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Abstract

We consider the additive martingale Wt(λ) and the derivative martingale ∂Wt(λ) for one-
dimensional supercritical super-Brownian motions with general branching mechanism. In the
critical case λ = λ0, we prove that

√
tWt(λ0) converges in probability to a positive limit, which

is a constant multiple of the almost sure limit ∂W∞(λ0) of the derivative martingale ∂Wt(λ0).
We also prove that, on the survival event, lim supt→∞

√
tWt(λ0) = ∞ almost surely.

Résumé: Nous considérons la martingale additive Wt(λ) et la martingale dérivée ∂Wt(λ)
pour les super-mouvements browniens surcritiques unidimensionnels avec mécanisme général de
branchement. Dans le cas critique où λ = λ0, nous prouvons que

√
tWt(λ0) converge en prob-

abilité vers une limite positive, qui est un multiple constant de la limite presque sûre ∂W∞(λ0)
de la martingale dérivée ∂Wt(λ0). Nous prouvons également que, dans l’événement de survie,
lim supt→∞

√
tWt(λ0) = ∞ presque sûrement.

AMS 2020 Mathematics Subject Classification: 60J68; 60F05; 60F15.

Keywords and Phrases: Seneta-Heyde scaling; super-Brownian motion; spine decomposition;
skeleton decomposition; additive martingale; derivative martingale.

1 Introduction

Let {Zn, n ≥ 0} be a supercritical Galton-Waston process with Z0 = 1 and meanm = EZ1 ∈ (1,∞).

It is well known that {m−nZn;n ≥ 0} is a non-negative martingale and thus converges almost

surely to a limit W . The Kesten-Stigum theorem says that W is non-degenerate if and only if

E [Z1 logZ1] <∞. Seneta [25] and Heyde [16] proved that if E [Z1 logZ1] = ∞, then there exists a

non-random sequence {cn}n≥0 such that Zn/cn converges almost surely to a non-degenerate random

variable as n → ∞. This result is known as the Seneta-Heyde theorem and the sequence {cn} is

therefore called a Seneta-Heyde norming.

A branching random walk is defined as follows. At generation 0, there is a particle at the origin

of the real line R. At generation n = 1, this particle dies and splits into a finite number of offspring.

The law of the number of offspring and the positions of the offspring relative to their parent are

given by a point process Z. Each of these offspring evolves independently as its parent. Let Zn

denote the point process formed by the position of the particles in the n-th generation. Biggins

and Kyprianou [3, 4] considered the non-negative martingale Wn(θ) := m(θ)−n
∫
exp(−θx)Zn(dx),
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which is referred to as the additive martingale, where m(θ) = E
∫
exp(−θx)Z1(dx). They proved

that, if m(0) > 1 and m(θ) <∞ for some θ > 0, then the limit of Wn(θ), denoted by W (θ), is non-

degenerate if and only if logm(θ)−θm′(θ)/m(θ) > 0 (supercritical) and E
[
W1(θ) log+W1(θ)

]
<∞,

where log+ x := max{log x, 0}. They also showed that, when logm(θ) − θm′(θ)/m(θ) > 0 holds

but E
[
W1(θ) log+W1(θ)

]
= ∞, there exist a Seneta-Heyde norming {cn}n≥0 and a non-degenerate

random variable ∆ such that Wn(θ)/cn converges to ∆ in probability as n→ ∞.

For the critical case of logm(θ)− θm′(θ)/m(θ) = 0, without loss of generality, we assume that

m(θ) = θ = 1. According to [3, 4], the additive martingale Wn := Wn(1) =
∫
exp(−x)Zn(x)

converges to 0 almost surely, as n → ∞. The study of the additive martingale Wn in the

critical case relies on analyzing another fundamental martingale. Under the assumption that

E
[∫
x exp(−x)Z1(dx)

]
= 0, Dn :=

∫
x exp(−x)Zn(dx) is a mean 0 martingale which is referred to

as the derivative martingale. Convergence of the derivative martingale was studied by Biggins and

Kyprianou [5]. In order to state their result, we introduce the following integrability conditions:

σ2 := E
[∫

x2e−xZ1(dx)

]
<∞, (1.1)

E
[(∫

e−xZ1(dx)

)
log2+

(∫
e−xZ1(dx)

)]
<∞, (1.2)

E
[(∫ (

(x)+e
−x
)
Z1(dx)

)
log+

(∫ (
(x)+e

−x
)
Z1(dx)

)]
<∞. (1.3)

Biggins and Kyprianou [5] proved that under the assumptions (1.1)-(1.3), Dn converges almost

surely to a non-degenerate non-negative limit D∞ as n→ ∞, see also Aı̈dekon and Shi [1, Theorem

B]. Hu and Shi [17, Theorem 1.1] proved that there exists a deterministic sequence (an)n≥1 such

that, conditioned on survival, Wn
an

converges in distribution to some random variableW withW > 0

a.s. It was further proved in Aı̈dékon and Shi [1] that, under the assumptions (1.1)-(1.3),

lim
n→∞

√
nWn =

√
2

πσ2
D∞ in probability. (1.4)

They also proved that lim supn→∞
√
nWn = +∞ almost surely conditioned on survival. Under

the assumption that the associated random walk is in the domain of attraction of an α-stable law,

α ∈ (1, 2), He, Liu and Zhang [15] proved n1/αWn converges to CD∞(α) in probability, where

C > 0 is a constant and D∞(α) is the limit of the derivative martingale under different moment

conditions. For the subcritical case logm(θ) − θm′(θ)/m(θ) < 0, Hu and Shi [17, Theorem 1.4]

gave some convergence results for logWn(θ).

A branching Brownian motion (BBM) can be defined as follows. Initially, there is a single

particle at the origin. It lives an exponential amount of time with parameter 1. Each particle

moves according to a Brownian motion with drift 1 during its lifetime and then splits into a

random number, say L, of new particles. These new particles start the same process from their

place of birth behaving independently of the others. The system goes on indefinitely, unless there

is no particle at some time. Assume that the BBM is supercritical, i.e., EL > 1, and 2E [L− 1] = 1.

Let Zt be the point process formed by the position of the particles at time t. The non-negative

martingale Wt(θ) := e−(θ−1)2t/2
∫
exp(−θx)Zt(dx) is called the additive martingale and plays an

important role in the study of BBMs. It is known that the limit W (θ) of Wt(θ) is non-degenerate
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if and only if |θ| < 1 (supercritical case) and E
[
L log+ L

]
< ∞, see [6, 23]. Another key object

for BBMs is the derivative martingale Dt :=
∫
x exp(−x)Zt(dx) in the critical case θ = 1. Yang

and Ren [27] proved that Dt converges almost surely to a non-degenerate non-negative limit D∞
as t→ ∞ if and only if E

[
L log2+ L

]
<∞, and if E

[
L log2+ L

]
<∞ holds, D∞ > 0 almost surely on

the event of survival. Fluctuation of the derivative martingale Dt around its limit D∞ was given

by Maillard and Pain [22]. The analog of (1.4) is also valid for BBMs, see [22, (1.7)].

In this paper we consider supercritical super-Brownian motions in R. A super-Brownian motion

arises as the high density limit of branching Brownian motions or branching random walks. Let

Bb(R) (respectively B+(R), respectively B+
b (R)) be the set of all bounded (respectively non-negative,

respectively bounded and non-negative) real-valued Borel functions on R. Let M(R) denote the

space of finite Borel measures on R. For any f ∈ B+
b (R) and µ ∈ M(R), we use ⟨f, µ⟩ or µ(f) to

denote the integral of f with respect to µ whenever the integral is well-defined. For simplicity, we

sometimes write ∥µ∥ := ⟨1, µ⟩.
We will always assume that B = {(Bt)t≥0; Πx, x ∈ R} is a Brownian motion on R. Let the

branching mechanism ψ be given by

ψ(λ) := −αλ+ βλ2 +

∫
(0,∞)

(
e−λx − 1 + λx

)
ν(dx), λ ≥ 0, (1.5)

where β ≥ 0, α = −ψ′(0+) and ν is a σ-finite measure supported on (0,∞) with
∫
(0,∞)(x ∧

x2)ν(dx) < ∞. There exists an M(R)-valued Markov process X = {(Xt)t≥0;Pµ, µ ∈ M(R)} such

that

Pµ

[
e−Xt(f)

]
= e−µ(Utf), t ≥ 0, f ∈ B+

b (R),

where (t, x) 7→ Utf(x) is the unique locally bounded non-negative map on R+ × R such that

Utf(x) + Πx

[∫ t

0
ψ (Ut−sf(Bs)) ds

]
= Πx[f(Bt)], t ≥ 0, x ∈ R.

