 0. Thus,

P(Q N E° . o _
PO OEY) i Py vig,) = Jim BY(Gy 0 Qe 1 8] = lim BY(GY] =0,

Yy t—o00 t—o00

where £ := {3t > 0 such that || X]°|| = 0} with P~¥-probability 0. Then by Proposition 3.3, we
have
Vv, Y1g, —— 0 in probability with respect to P, (3.49)
—00

Notice that on the event Qf := {inf R} > —K}, we have
VY=V, K =oWw,+ KW, >0, W, Y=w%=w,,

and limy_,oo V, ¥ = OWy > 0 P**-a.s.. Together with (3.49) we get lim;_,o, P*[G;] = 0 for any
€ > 0, which says

VWY VW, \/5
= — i bability with t to P**. .
VW oW, (K W, o V in probability with respect to (3.50)

Recall that P(£°) =1 — e~ > 0 and P*(W; > 0, ¥t > 0) = P**(lim;_,o W; > 0) = 1. According
to (3.50) we get

oW —_— \/? in probability with respect to P**.
VIW, t=oo |\ 2
For any v > 0, define
OWt 7T
A = — —‘ > .
t { NG 7}
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Then lim; oo P**[14,] = 0. Noticing that P*(-) = P(:|€¢) and P*[14,1q,] = P*[14,]P(Q2x N
E°)/P(E°), we obtain that

14,10, = 0 in probability with respect to P*,
—00

which means limsup;_,,, P*(A4¢) < limg o0 P*(A: N Qx) + P*(Q%) < n/P(E°). Since 7 is arbitrary,
we deduce that lim;_,oo P*(A;) = 0 for any v > 0, which says

oWy
\/th t—o0

This is also equivalent to say that, on the event £¢, we have

T
\/; in probability with respect to P*.

2
VW, == —0W in probability with respect to P (3.51)
— 00 T
On &, (3.51) holds obviously. The proof is now complete. O

4 Proof of Theorem 1.2

Recall the definitions of the process {(Z, A1)i>0} and the probability measures P, ,,y and P, with
w e M(R) and n € My (R), defined in Subsection 2.3. Set P := Pj,. By the skeleton decomposition
for X, (A4, P) is equal in law to (X, P). To prove Theorem 1.2, we only need to prove that on survival
event (SA)C where €4 := {limy_ || A¢]| = 0},

lim sup V(e 00F208 A)) = 400 P-almost surely. (4.1)

t—o0

The intuitive idea for proving the limit above is that the behaviour of A is determined by the
skeleton Z. By branching property of Z we only consider the law P s, 5,). Let {e, : n > 1} be iid
exponential random variables independent of Z. Let Ty := 0 and T,, = > _* ; €; for n > 1. If we look
at Z at independent times {7}, : n = 1,2,...}, then {Z7,,n > 1} is a branching random walk. We
expect the behavior of this branching random walk to dominate the behavior of A. Let {Z,,,n > 1}
be the translation of {Z7,,n > 1} defined in (4.4) below. We will show that {Z,,n > 1} satisfies
conditions of Aidekon and Shi [1]. Then by [1, Theorem 6.1],

n—o0

1
lim inf (Lf —3 log n> = —00  Pys,5)-almost surely,

where Lf is minimum of the support of Z,. Let LtZ be minimum of the support of Z;. By definition
(4.4), LZ = Mo(L% + \oT,,), and then we have

n—o0

1
lim inf ()\Q(L%n + XoTh) — 3 log Tn> = —00  Ps, 5,)-almost surely. (4.2)

We will bound (e~*0(+2Tn) 'Ap ) from below by immigrations along the path of LZ, and then use
the limit result (4.2) for L%n to get (4.1).
Now we prove the above rigorously. Note that

O N LA
(k!) e P (50.150) ()5 (4.3)




and P(EM) = P(E) = e, Tt is obvious that P((;O,O(;O)(EA) = 1. Together with (4.3), we know
that for k& > 1,P(507k50)(5A) = 0. Thus, to prove Theorem 1.2, it suffices to show that, for any
k > 1, the limsup in (1.8) is valid P (s, 15,)-almost surely. By the branching property, without loss
of generality, we only need to deal with the case of k = 1.

Let {e, : n > 1} be iid exponential random variables with parameter x € (0, 00), independent
of Z. Put Ty := 0 and T,, = Z?:l e; for n > 1. Now for n > 1, we define Z,, so that, for any
f € B/ (R),

<f’ Zn> = <f ()\0(' + )\OTn)) ) ZTn>- (4'4)
Then {(Z,)n>1,P(5,50)} is a branching random walk. Define m :=>_ -,np, = F'(1-), where we
used (2.14). It is easy to check that Ao = 1/2¢(A\*)(m — 1). We first check that the conditions of
[1, Theorem 6.1] for Z are satisfied. More precisely, under assumption (1.7), (1.1) (1.2) and (1.3)
hold. For simplicity, we define

WZ = (e Zu), DZi=(e",2), DZ%:=(()%e",2,), DE¥:i=(()se Zy).
The additive martingale associated to Z with parameter A is defined as

WZ(N) 1= e 8 (e 7)) = 6—(,\—,\0)25/2<6—,\(-+>\os)7 Zs), (4.5)
where cy := A/2 +¢'(A*)(m — 1)/A = (A2 + A3)/(2)) and Acy = (A — X)%/2 + Ao.

Lemma 4.1 If " - n(log n)2p, < oo, then

Psgs) WE] =1 Py [DF] =0, Pl [DF?] < o0 (4.6)

and
P 5, 0) WE log3 W] < 00, Py g [ D T log, DPF| < 0. (4.7)

Proof : Step 1: Define WZ and DZ by

WZ = <67)\O(.+)\08)7 ZS>7 DSZ = <( + A()S)ei)\o(.Jr/\OS)’ ZS>

s

Then by [19], WZ and DZ are the additive martingale and the derivative martingale associated to
the branching Brownian motion Z in the critical case A\ = \g respectively.
By some direct calculation and the martingale property, we have

P (50.60) [WIZ] - /0 re™P (5,60) [WSZ] ds = /0 ke "ds =1,
P (50,60) [Dlz} = /0 ke P (50.50) [DSZ] ds = 0.

Now define
DSZ,2 — )\g« + )\08)267)\0('+)\os)’ Zs>

Using the many-to-one formula, we get

[e.9] o0
PGy D7) :/0 e P gy g0) (D] ds = /0 ke NG Py | (By + Aps)?e P09 ds
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=38 [ e (B4 e s = X [ s s < o
0 0

Thus, (4.6) holds.
Step 2 : In this step we prove the first inequality of (4.7). Define a new probability Q% by

4Q?

=WZ
dP((sO’&O)

s, s>0.

Then under QZ, Z has the following spine decomposition:

(i) There is a initial marked particle moving as a Brownian motion with drift —\¢ starting from
0, we denote the trajectory of this particle by w;.

(ii) The branching rate of this marked particle is ¢'(A\*)m and the offspring distribution of the
marked particle is given by p, := np,/m,n=1,2,....

(iii) When the marked particle dies, given the number of the offspring, mark one of its offspring
uniformly.

(iv) The unmarked individuals evolve independently as Z under P, s,)-

Note that

P (5,.60) [WT log? W] = /O ke P (5,.50) [WE log? WZ] ds. (4.8)
By a change of measure, we have
P (50,50) [WSZ log?ﬁ- WSZ] = QZ [10g%r WSZ] :
Let A > 4 be a constant such that

log A(log A — 2log 2) > sup (log*(a + 1) — log®a) . (4.9)
a>1

There exists such an A since for all a > 1, by inequality In(x 4+ 1) < z, we have
log? (a + 1) — log3 a = (log(a + 1) +loga) (log (1 +a™ ")) < (2a— 1) x a™ ' < 2.
Now let b,c > A. Using (4.9), it is easy to check that the inequality
log?(b+ ¢) < log? b+ log? ¢ (4.10)

holds by assuming b > ¢ and b = ac. For £ > 1, we use I'y to denote the ¢-th fission time of the
spine under Q%, and O, the number of offspring at the fission time I';. Then