This process X is known as a super-Brownian motion with branching mechanism ψ. For the

existence of X we refer our readers to [10, 11, 12] or [21, Section 2.3].

The super-Brownian motion with branching mechanism ψ is called supercritical, critical or

subcritical according to ψ′(0+) < 0, ψ′(0+) = 0 or ψ′(0+) > 0. In this paper we concentrate on

supercritical super-Brownian motions, i.e., we assume ψ′(0+) < 0. We always assume that ψ(∞) =

∞ which guarantees that the event E := {limt→∞ ∥Xt∥ = 0} will occur with positive probability.

Let λ∗ be the largest root of the equation ψ(λ) = 0. For any µ ∈ M(R), Pµ(E) = e−λ∗∥µ∥.

In this paper we shall also assume that∫ ∞ 1√∫ ξ
λ∗ ψ(u)du

dξ <∞. (1.6)

Under condition (1.6), it holds that (see, for instance, [20]) E = {∃t > 0 such that ∥Xt∥ = 0}.
Denote by 0 the null measure on R. Write M0(R) := M(R) \ {0}. Set cλ = −ψ′(0+)/λ+ λ/2

and define

Wt(λ) := e−λcλt⟨e−λ·, Xt⟩, t ≥ 0, λ ∈ R.

Then according to [20], for any µ ∈ M0(R), W (λ) := {Wt(λ) : t ≥ 0} is a non-negative Pµ-

martingale and thus has an almost sure limit W∞(λ). W (λ) is called the additive martingale. By
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[20, Theorem 2.4],W∞(λ) is also an L1(Pµ) limit if and only if |λ| < λ0 and
∫
[1,∞) r(log r)ν(dr) <∞,

where λ0 =
√
−2ψ′(0+).

Another important martingale ∂W (λ), called the derivative martingale, is defined as follows:

∂Wt(λ) := ⟨(λt+ ·)e−λ(cλt+·), Xt⟩, t ≥ 0.

Under condition (1.6), Kyprianou et al. [20, Theorem 2.4] proved that when |λ| ≥ λ0, ∂Wt(λ) has a

Pµ almost surely non-negative limit ∂W∞(λ) for any µ ∈ M0(R), and when |λ| > λ0, ∂W∞(λ) = 0

Pµ almost surely. When |λ| = λ0 (called the critical case), ∂W∞(λ) is almost surely positive on Ec

if and only if ∫
[1,∞)

r(log r)2ν(dr) <∞. (1.7)

In this paper we concentrate on the critical case |λ| = λ0. Due to symmetry, without loss of

generality, we assume λ = λ0. The derivative martingale ∂Wt(λ0) plays an important role in the

study of the extremal process of super-Brownian motions, see [24].

The additive martingale Wt(λ0) converges to 0 as t→ ∞. The goal of this paper is to find the

rate at which Wt(λ0) converges to 0. For simplicity, we write

Wt :=Wt(λ0), ∂Wt := ∂Wt(λ0), ∂W∞ := ∂W∞(λ0).

Let {(Xλ0
t )t≥0;Pµ, µ ∈ M(R)} be a superprocess with the same branching mechanism ψ in (1.5)

and with a Brownian motion with drift λ0 as spatial motion. Then ⟨f,Xλ0
t ⟩ = ⟨f(λ0t+ ·), Xt⟩ for

any f ∈ B+
b (R). Note that cλ0 = λ0, we can rewrite Wt and ∂Wt as

Wt = ⟨e−λ0·, Xλ0
t ⟩, ∂Wt = ⟨·e−λ0·, Xλ0

t ⟩.

Write P as a shorthand for Pδ0 . Throughout this paper for a probability P , we will also use P

to denote expectation with respect to P . The main results of this paper are the following two

theorems:

Theorem 1.1 If (1.6) and (1.7) hold, then

lim
t→∞

√
tWt =

√
2

π
∂W∞ in probability with respect to P.

The following result says that the above convergence in probability can not be strengthened to

almost sure convergence.

Theorem 1.2 If (1.6) and (1.7) hold, then on Ec,

lim sup
t→∞

√
tWt = +∞ P-almost surely. (1.8)

We end this section with a description of the strategy of the proofs of Theorems 1.1 and 1.2, and

the organization of this paper. In the remainder of this paper, we always assume that (1.6) and (1.7)

hold. In Section 2, we introduce the exit measures, the N-measures and the spine decomposition of

super-Brownian motion. We also give some basic properties for Bessel-3 processes. We also use exit

measures to define a variant W−y
t (see (2.9)) of the additive martingale Wt and a variant V −y

t (see
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(2.10)) of the derivative martingale ∂Wt by killing the particles hitting −y before time t. These

ingredients will be used in the proof of Theorem 1.1. In this section, we also introduce the skeleton

decomposition for super-Brownian motion, which is used in the proof of Theorem 1.2.

In Section 3, we prove Theorem 1.1. We will use the spine decomposition to give a copy of W−y
t

and a copy of V −y
t , denoted as W̃−y

t and Ṽ −y
t , respectively. We first prove the mean of

√
tW̃−y

t

W̃−y
t +Ṽ −y

t

converges to
√

2/π as t→ ∞ in Lemma 3.2. Then in Lemma 3.3, we prove that
√
tW̃−y

t

W−y
t +Ṽ −y

t

converges

to
√
2/π in L2, which is the key to the proof of Theorem 1.1. Due to the weak moment condition

on the Lévy measure ν in (1.7), to prove Lemma 3.3, we need to define a family of “good” sets Et

with probabilities tending to 1 as t → ∞ (see Lemma 3.6). On the set Et we prove a sharp upper

bound for the ratio of these two modified martingales in Lemma 3.7. This sharp upper bound is

crucial for the proof of Lemma 3.3. Although the proof of Theorem 1.1 is similar to that of the

corresponding result for branching random walks given in Aı̈dékon and Shi [1], more efforts are

need to deal with Et since the spine decomposition of super-Brownian motion is more complicated.

In Section 4, we prove Theorem 1.2. A key for the proof of the corresponding result for branching

random walks given in [1] is the asymptotic behavior for the minimal position of branching random

walks given in [1, Theorem 6.1]. The fact that the spatial displacement of a branching random walk

in each generation can be regarded as a point process is used crucially in the proof of [1, Theorem

1.2]. However, a super-Brownian motion in R has a density with respect to the Lebesgue measure

and thus can not be regarded as a point process. We overcome this difficulty by using the skeleton

process. Roughly speaking, we choose a sequence of random times and use the fact that the skeleton

process observed at these random times is a branching random walk. In Lemmas 4.1 and 4.2, we

show that this branching random walk, after a suitable translation, satisfies the conditions of [1,

Theorem 6.1], i.e., conditions (1.1) (1.2) and (1.3) above. So we can apply [1, Theorem 6.1] to get

the asymptotic behavior of the minimal position of this shifted branching random walk, which, in

turn, is used to get the conclusion of Theorem 1.2.

2 Preliminaries

In this section, we will introduce some useful results that will be used later.

Recall that {(Bt)t≥0; Πx, x ∈ R} is a Brownian motion. For any x ∈ R, we define τx = inf{t >
0 : Bt = x}. It is well known that {eλ0Bt−λ2

0t/2, t ≥ 0} is a positive Π0-martingale with mean 1. We

define a martingale change of measure by

dΠλ0
0

dΠ0

∣∣∣∣
σ(Bs:0≤s≤t)

= eλ0Bt−λ2
0t/2. (2.1)

Under Πλ0
0 , {Bt, t ≥ 0} is a Brownian motion with drift λ0 staring from 0. For any y > 0, we define

Π̃y by

dΠ̃y

dΠ0

∣∣∣∣
σ(Bs:s≤t)

=
y +Bt

y
1(t<τ−y). (2.2)

Under Π̃y, {y +Bt : t ≥ 0} is a Bessel-3 process starting from y and the density of y +Bt is

ft(x) =
x

y
√
2πt

e−(x−y)2/2t(1− e−2xy/t)1{x>0}. (2.3)
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2.1 Branching Markov exit measures

For any r ≥ 0 and x ∈ R, let {(Bt)t≥r; Π
λ0
r,x} be a Brownian motion with drift λ0 started at x at

time r. Πλ0
0,x is the same as Πλ0

x . Let S = [0,∞)×R, B(S) be the Borel σ-field on S, O ⊂ B(S) the
class of open subsets of S and M(S) the space of finite Borel measures on S. A measure µ ∈ M(R)
is identified with its corresponding measure on S concentrated on {0}×R. According to Dynkin [9],

there exists a family of random measures {(XQ,Pµ);Q ∈ O, µ ∈ M(S)} such that for any Q ∈ O,

µ ∈ M(S) with supp µ ⊂ Q, and bounded non-negative Borel function f(t, x) on S,

Pµ [exp {−⟨f,XQ⟩}] = exp
{
−⟨V Q

f , µ⟩
}
,

where V Q
f (s, x) is the unique positive solution of the equation

V Q
f (s, x) + Πs,x

∫ τ

s
ψ
(
V Q
f (r,Br)

)
dr = Πs,xf(τ,Bτ ),

with τ := inf {r : (r,Br) /∈ Q}. By [11, (1.20)], we have the following mean formula:

Pµ⟨f,XQ⟩ =
∫

Πs,x [e
ατf(τ,Bτ )]µ(dsdx). (2.4)

For y > 0, t ≥ 0, we define Dt
−y := {(s, x) : s < t,−y < x}. Then the random measure Xλ0

Dt
−y

is

concentrated on ∂Dt
−y := ([0, t)× {−y}) ∪ ({t} × [−y,+∞]), and for any µ ∈ M([0,∞)× R) with

supp µ ⊂ [0, t)× [−y,+∞), and f ∈ Cb(D
t
−y) with f(s, x) = f(0, x) =: f(x) for all s ≥ 0,

Pµ

[
exp

{
−⟨f,Xλ0

Dt
−y
⟩
}]

= exp
{
−⟨U−y,t

f (·), µ⟩
}
,

where U−y,t
f (s, x) is the unique positive solution of the integral equation

U−y,t
f (s, x) + Πλ0

s,x

∫ t∧τ−y

s
ψ
(
U−y,t
f (r,Br)

)
dr = Πλ0

s,x[f(Bt∧τ−y)], (s, x) ∈ Dt
−y, (2.5)

with Dt
−y being the closure of Dt

−y. By (2.4) and the homogeneity of Brownian motion, for any

x ∈ R, we have

Pδx⟨f,X
λ0

Dt
−y
⟩ = Πλ0

x

[
eα(t∧τ−y)f(Bt∧τ−y)

]
. (2.6)

By the time homogeneity of Brownian motion with drift λ0, (2.5) can be written as

U−y,t
f (s, x) + Πλ0

x

∫ (t−s)∧τ−y

0
ψ
(
U−y,t
f (r + s,Br)

)
dr = Πλ0

x [f(B(t−s)∧τ−y
)], (s, x) ∈ Dt

−y.

Put u−y
f (t− s, x) := U−y,t

f (s, x). The above integral equation can be written as

u−y
f (t− s, x) + Πλ0

x

∫ (t−s)∧τ−y

0
ψ
(
u−y
f (t− r − s,Br)

)
dr = Πλ0

x [f(B(t−s)∧τ−y
)], (s, x) ∈ Dt

−y,

which is equivalent to

u−y
f (s, x) + Πλ0

x

∫ s∧τ−y

0
ψ
(
u−y
f (s− r,Br)

)
dr = Πλ0

x [f(Bs∧τ−y)], (s, x) ∈ Dt
−y. (2.7)
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The special Markov property (see [11, Theorem 1.3], for example) implies that, for all Dr
−z ⊂ Dt

−y

Pµ

[
⟨f,Xλ0

Dt
−y
⟩
∣∣∣Fλ0

Dr
−z

]
= P

X
λ0
Dr
−z

⟨f,Xλ0

Dt
−y
⟩, (2.8)

where Fλ0

Dt
−y

:= σ
(
Xλ0

Ds
−x

: s ≤ t, x ≤ y
)
.

In the proof of Theorem 1.1, we will use modifications of Wt defined below. For any y > 0,

define

W−y
t := ⟨e−λ0·1(−y,∞)(·), Xλ0

Dt
−y
⟩, t ≥ 0. (2.9)

2.2 N-measure and spine decomposition for Xλ0

Without loss of generality, we assume that X is the coordinate process on D := {w = (wt)t≥0 :

w is an M(R)-valued càdlàg function on [0,∞)}. We assume that (F∞, (Ft)t≥0) is the natural fil-

tration on D, completed as usual with the F∞-measurable and Pµ-negligible sets for every µ ∈
M(R). Let W+

0 be the family of M(R)-valued càdlàg functions on (0,∞) with 0 as a trap and

with limt↓0wt = 0. W+
0 can be regarded as a subset of D.

Under condition (1.6), Pδx(Xt(1) = 0) > 0 for any x ∈ R and t > 0, which implies that there

exists a unique family of σ-finite measures {Nx;x ∈ R} on W+
0 such that for any µ ∈ M(R), if

N (dw) is a Poisson random measure on W+
0 with intensity measure

Nµ(dw) :=

∫
R
Nx(dw)µ(dx),

then the process defined by

X̂0 := µ, X̂t :=

∫
W+

0

wtN (dw), t > 0,

is a realization of the superprocess X = {(Xt)t≥0;Pµ, µ ∈ M(R)}. Furthermore, Nx(⟨f, wt⟩) =

Pδx⟨f,Xt⟩ and Nx [1− exp {−⟨f, wt⟩}] = − logPδx [exp {−⟨f,Xt⟩}] for any f ∈ B+
b (R) (see [21,

Theorems 8.22 and 8.23]). {Nx;x ∈ R} are called the N-measures associated to {Pδx ;x ∈ R}. One

can also see [13] for the definition of {Nx;x ∈ R}.
Next, we recall an important spine decomposition for super-Brownian motions. The spine

decomposition is related to a martingale change of measure. Fix y > 0, define V −y
t by

V −y
t := ⟨(y + ·)e−λ0·, Xλ0

Dt
−y
⟩, t ≥ 0. (2.10)

From [20, Section 7], we know that V −y
t is a positive P-martingale with mean y. Define Q−y by

dQ−y

dP

∣∣∣∣
Ft

:=
1

y
V −y
t , t ≥ 0. (2.11)

We say {(ξt)t≥0, (X
(n))t≥0, (X

(m))t≥0, (X
′
t)t≥0; P̃−y} is a spine representation of {(Xt)t≥0;Q−y}

if the following are true:

(i) The spine process is given by ξ := {ξt, t ≥ 0} such that {(ξt + λ0t+ y)t≥0; P̃−y} is a Bessel-3

process starting from y.
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(ii) Given (ξ; P̃−y), letN be a Poisson randommeasure on [0,∞)×D with intensity 2βdtNξt (dw).

For t ≥ 0, define X
(n)
t =

∫
[0,t]

∫
Dwt−sN (dt× dw). X(n) is referred to as the continuous immigra-

tion.