Z ~\3To17/2Z.0
WS :Zl{FZSS}e 0 eWs—Fil{
>1
22Ty 1772,
+ Z Lir,<spe™™ ZWs—Fil{e—A%FzWZ’?Z >A}
>1 e
=: H, + Hy + H3, (4.11)

2
e—AOFZWZ,Fe

71}

+ e—/\o(w5+/\08)

where, given the information along the spine, W% is the additive martingale associated with the
branching Brownian motion starting from the Oy — 1 unmarked individuals. Note that for any
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z,y,2 > 0, we have log? (z+y+ z) < log? (3x) +log? (3y) +log? (32) and log x < 4z. Then (4.11)
implies that

log? WZ < log? (3H1) + log? (3Hz) + log% (3H3) < 12H; + log? (3Ha) +log% (3H3).  (4.12)
Since Hy < AZZ21 Lyr,<s), we have
Q7[H] < A/OS ' (N )mdr = A/ (AN )ms. (4.13)
Also, note that ws + A\gs under Q7 is a standard Brownian motion, so

Q7 [log? (3Hs)] < 2(log3)* + 2Q7 [log? (Hs)]
< 2(log 3)% + 223Q7 (ws + Aos)? = 2(log 3)% + 2A3s. (4.14)

Here in the first inequality above we used inequality

log? (ab) < (log, a + log, b)* < 2log? a + 2log? b. (4.15)
Define
W, o= o i

Using (4.10) and (4.15) again, we deduce that

log? (3H>) < 2(log 3)% + 2log? (H>)

2 2 | =Xy Z L
S 2(10g 3) + 2 ; 1{FZ§5}1{€_)‘%FZW5Z;? ZA} 10g+ |: [Ws Fl;:|
—ZT
2(log3)> + 4> " Lyp,<sylog? W, +4)  1r, < log} ( Ao<wre+Aon>>
>1 >1
ZT
2(10g3)2 +421{F£S8} 10g+ — 1—% +4>\221{F2<3}(wr‘é —|—)\0Fg) . (4.16)
>1 >1

Similarly, we have

D ry<sp(wr, + AoT0)? | = ¢/ (A)m /OS Q7 [(wy + Mor)?] dr = /(A )ms?/2.  (4.17)
>1

Now given w, 'y and Oy, by the spatial homogeneity of branching Brownian motion, we have that

Q% [ SZ?Z }w Ty, 04 = Oy — 1. By the branching property of Z, we have WSZ 115[ = Z]Oizl Wfﬂé’j,
where WS Ife’], j=1,---,0p— 1, are independent and have the same distribution given w, Iy and
Oy. Thus,

-2,
Q7 [tog? W,

w FE,O[} < 2log? (O, — 1) +2Q7 {log+ < max, WSZFFZ/> ‘w,Fg,Og] . (4.18)
By the Markov inequality,
Q? {log%r <'max WSZ_%J> ’w,Fg,Og:| :/ 2ydyQZ [ max T/VS F[ > ey‘w,Fg,Og]
J<Op— 0 1 <Op—
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:/ 2ydy [1- ] (1—@Z 'Wffﬁg%ey‘w,rg,og})
0 | <01 ]

g/ 2ydy |1 — H (1—e7Y) :/ 2y [1—(1—e %)% dy. (4.19)
0 j<O—1 | 0

When Oy — 1 < €¥/2, using the fact that (1 —xz)* > 1 —ka for all z < 1, we get
2y [1— (1 —e¥) 1] <2y(Op — 1)e¥ < 2ye /%
while when Oy — 1 > ¢¥%/2, which is equivalent to y < 2log(Op — 1), we have
2y [1—(1- e*y)oﬁl] <2y < 4log(Oy —1).
Hence, combining (4.18) and (4.19), we get

— 7T
Q7 [10g2 WY,

w,rg,og] < 18log?(0Oy — 1)+/ dye™V2dy. (4.20)
0

By (4.16), (4.17) and (4.20), we obtain

Q7 [log? (3Hz)] <2(log3)” + 2A5¢ (\*)ms® +4Q7 | > 1r,<1810g?(Or — 1)
>1

)
+4/ 4ye_y/2dyQZ ZI{FZSS} = K1 —|—K28—|—K382, (421)
0 >1

here

Ky =2(log3)%, Kj=4)'(\)m / dye V2 dy + 729/ (\*) Y _ klog?(k — 1)px,
0 E>2

K3 =222 (\")m.