(iii) Given (ξ; P̃−y), let {Rt : t ≥ 0} be a point process such that the random counting measure∑
t≥0 δ(t,Rt) is a Poisson random measure on (0,∞) × (0,∞) with intensity dtrν(dr), let Dm be

the projection onto the first coordinate of the atoms {(si, ri)} of this Poisson random measure

and Dm
t := Dm ∩ [0, t]. Given ξ and R, independently for each s ∈ Dm and r = Rs, a process

{Xm,s,Prδξs
} is issued at the time-space point (s, ξs). For t ≥ 0, define X

(m)
t =

∑
s∈Dm

t
Xm,s

t−s .

X(m) is referred to as the discrete immigration.

(iv) (X ′, P̃−y) is a copy of (X,P) and (X ′, P̃−y) is independent of ξ, X(n) and Xm.

For t ≥ 0, define X̃t = X ′
t +X

(n)
t +X

(m)
t . By [20, Theorem 7.2],

{(X̃t)t≥0; P̃−y} d
= {(Xt)t≥0;Q−y}.

{(X̃t)t≥0; P̃−y} is called a spine representation of {(Xt)t≥0;Q−y}.
Now we give a spine representation of {(Xλ0

t )t≥0;Q−y}. Define

ξλ0 := {ξλ0
t , t ≥ 0} := {ξt + λ0t, t ≥ 0},

then {ξλ0
t + y, t ≥ 0; P̃−y} is a Bessel-3 process starting from y.

We construct {(ξλ0
t )t≥0, (X

(n),λ0)t≥0, (X
(m),λ0)t≥0, ((X

λ0)′t)t≥0; P̃−y}, called a spine representa-

tion of {(Xλ0
t )t≥0}, as follows:

(i) The spine is given by ξλ0 = {ξt + λ0t, t ≥ 0} such that (ξλ0 + y, P̃−y) is a Bessel-3 process

starting from y.

(ii) Continuous immigration. Given ξλ0 , the continuous immigration X
(n),λ0

t is defined such

that ∀f ∈ B+
b (R),

⟨f,X(n),λ0

t ⟩ =
∫
[0,t]

∫
D
⟨f(·+ λ0(t− s) + λ0s), wt−s⟩N (ds× dw) = ⟨f(·+ λ0t), X

(n)
t ⟩.

Define wλ0 by ⟨f, wλ0
s ⟩ = ⟨f(·+ λ0s), ws⟩. Then the random measure N λ0 defined by∫

[0,t]

∫
D
⟨f(·), wλ0

t−s⟩N λ0

(
ds× dwλ0

)
:=

∫
[0,t]

∫
D
⟨f(·+ λ0(t− s) + λ0s), wt−s⟩N (ds× dw) ,

is a Poisson random measure with intensity 2βdtN
ξ
λ0
t
(dwλ0).

(iii) Discrete immigration. Given ξλ0 , the discrete immigration Xm,s,λ0
t immigrated at time s

is defined such that ∀f ∈ B+
b (R),

⟨f,Xm,s,λ0
t−s ⟩ = ⟨f(·+ λ0(t− s) + λ0s), X

m,s
t−s ⟩ = ⟨f(·+ λ0t), X

m,s
t−s ⟩.

The almost surely countable set of the discrete immigration times in [0, t] is also given by Dm
t as

in the spine decomposition of {(Xt)t≥0;Q−y}. Define X
(m),λ0

t =
∑

s∈Dm
t
Xm,s,λ0

t−s .

(iv) {(Xλ0)′t, t ≥ 0} is defined by

⟨f, (Xλ0)′t⟩ = ⟨f(·+ λ0t), X
′
t⟩, f ∈ B+

b (R).

For any t ≥ 0, define

X̃λ0
t := (Xλ0)′t +X

(n),λ0

t +X
(m),λ0

t . (2.12)
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Proposition 2.1

{(X̃λ0
t )t≥0; P̃−y} d

= {(Xλ0
t )t≥0;Q−y}. (2.13)

Proof: By the definition of X̃λ0
t , X

(n),λ0

t and Xm,s,λ0
t−s ,

⟨f, X̃λ0
t ⟩ =⟨f(·+ λ0t), X

′
t⟩+ ⟨f(·+ λ0t), X

(n)
t ⟩+

∑
s∈Dm

t

⟨f(·+ λ0t), X
m,s
t−s ⟩

=⟨f(·+ λ0t), X̃t⟩.

This says that {(X̃λ0
t )t≥0, P̃−y} is a shift of {(X̃t)t≥0, P̃−y} with constant speed λ0. Also note that

Q−y
[
exp

{
−⟨f,Xλ0

t ⟩
}]

=Q−y [exp {−⟨f(·+ λ0t), Xt⟩}] = P̃−y
[
exp

{
−⟨f(·+ λ0t), X̃t⟩

}]
.

Thus we have

Q−y
[
exp

{
−⟨f,Xλ0

t ⟩
}]

= P̃−y
[
exp

{
−⟨f, X̃λ0

t ⟩
}]

,

which says that {(X̃λ0
t )t≥0, P̃−y} and {(Xλ0

t )t≥0,Q−y} have the same marginal distribution. By the

Markov property of both processes, we have (2.13). 2

2.3 Skeleton decomposition for X

In this subsection, we recall the skeleton decomposition, which is also called the backbone de-

composition in some papers, see Eckhoff et al. [14] for an explanation of the terminologies. This

decomposition was first proved by Duquesne and Winkel [7, Theorem 5.6], where only the genealog-

ical structure was considered, and later generalized by Berestycki et, al [2]. This decomposition

will be used in the proof of Theorem 1.2.

Recall that X = {(Xt)t≥0;Pµ, µ ∈ M(R)} is a supercritical super-Brownian motion and E =

{limt→∞ ∥Xt∥ = 0}. Under condition (1.6), E = {∥Xt∥ = 0 for some t > 0}. For any µ ∈ M(R),
we define PE

µ by

PE
µ(·) := Pµ(·|E).

Then by [2, Lemma 2], {(Xt)t≥0;PE
µ} is a super-Brownian motion with branching mechanism

ψ∗(λ) := ψ(λ+ λ∗) = −α∗λ+ βλ2 +

∫
(0,∞)

(
e−λx − 1 + λx

)
e−λ∗xν(dx),

where

α∗ = α− 2βλ∗ −
∫
(0,∞)

x
(
1− e−λ∗x

)
ν(dx) = −ψ′(λ∗).

We denote by {NE
x : x ∈ R} the N-measures associated to {PE

δx
: x ∈ R}.

Let Ma(R) be the space of finite atomic measures on R. According to Berestycki et al. [2], there

exists a probability space, equipped with probability measures {P(µ,η), µ ∈ M(R), η ∈ Ma(R)},
which carries the following processes:

(i) {(Zt)t≥0,P(µ,η)}, the skeleton, is a branching Brownian motion with initial configuration η,

branching rate ψ′(λ∗), and offspring distribution with generating function

F (s) :=
1

λ∗ψ′(λ∗)
ψ (λ∗(1− s)) + s, s ∈ (0, 1). (2.14)
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The law of this offspring, denoted by {pn : n ≥ 0}, satisfies p0 = p1 = 0 and for n ≥ 2,

pn =
1

λ∗ψ′(λ∗)

{
β(λ∗)21{n=2} + (λ∗)n

∫
(0,∞)

xn

n!
e−λ∗xν(dx)

}
.

For the individuals in Z, we will use the classical Ulam-Harris notation. Let T Z denote the set

labels realized in Z and let NZ
t ⊂ T Z denote the set of individuals alive at time t, for u ∈ NZ

t , we

use zu(t) to denote the position of u at time t. The birth time and the death time of a particle u

are denoted by bu and du respectively.

(ii) {(XE
t )t≥0,P(µ,η)} is a copy of {(Xt)t≥0;PE

µ).