By (4.8), (4.12), (4.13), (4.14) and (4.21), we deduce that P s, 5,) [WF log} W] < cc.
Step 3 : In this step we prove the second inequality of (4.7). We use similar arguments as in
Step 2. First we have

o
P 5,60 | DT log, Df’ﬂ = /0 Ke " dsP (s, 5) [DZF log, DX, (4.22)

here
DZF := Xo((- + Ags)peMolHros) 7y,

For any € > 0, there exists a constant K. > 0 such that sup g [(z)4+e~ "] < K. Using the definition
(4.5) of the additive martingale W;Z()), one can easily get that

D%+ < K dolePo=9(+308) 7y Ke)\erQS/QWSZ()\O —€).
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By the inequality log, (ry) < log, = + log, y and the equality P s, s, (WZ(No —€)] =1, we get

P (s50.50) [D5" " logy. D]

< Ko log, <K€/\0662S/2> + K hoe” 2P g 50y [WZ (Mo — ) log, WE(Xo —€)] . (4.23)
By (4.22) and (4.23), to complete the proof, it suffices to prove that, for fixed €2/2 < x, we have

/0 e~ mEID3dsP 5 5y [WE (Mg — €) log, WZ (X — )] < . (4.24)

As in Step 2, we define Q%< by

d@Z,e

—_ =WZ(X—¢€), s5>0.
AP (55,50) o=

o(Zy,r<s)

Then Z has another spine decomposition, which is the same as the spine decomposition at the

beginning of Step 2 except with Ao replaced by Ao — €, also see [19, page 59-60]. Set g(t) =

e—<*t/2=(Ro—e) Aot Using the same notation as in Step 2, we have

Z z,
WZXo—€) =Y Lr<s9T) W (Mo — 6)1{9(F2)WSZ_,FF§£(A07€)<A}
>1

z,r —(Ao—€)ws
! ez Lre<apg (T Wo2r, (o - 6>1{9(Fe)Wszill:i(/\ofe)ZA} +olse e
>1

=:H + Hy + H3,

where A > 1 is a constant such that logA > 1 > sup,>; [log(1 + a) —loga], which means that
log(b+¢) <logb+logc for all b,c > A. Also note that (4.12) and Hy < A, 1r,< still hold.
And we have

Q%“[log.. (3H3)] < log3 + se(Ao — €/2) + (Mo — €) Q% |ws + (Ao — €)s]
=log3 + se(Ag — €/2) + (Mg — e)\/z\/g

Similarly we define WSZLFFZZ(AO —¢€) by

WSZL%()\O —€):= e(Po—ur, Wi?i(ko —€).

Then using an argument similar to (4.16), we have

log, (3H2) < log3 + log, H»

Ow—w 7T
<log3+ Z Lir,<sy log (g(l“g)e (Ao—e) Fz) + Z Lir,<s) log, Ws—reg(AO —€)
>1 >1

and

Q7 |3 Ursy oy (9T Cm9me ) | < g/ (X)m /0 (@7 fuwr + o — rl ¢ (o — £) 7] ar

2
>1
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Ty 532V,

Since (4.18) and (4.19) hold with w2 r, replaced by W', (Ao — €) (we only use the martingale

s
property and branching property), (4.20) holds for WSZ;FFZ(/\O —€). Applying Jensen’s inequality
for WSZL%(/\O —¢€) in (4.20), we finally deduce that there exist constants K7, j = 1,2,3,4,5, such

that for all s > 0,
P 5050 [WZ (o — €)log, WZ(Xo — €)] < Kf + K§\/s + K§s + K§s*/% + Kgs. (4.25)
Combining (4.23), (4.24) and (4.25), we obtain P55, [Dlz’Jr log , DIZ’+] < 0. O

Lemma 4.2 If (1.7) holds, then ), n(log n)2p, < oo.

Proof : By the definition of {p,, : n > 2}, we only need to prove that
AN*x)” «
/ Zn(logn)Qﬂe*/\ r(de) < 0. (4.26)
(0,00) n>2 n.

Define h(z) := (log(1 + x))?, then h’(z) = ﬁ (1—log(l+x)). Whenz >2>e—1,h"(z) <0,

which implies A is concave in [2,00). By Jensen’s inequality,

Z n(logn)? ()\*:c)”e_)\*x ="z Z (log(1 + n))? (A*:E)ne_)‘*m

| |
n. n.
n>3 n>2

. Nz) sy > s (A ) e N /nl 2
< (M) Z( )" 2 {log [ Z;;()\*:c)”e_/\*x Tl }

. Na(l —e ') 2
<Nz {log [1 e U s v + 1] } . (4.27)

+1

Since X
Na(l— e~

e—)\*a: _ e—)\*ac)\*x

lim log [1 —|—1]/10g:v:1,

T—r00

there exists K > 0 such that when = > K, we have

Na(l —e ')
1 — e NT — g AT \xyp

log [ + 1} < 2log . (4.28)
Together with (4.26), (4.27) and (4.28), we complete the proof. O
Proof of Theorem 1.2: By the first two paragraphs of this section, to prove Theorem 1.2,
it suffices to show that, the limsup in (1.8) is valid P s, 5,)-almost surely.
Case 1: 3 # 0. Let L be the left-most point of Z;. Note that, for any = € R,

Ni (<17w1> > 0) :9251_100 Ni (1 — 679<1’w1>> = 021—’1_’100 — log ]P’gr |:€79<1’X1>:|

= —logP5, [[IX1]| = 0] = N§ ({L,w1) > 0) € (0, 00).

Suppose that the continuous immigrations in the skeleton decomposition of X along the trajectory
of LZ such that (1,w;) > 0 are given by {(7,,, X)) :n =1,2,...}. Then it is obvious that
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{Tn — Tn—1:n=1,2,...} are iid and independent of Z. The law of 7,, — 7,,_1 is exponential with
NZ 2 (n{{1w1)>0})

£ . . . . £,
parameter 25Ng ((1,w;) > 0) and the law of the immigration is N (Lwrs0)

Since (1.7) holds, using Lemmas 4.1 and 4.2 with T}, = 7,,, we know that Z,, satisfies (1.1), (1.2)
and (1.3). Noticing that the left support of Z, is A\o(LZ + A\o7,), by [1, Theorem 6.1],

1
lim inf ()\O(Lfn + XoTn) — 3 log n> = —00, P(5,50)-a-s. (4.29)

n—oo

By the strong law of large numbers, 7,,/n — (28)~! as n — co. Hence, (4.29) is equivalent to

1
linrgioréf (x\o(Lfn + AoTn) — 5 log Tn) = —00, P(s,50)-a-s. (4.30)
Define W/ by
WtA — <e—)\o('+)\0t),At>‘
Then
T+ 1<€_)\0(’+)\0(’Tn+1))7ATn+1> > \/T>n<€_)\0('+)\0(7—n+1)),X£17Tn)> =: H,J,. (431)

Here H,, and J, are defined as
H, = \/ae—Ao(LanoTn)? Ty 1= e—A%<e—Ao(-—Lfn)7Xfl»fn)>.

Then by the construction of the continuous immigration in the skeleton decomposition and the
spatial homogeneity of super-Brownian motion, we deduce that {J, : n = 1,2,...} are iid and for
every n,J, is independent of o(Hy, ¢ > 1). Define G, := o(Hy, Jy : 1 < ¢ < n). By (4.30), we have
lim sup,, o, Hn = +00, P (5, 5,)-2.8., which together with the second Borel-Cantelli lemma (see e.g.
[8, Theorem 5.3.2]) is equivalent to that, for any K > 0,

oo

Z P (50.60) [Hn > K|Gn-1] = 400, P (50.50)-2-5. (4.32)

n=1
Now it is clear that P 5, 5,)(Jn > 0) = 1, so there exists a constant € > 0 such that for all n > 1,
P (50.50)(Jn > €) > 0. By (4.32) and the independence between J,, and G,,—1, we deduce that, for
any K > 0,