(iii) Three different types of immigration on Z: IN
E
=
{
IN

E
t , t ≥ 0

}
, IP

E
=
{
IP

E
t , t ≥ 0

}
and

IB =
{
IBt , t ≥ 0

}
, which are independent of XE and, conditioned on Z, are independent of each

other. The three processes are described as follows:

• Given Z, independently for each u ∈ T Z , letN E,u be a Poisson random measure on (bu, du]×D
with intensity 2βdt×NE

zu(t)
(dw). The continuous immigration IN

E
is a measure-valued process

on R such that

IN
E

t :=
∑
u∈T Z

∫
(bu,du]∩[0,t]

∫
D
wt−sN E,u (ds× dw) .

• Given Z, independently for each u ∈ T Z , let {Ru
t : t ∈ (bu, du]} be a point process such that

the random counting measure
∑

t∈(bu,du] δ(t,Ru
t )

is a Poisson random measure on (bu, du] ×
(0,∞) with intensity dtre−λ∗rν(dr) and let {(s2,ui , ri) : i ≥ 1} be the atoms of this Poisson

random measure. The discrete immigration IP
E
is a measure-valued process on R such that

IP
E

t :=
∑
u∈T Z

∑
i:s2,ui ≤t

X
(2,u,i)

t−s2,ui

,

where X(2,u,i) is a measure-valued process with law PE
rizu(s

2,u
i )

.

• The branching point immigration IB is a measure-valued process on R such that

IBt :=
∑
u∈T Z

1{du≤t}X
(3,u)
t−du

,

here, given Z, independently for each u ∈ T Z with du ≤ t, X(3,u) is an independent copy of

X issued at time du with law PE
Yuδzu(du)

, where Yu is an independent random variable with

distribution πOu(dy), Ou is the number of the offspring of u and {πn(dy), n ≥ 2} is a sequence

of probability measures such that

πn(dy) :=
1

pnλ∗ψ′(λ∗)

{
β(λ∗)2δ0(dy)1{n=2} + (λ∗)n

yn

n!
e−λ∗yν(dy)

}
.

We define Λt = {Λt : t ≥ 0} on R by

Λt := XE
t + IN

E
t + IP

E
t + IBt , t ≥ 0.
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For µ ∈ M(R), we denote the law of a Poisson random measure with intensity λ∗dµ by Pµ, and

define Pµ by

Pµ :=

∫
P(µ,η)Pµ(dη).

According to [2, Theorem 2], for any µ ∈ M(R), {(Λt)t≥0;Pµ} is equal in law to {(Xt)t≥0;Pµ}. The
branching Brownian motion {Zt, t ≥ 0} is referred to as the skeleton process, and {(Λt)t≥0;Pµ} is

called a skeleton decomposition of {(Xt)t≥0;Pµ}.

2.4 Properties of Brownian motion and Bessel-3 process

Recall B = {(Bt)t≥0; Πx, x ∈ R} is a Brownian motion and τ−y = inf{t > 0 : Bt = −y} for y ∈ R.

Lemma 2.2 For x ≥ −y,

Πx(t < τ−y) = 2

∫ (y+x)/
√
t

0

1√
2π
e−z2/2dz, t ≥ 0.

Proof: This can be easily obtained by the reflection principle of Brownian motion. 2

Proposition 2.3 There exists a constant C such that∫ ∞

0
Πz

(
Bs < x, min

r∈[0,s]
Br > 0

)
ds ≤ C(1 + x)(1 + min{x, z}), x, z ≥ 0.

Proof: First note that, for any h, t > 0 and y ∈ R, we have

sup
r∈R

Πy(r ≤ Bt ≤ r + h) = sup
r∈R

∫ r+h

r

1√
2πt

e−(u−y)2/(2t)du ≤ sup
r∈R

∫ r+h

r

du√
2πt

=
h√
2πt

. (2.15)

Next, for any 0 ≤ a < b, z ≥ 0, t > 0, by the Markov property, we have

Πz

(
Bt ∈ [a, b], min

r∈[0,t]
Br > 0

)
≤ Πz

(
min

r∈[0,t/3]
Br > 0

)
sup
y>0

Πy

(
B2t/3 ∈ [a, b], min

r∈[0,2t/3]
Br > 0

)
. (2.16)

It follows from Lemma 2.2 that

Πz

(
min

r∈[0,t/3]
Br > 0

)
≤
√

2

π

z√
t/3

=

√
6

π

z√
t
. (2.17)

The second term of right-hand of (2.16) is bounded by

Πy

(
B2t/3 ∈ [a, b], min

r∈[0,2t/3]
Br > 0

)
≤ Πy

(
min

s∈[t/3,2t/3]
(Bs −B2t/3) > −b, B0 −B2t/3 ∈ [y − b, y − a]

)
= Π0

(
min

s∈[0,t/3]
B̃s > −b, B̃2t/3 ∈ [y − b, y − a]

)

11



≤ Π0

(
min

s∈[0,t/3]
B̃s > −b

)
sup
v∈R

Πv(B̃t/3 ∈ [y − b, y − a])

≤
√

6

π

b√
t

b− a√
2πt/3

=
3

π

b(b− a)

t
, (2.18)

where B̃s = B2t/3−s−B2t/3 is a Brownian motion for s ∈ [0, 2t/3]; we used the Markov property of

B̃ at time t/3 in the second inequality of (2.18), and the last inequality of (2.18) is due to (2.17)

and (2.15). Combining (2.16)-(2.18), we obtain

Πz

(
Bt ∈ [a, b], min

r∈[0,t]
Br > 0

)
≤
√

54

π3
zb(b− a)√

t3
, z ≥ 0. (2.19)

If x < z, by the strong Markov property at τx, we have∫ ∞

0
Πz

(
Bs < x, min

r∈[0,s]
Br > 0

)
ds = Πz

[∫ ∞

0
1{Bs<x, minr∈[0,s] Br>0}ds

]
≤ Πz

[∫ ∞

τx

1{Bs<x, minr∈[τx,s] Br>0}ds

]
= Πx

[∫ ∞

0
1{Bs<x, minr∈[0,s] Br>0}ds

]
=

∫ ∞

0
Πx

(
Bs < x, min

r∈[0,s]
Br > 0

)
ds. (2.20)

Using (2.19) and (2.20), we obtain that∫ ∞

0
Πz

(
Bs < x, min

r∈[0,s]
Br > 0

)
ds ≤ x2 +

∫ ∞

x2

Πx

(
Bs < x, min

r∈[0,s]
Br > 0

)
ds

≤ x2 +

∫ ∞

x2

√
54

π3
x3√
s3

ds ≤ C1(1 + x)2 (2.21)

for some constant C1 > 0. If x ≥ z, by (2.17) and (2.19), we also have∫ ∞

0
Πz

(
Bs < x, min

r∈[0,s]
Br > 0

)
ds

≤
∫ x2

0
Πz

(
min
r∈[0,s]

Br > 0

)
ds+

∫ ∞

x2

Πz

(
Bs < x, min

r∈[0,s]
Br > 0

)
ds

≤
∫ x2

0

√
6

π

z√
s
ds+

∫ ∞

x2

√
54

π3
zx2√
s3

ds ≤ C2(1 + x)(1 + z) (2.22)

for some constant C2 > 0. Combining (2.21) and (2.22), we arrive at the assertion of the proposition.

2

The following is a direct consequence of [18, (3.1)]. From now on, we use R+ to denote [0,∞).

Lemma 2.4 Suppose that {(ηt)t≥0; Π̃x, x ∈ R+} is a Bessel-3 process. If F is a non-negative

function on C([0, t],R), then

Πx

[
F (Bs, s ∈ [0, t]) 1{∀s∈[0,t],Bs>0}

]
= Π̃x

[
x

ηt
F (ηs, s ∈ [0, t])

]
, x ∈ R+.

Lemma 2.5 If {(ηt)t≥0; Π̃y, y ∈ R+} is a Bessel-3 process, then

Π̃y

[
η−2
t

]
≤ 2

t
, t > 0, y ≥ 0.
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Proof: Using the inequality 1− e−x ≤ x and the density of ηt given by (2.3), we have

Π̃y

[
η−2
t

]
=

∫ ∞

0
x−2fηt(x)dx ≤

∫ ∞

−∞
x−2 · 2x2

t
√
2πt

e−(x−y)2/2tdx =
2

t
.

2

Lemma 2.6 Suppose that {(ηt)t≥0; Π̃y, y ∈ R+} is a Bessel-3 process. Then for any event At with

limt→∞ Π̃y(At) = 1, we have

lim
t→∞

tΠ̃y

[
η−2
t 1Ac

t

]
= 0. (2.23)

Proof: For any ε > 0, we have

Π̃y

[
η−2
t 1Ac

t

]
≤ Π̃y

[
η−2
t 1Ac

t
1{ηt≥ε

√
t}

]
+ Π̃y

[
η−2
t 1{ηt<ε

√
t}

]
≤ Π̃y(A

c
t) ·

1

ε2t
+ Π̃y

[
η−2
t 1{ηt<ε

√
t}

]
. (2.24)

By the same estimate for the density of ηt in Lemma 2.5,

Π̃y

[
η−2
t 1{ηt<ε

√
t}

]
=

∫ ε
√
t

0
x−2fηt(x)dx

≤ 2

t

∫ ε
√
t

0

1√
2πt

e−(x−y)2/2tdx ≤ 2

t

∫ ε
√
t

0

1√
2πt

dt =
2ε√
2π

1

t
. (2.25)

Combining (2.24) and (2.25), letting t→ ∞, we get

lim sup
t→∞

tΠ̃y

[
η2t 1Ac

t

]
≤ 2ε√

2π
.

Since ε is arbitrary, we get (2.23). 2

3 Proof of Theorem 1.1

Proposition 3.1 For any y > 0, we have

P̃−y
[
ξλ0
t ∈ dx

∣∣∣X̃λ0

Dt
−y

]
=
e−λ0x(x+ y)X̃λ0

Dt
−y
(dx)

Ṽ −y
t

,

where

Ṽ −y
t := ⟨(y + ·)e−λ0·, X̃λ0

Dt
−y
⟩.

Proof: The main idea comes from [20, Theorem 5.1]. Let C+
b (∂Dt

−y) be the set of bounded

non-negative continuous functions on ∂Dt
−y. We only need to show that for any g ∈ C+

b (∂Dt
−y),

P̃−y
[
exp

{
−θξλ0

t − ⟨g, X̃λ0

Dt
−y
⟩
}]

= P̃−y

exp{−⟨g, X̃λ0

Dt
−y
⟩
} ⟨e−(λ0+θ)·(·+ y), X̃λ0

Dt
−y
⟩

Ṽ −y
t

 . (3.1)
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By (2.13) and the definition (2.11) of Q−y, the right hand side of (3.1) is equal to

1

y
P
[
exp

{
−⟨g,Xλ0

Dt
−y
⟩
}
· ⟨e−(λ0+θ)·(·+ y), Xλ0

Dt
−y
⟩
]
= −1

y
P

[
∂

∂γ

[
exp

{
−⟨gγ , Xλ0

Dt
−y
⟩
}] ∣∣∣∣

γ=0+

]

with gγ(t, x) = g(t, x)+γe−(λ0+θ)x(x+y). Interchanging the order of expectation and differentiation,

we get that

the right hand side of (3.1) = −1

y

∂

∂γ
e−u−y

gγ (t,0)

∣∣∣∣
γ=0+

,

where u−y
gγ satisfies (2.7) and u−y

g0 = u−y
g . Thus,

the right hand side of (3.1) =
1

y
e−u−y

g (t,0) ∂

∂γ
u−y
gγ (t, 0)

∣∣∣
γ=0+

. (3.2)

Let m−y
g (t, x) := ∂

∂γu
−y
gγ (t, x)|γ=0+ . Replacing f by gγ in (2.7), taking derivative with respect to γ,

and then letting γ → 0+, we get that m−y
g is the solution to the equation

m−y
g (t, x) + Πλ0

x

∫ t∧τ−y

0
ψ′ (u−y

g (t− r,Br)
)
m−y

g (t− r,Br)dr = Πλ0
x

[
e−(λ0+θ)Bt∧τ−y (Bt∧τ−y + y)

]
.

Note that Bt∧τ−y + y = 0 when t ≥ τ−y. The solution to the above integral equation is given by

m−y
g (t, x) = Πλ0

x

[
e−(λ0+θ)Bt(Bt + y) exp

{
−
∫ t

0
ψ′ (u−y

g (s,Bt−s)
)
ds

}
, t < τ−y

]
. (3.3)

By the definitions (2.1) and (2.2), we have

m−y
g (t, 0) =Π0

[
e−

1
2
λ2
0t−θBt(Bt + y) exp

{
−
∫ t

0
ψ′ (u−y

g (s,Bt−s)
)
ds

}
, t < τ−y

]
=yΠ̃y

[
e−

1
2
λ2
0t−θBt exp

{
−
∫ t

0
ψ′ (u−y

g (s,Bt−s)
)
ds

}]
.

Using (3.2) and (3.3), we have

the right hand side of (3.1) = e−u−y
g (0,t)Π̃y

[
e−λ2

0t/2−θBt exp

{
−
∫ t

0
ψ′ (u−y

g (s,Bt−s)
)
ds

}]
. (3.4)

Next we deal with the left-hand of (3.1). Applying Campbell’s formula, we get

P̃−y
[
exp

{
−⟨g,X(n),λ0

Dt
−y

⟩
} ∣∣∣ξλ0

]
= P̃−y

[
exp

{
−
∫
[0,t]

∫
D
⟨g, wλ0

Dt−s
−y

⟩N λ0

(
ds× dwλ0

)} ∣∣∣∣ξλ0

]

= exp

{
−2β

∫ t

0

∫
D

(
1− exp

{
−⟨g, wλ0

Dt−s
−y

⟩
})

dN
ξ
λ0
s
ds

}
= exp

{
−2β

∫ t

0
− logPδ

ξ
λ0
s

[
exp

{
−⟨g,Xλ0

Dt−s
−y

⟩
}]

ds

}
= exp

{
−2β

∫ t

0
u−y
g (t− s, ξλ0

s )ds

}
= exp

{
−2β

∫ t

0
u−y
g (s, ξλ0

t−s)ds

}
. (3.5)
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For X(m),λ0 , let ms := ∥Xm,s,λ0

D0
−y

∥ denote by the initial mass of the discrete immigration for s ∈ Dm.

Then {ms : s ≥ 0} is a Poisson point process on (0,∞)2 with intensity dtrν(dr). We similarly have

P̃−y
[
exp

{
−⟨g,X(m),λ0

Dt
−y

⟩
} ∣∣∣ξλ0

]
= P̃−y

exp
−

∑
s∈Dm

t

msu
−y
g (t− s, ξλ0

s )


∣∣∣∣ξλ0


= exp

{
−
∫ t

0

∫
(0,∞)

(
1− exp

{
−ru−y

g (s, ξλ0
t−s)

})
rν(dr)ds

}
. (3.6)

Combining (3.5) and (3.6), we get

P̃−y
[
exp

{
−⟨g,X(n),λ0

Dt
−y

+X
(m),λ0

Dt
−y

⟩
} ∣∣∣ξλ0

]
= exp

{
−
∫ t

0

[
ψ′
(
u−y
g (s, ξλ0

t−s)
)
− ψ′(0)

]
ds

}
. (3.7)

Note that (Xλ0)′ is independent of ξ and has the same law as Xλ0 . So by (3.7),

P̃−y
[
exp

{
−θξλ0

t − ⟨g, X̃λ0

Dt
−y
⟩
}]

= P̃−y
[
e−θξ

λ0
t P̃−y

[
exp

{
−⟨g, (Xλ0)′Dt

−y
+X

(n),λ0

Dt
−y

+X
(m),λ0

Dt
−y

⟩
} ∣∣∣ξλ0

]]
= P̃−y

[
exp

{
−⟨g, (Xλ0)′Dt

−y
⟩
}]