ZP(60750) [H"J” > K‘gn—l] > ZP(50750) [J” >e, Hy > K/E‘gn—l}
n=1 n=1

00
= P(50750)[J1 > 5] z P(50,5o) [Hn > K/g‘gnfl] = +-o00. P((;O’go)—a.s.,

n=1

which is, according to the second Borel-Cantelli lemma, equivalent to

limsup Hp,J,, = +00, P, 5.)-a.8. (4.33)

n—o0

In view of (4.31) and (4.33), we get

lim sup \/thA > limsup /7, + 1(6_’\0('+’\0(T”+1)),ATn+1> =400, P(s,50)-a-s.,

t—o00 n—00
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which implies the desired result.

Case 2 : v # 0. Suppose that v ((g,+00)) > 0 for some € > 0. Then v ((g, +00)) < co. Suppose
that the times and masses of the discrete immigration along the trajectory of L7 in the skeleton
decomposition with initial immigration mass large than ¢ are {(7,,m,) : n =1,2,...}. Then {7, —
Tn—1 :n = 1,2,...} are iid exponential random variables with parameter k = f(&oo) ye MYy (dy),
m, > ¢ for all n > 1 with law ye_/\*yl{yx}z/(dy)/f(&oo) ye 2 Yu(dy), and {7, : n = 1,2,..} is
independent of Z. Applying Lemmas 4.1 and 4.2 with T,, = 7,,, we get

llnrrilégf ()‘O(Lm + NoTn) — %log 7~'n> = —00, Ps50)-as. (4.34)

By the same argument as Case 1, we have
\/E< —,\0(+Aom . \/’e o(LZ +XoTn) mn S e %nef,\o(LfnJer%n). (4.35)
Combining (4.34) and (4.35), we also get the desired results. O

A byproduct of the proof of Theorem 1.2 is the following result:

Corollary 4.3 Let L; be the minimum of the support of Xy, i.e., Ly := inf{y € R : X} ((—o0,y)) >
0}. If (1.6) and (1.7) hold, then on E¢, it holds that

t—o00

1
lim inf (Lt + Aot — oW log t> = —oo0 P-almost surely. (4.36)
0

Proof: Let LY be the minimum of the support of A;. We keep the notation in the proof of Theorem
1.2.

If v # 0, by the definition of L/%\n, we have L/%\n < L%Zn, Vn > 1, P, 5,)-a.s. By the branching
property, we deduce that on (EA)C, L‘T}n < L%Zn, Vn > 1, P s, 5,)-a.s. Together with (4.34), we get
(4.36).

If B #£ 0, for a fixed constant A, define 7, by

Tu= oo nrrz) (O K1) = (Lo (- = LZ), X177,

Put H, := )\O(Lfn + AoTn) — %10g Tn. By the spatial homogeneity of super-Brownian motion, {7, }
are iid and for every n, 7, is independent of o(Hy, £ > 1). We also define G,, := o(Hy, Ty, 1 < € < n).
Since P s, (I1X{7™ > 0) = Pisy a0y (1K) > 0) = 1 and s oo T = [ X7 Py
a.s., there exists an A such that P 5, 5,)(Jn > 0) = P (5, 5,)(J1 > 0) > 0. We see that for any K > 0,

ZP(50760) |:‘7n > O’Hn < _K‘gn_l] = P(50750) [‘71 > O] ZP(50,50) [HTL < _K‘fg\/n—l} - +OO,

n=1 n=1

P (5,,50)-a-5., where in the last equality we used (4.30) and the second Borel-Cantelli lemma. There-
fore, forallK>O P (50.50) (Jn > 0, Hp < —K i.0.) = 1. Note that

1
{Tn>0,H, < —K} C {AO(LQH+1 + AoTn) — §log7'n < —-K+ )\OA} ,

we get

1
P(50,50) <)‘0( 1t )‘OTn) ) log 7, < —K + AA 1-0'> =1
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Since (7, +1)/7, — 1 asn — oo and K is arbitrary, we get that (4.36) holds P s, 5,y-almost surely.
By the branching property argument, we get the desired result. O
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