P̃−y
[
e−θξ

λ0
t P̃−y

[
exp

{
−⟨g,X(n),λ0

Dt
−y

+X
(m),λ0

Dt
−y

⟩
} ∣∣∣ξλ0

]]
= e−u−y

g (t,0)P̃−y

[
e−θξ

λ0
t exp

{
−
∫ t

0

[
ψ′
(
u−y
g (s, ξλ0

t−s)
)
− ψ′(0+)

]
ds

}]
. (3.8)

Recall that −ψ′(0+) = λ20/2, {y+Bt, t ≥ 0; Π̃y} is a Bessel-3 process starting from y and {ξλ0
t +y, t ≥

0; P̃−y} is also a Bessel-3 process starting from y. Thus, by (3.4) and (3.8), (3.1) holds. 2

For t ≥ 0, define

W̃−y
t := (W−y

t )′ +

∫
[0,t]

∫
D
⟨e−λ0·1(−y,∞)(·), wλ0

Dt−s
−y

⟩N λ0

(
ds× dwλ0

)
+
∑

s∈Dm
t

Wm,s,−y
t−s , (3.9)

where

(W−y
t )′ := ⟨e−λ0·1(−y,∞)(·), (Xλ0)′Dt

−y
⟩, Wm,s,−y

t−s := ⟨e−λ0·1(−y,∞)(·), X
m,s,λ0

Dt−s
−y

⟩.

By the spine decomposition (2.12), (W−y
t , t ≥ 0;Q−y) has the same law as (W̃−y

t , t ≥ 0; P̃−y). Recall

the definition (2.10) of V −y
t and that (V −y

t , t ≥ 0;Q−y) has the same law as (Ṽ −y
t , t ≥ 0; P̃−y). Note

also that

Ṽ −y
t = (V −y

t )′ +

∫
[0,t]

∫
D
⟨(y + ·)e−λ0·, wλ0

Dt−s
−y

⟩N λ0

(
ds× dwλ0

)
+
∑

s∈Dm
t

Vm,s,−y
t−s ,

where

(V −y
t )′ := ⟨(y + ·)e−λ0·, (Xλ0)′Dt

−y
⟩, Vm,s,−y

t−s := ⟨(y + ·)e−λ0·, Xm,s,λ0

Dt−s
−y

⟩.

Lemma 3.2 For any y > 0 fixed, we have

lim
t→∞

√
t P̃−y

[
W̃−y

t

W̃−y
t + Ṽ −y

t

]
=

√
2

π
.
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Proof: First notice that

P̃−y

[
W̃−y

t

Ṽ −y
t

]
= Q−y

[
W−y

t

V −y
t

]
=

1

y
P[W−y

t ].

Using (2.6), and noting that λ20/2 = α, we have that for any f ∈ B+
b (R),

Pδx

[
⟨f,Xλ0

Dt
−y
⟩
]
= Πλ0

x

[
eλ

2
0(t∧τ−y)/2f(Bt∧τ−y)

]
.

Using the mean formula above with f(x) = e−λ0x1(−y,∞)(x), we obtain that

P̃−y

[
W̃−y

t

Ṽ −y
t

]
=

1

y
P[W−y

t ] =
1

y
Πλ0

0

[
eλ

2
0(t∧τ−y)/2e−λ0Bt∧τ−y 1(−y,∞)(Bt∧τ−y)

]
=

1

y
Πλ0

0

[
eλ

2
0t/2e−λ0Bt1{t<τ−y}

]
=

1

y
Π0(t < τ−y) =

2

y

∫ y/
√
t

0

1√
2π
e−

x2

2 dx.

Thus

lim
t→∞

√
t P̃−y

[
W̃−y

t

Ṽ −y
t

]
=

√
2

π
. (3.10)

To complete the proof of the lemma, it suffices to show that

lim sup
t→∞

√
tP̃−y

[
(W̃−y

t )2

(Ṽ −y
t + W̃−y

t )Ṽ −y
t

]
= lim sup

t→∞

√
t

{
P̃−y

[
W̃−y

t

Ṽ −y
t

]
− P̃−y

[
W̃−y

t

W̃−y
t + Ṽ −y

t

]}
= 0.

It follows from Proposition 3.1 that

P̃−y

[
1

ξλ0
t + y

∣∣∣X̃λ0

Dt
−y

]
=
W̃−y

t

Ṽ −y
t

. (3.11)

Under P̃−y, ξλ0 + y is a Bessel-3 process starting from y. So by Lemma 2.5, (3.11) and Jensen’s

inequality, we have

P̃−y

[
(W̃−y

t )2

(Ṽ −y
t + W̃−y

t )Ṽ −y
t

]
≤ P̃−y

(W̃−y
t

Ṽ −y
t

)2
 = P̃−y

(P̃−y

[
1

ξλ0
t + y

∣∣∣X̃λ0

Dt
−y

])2


≤ P̃−y

( 1

ξλ0
t + y

)2
 ≤ 2

t
. (3.12)

Therefore
√
tP̃−y

[
(W̃−y

t )2

(Ṽ −y
t + W̃−y

t )Ṽ −y
t

]
= o(1), as t→ ∞.

This concludes the proof. 2

Next we prove the following result:
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Proposition 3.3

lim
t→∞

P̃−y

( √
tW̃−y

t

W̃−y
t + Ṽ −y

t

−
√

2

π

)2
 = 0. (3.13)

To prove (3.13), we first prove some lemmas. Let Et be events with limt→∞ P̃−y(Et) = 1.

Combining (3.11) and the estimate P̃−y

[(
W̃−y

t /Ṽ −y
t

)2]
≤ 2

t in (3.12), we get

P̃−y

( W̃−y
t

Ṽ −y
t + W̃−y

t

)2
 ≤ P̃−y

[
W̃−y

t

Ṽ −y
t + W̃−y

t

W̃−y
t

Ṽ −y
t

]

= P̃−y

[
W̃−y

t

W̃−y
t + Ṽ −y

t

P̃−y

[
1

ξλ0
t + y

∣∣∣X̃λ0

Dt
−y

]]

= P̃−y

[
W̃−y

t

W̃−y
t + Ṽ −y

t

1

ξλ0
t + y

]
≤ P̃−y

[
W̃−y

t

Ṽ −y
t

1Ec
t

ξλ0
t + y

]
+ P̃−y

[
W̃−y

t

W̃−y
t + Ṽ −y

t

1Et

ξλ0
t + y

]

≤

√√√√√P̃−y

(W̃−y
t

Ṽ −y
t

)2
 P̃−y

( 1Ec
t

ξλ0
t + y

)2
+ P̃−y

[
W̃−y

t

W̃−y
t + Ṽ −y

t

1Et

ξλ0
t + y

]

≤
√

2

t

√√√√P̃−y

[
1Ec

t

(ξλ0
t + y)2

]
+ P̃−y

[
W̃−y

t

W̃−y
t + Ṽ −y

t

1Et

ξλ0
t + y

]
. (3.14)

Note that, under P̃−y, ξλ0
t + y is a Bessel-3 process starting from y. Using Lemma 2.6 and the

assumption that P̃−y(Et) → 1 as t→ ∞, we have

P̃−y

[
1Ec

t

(ξλ0
t + y)2

]
= o

(
1

t

)
. (3.15)

By (3.14) and (3.15), we conclude that

P̃−y

( W̃−y
t

Ṽ −y
t + W̃−y

t

)2
 ≤ o

(
1

t

)
+ P̃−y

[
W̃−y

t

W̃−y
t + Ṽ −y

t

1Et

ξλ0
t + y

]
. (3.16)

Next, we need to construct Et such that the right-hand side of (3.16) is bounded by 2/(πt)+o(1/t).

Let [0,∞) ∋ t 7→ kt be a positive function such that limt→∞ kt/(log t)
6 = ∞ and limt→∞ kt/

√
t = 0.

For instance, we can take kt = (log t)7 for large t. For t > 0 large, we define

W̃
−y,[0,kt)
t := (W−y

t )′ +

∫
[0,kt)

∫
D
⟨e−λ0·1(−y,∞)(·), wλ0

Dt−s
−y

⟩N λ0

(
ds× dwλ0

)
+

∑
s∈Dm∩[0,kt)

Wm,s,−y
t−s ,

W̃
−y,[kt,t]
t :=

∫
[kt,t]

∫
D
⟨e−λ0·1(−y,∞)(·), wλ0

Dt−s
−y

⟩N λ0

(
ds× dwλ0

)
+

∑
s∈Dm∩[kt,t]

Wm,s,−y
t−s ,

Ṽ
−y,[0,kt)
t := (V −y

t )′ +

∫
[0,kt)

∫
D
⟨(y + ·)e−λ0·, wλ0

Dt−s
−y

⟩N λ0

(
ds× dwλ0

)
+

∑
s∈Dm∩[0,kt)

Vm,s,−y
t−s ,
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Ṽ
−y,[kt,t]
t :=

∫
[kt,t]

∫
D
⟨(y + ·)e−λ0·, wλ0

Dt−s
−y

⟩N λ0

(
ds× dwλ0

)
+

∑
s∈Dm∩[kt,t]

Vm,s,−y
t−s .

Recall that ms = ∥Xm,s,λ0

D0
−y

∥. Define

Et,1 := {k1/3t ≤ ξλ0
kt

≤ kt}
⋂{

inf
s∈[kt,t]

ξλ0
s ≥ k

1/6
t

}
, Et,2 :=

⋂
s∈Dm∩[kt,t]

{
ms ≤ eλ0ξ

λ0
s /2

}
,

Et,3 :=

{
Ṽ

−y,[kt,t]
t + W̃

−y,[kt,t]
t ≤ 1

t2

}
, Et := Et,1 ∩ Et,2 ∩ Et,3.

Lemma 3.4 For any fixed y > 0, it holds that

lim
t→∞

sup
u∈[k1/3t ,kt]

P̃−y
[
Ec

t,2

∣∣∣ξλ0
kt

= u
]
= 0.

Proof: First, by Campbell’s formula, we have

P̃−y
[
Ec

t,2

∣∣∣ξλ0
kt

= u
]
= P̃−y

 ⋃
s∈Dm∩[kt,t]

{ms > eλ0ξ
λ0
s /2}

∣∣∣ξλ0
kt

= u


≤ P̃−y

 ∑
s∈Dm∩[kt,t]

1
{ms>eλ0ξ

λ0
s /2}

∣∣∣ξλ0
kt

= u

 ≤ P̃−y

 ∑
s∈Dm∩[kt,∞)

1
{ms>eλ0ξ

λ0
s /2}

∣∣∣∣ξλ0
kt

= u


= P̃−y

[∫ ∞

kt

ds

∫ ∞

0
1{ξλ0s <2 log r/λ0}

rν(dr)
∣∣∣ξλ0

kt
= u

]
. (3.17)

Since under P̃−y, ξλ0
s > −y for all s ≥ 0, it holds that

1{ξλ0s <2 log r/λ0}
= 1{ξλ0s <2 log r/λ0}

· 1{−y<2 log r/λ0} + 1{ξλ0s <2 log r/λ0}
· 1{−y≥2 log r/λ0}

= 1{ξλ0s <2 log r/λ0}
· 1{−y<2 log r/λ0} + 1{ξλ0s <2 log r/λ0≤−y}

= 1{ξλ0s <2 log r/λ0}
· 1{−y<2 log r/λ0}. (3.18)

Plugging (3.18) into (3.17) and noting that −y < 2 log r/λ0 ⇔ r > e−λ0y/2, we get that

P̃−y
[
Ec

t,2

∣∣∣ξλ0
kt

= u
]
≤ P̃−y

[∫ ∞

kt

ds

∫ ∞

0
1{ξλ0s <2 log r/λ0}

rν(dr)
∣∣∣ξλ0

kt
= u

]
= P̃−y

[∫ ∞

kt

ds

∫ ∞

e−λ0y/2
1{ξλ0s <2 log r/λ0}

rν(dr)
∣∣∣ξλ0

kt
= u

]
=

∫ ∞

kt

ds

∫ ∞

e−λ0y/2
rν(dr)P̃−y

[
ξλ0
s < 2 log r/λ0

∣∣∣ξλ0
kt

= u
]
. (3.19)

By the Markov property, when s ≥ kt,

P̃−y
[
ξλ0
s < 2 log r/λ0

∣∣∣ξλ0
kt

= u
]
= P̃−(y+u)

[
ξλ0
s−kt

+ u < 2 log r/λ0

]
. (3.20)

So (3.19) and (3.20) yield that

P̃−y
[
Ec

t,2

∣∣∣ξλ0
kt

= u
]
≤
∫ ∞

kt

ds

∫ ∞

e−λ0y/2
rν(dr)P̃−(y+u)

[
ξλ0
s−kt

+ u < 2 log r/λ0

]
18



=

∫ ∞

0
ds

∫ ∞

e−λ0y/2
rν(dr)P̃−(y+u)

[
ξλ0
s + u < 2 log r/λ0

]
. (3.21)

Now by Lemma 2.4 and Proposition 2.3, (3.21) is bounded above by

P̃−y
[
Ec

t,2

∣∣∣ξλ0
kt

= u
]
≤
∫ ∞

0
ds

∫ ∞

e−λ0y/2
rν(dr)P̃−(y+u)

[
ξλ0
s + u < 2 log r/λ0

]
=

∫ ∞

e−λ0y/2
rν(dr)

∫ ∞

0
ds

1

u+ y
Πu+y

(
Bs1{Bs<y+2 log r/λ0,s<τ0}

)
≤
∫ ∞

e−λ0y/2
rν(dr)

∫ ∞

0
ds
y + 2 log r/λ0

u+ y
Πu+y (Bs < y + 2 log r/λ0, s < τ0)

≤ C

u+ y

∫ ∞

e−λ0y/2
r(1 + y + 2 log r/λ0)

2 (1 + min{y + 2 log r/λ0, u+ y}) ν(dr). (3.22)

For any fixed ε > 0, note that 2 log r/λ0 ≤ εu ⇐⇒ r ≤ eελ0u/2. We suppose that t is large enough

such that for any u ∈ [k
1/3
t , kt], u+ y > 1 and 1 + εu+ y ≤ 2ε(u+ y). Thus,

P̃−y
[
Ec

t,2

∣∣∣ξλ0
kt

= u
]
≤ C

u+ y

∫ eελ0u/2

e−λ0y/2
r(1 + y + 2 log r/λ0)

2(1 + y + 2 log r/λ0)ν(dr)

+
C(1 + u+ y)

u+ y

∫ ∞

eελ0u/2
r(1 + y + 2 log r/λ0)

2ν(dr)

≤ C

u+ y

∫ eελ0u/2

e−λ0y/2
r(1 + y + 2 log r/λ0)

2 (1 + y + εu) ν(dr)

+
C(1 + u+ y)

u+ y

∫ ∞

eελ0u/2
r(1 + y + 2 log r/λ0)

2ν(dr)

≤2Cε

∫ ∞

e−λ0y/2
r(1 + y + 2 log r/λ0)

2ν(dr)

+ 2C

∫ ∞

eελ0k
1/3
t /2

r(1 + y + 2 log r/λ0)
2ν(dr). (3.23)

Using condition (1.6) and taking t→ ∞, (3.23) yields that

lim sup
t→∞

sup
u∈[k1/3t ,kt]

P̃−y
[
Ec

t,2

∣∣∣ξλ0
kt

= u
]
≤ Cε

∫ ∞

e−λ0y/2
r(1 + y + 2 log r/λ0)

2ν(dr).

Since ε is arbitrary, the desired assertion is valid. 2

Lemma 3.5 For any fixed y > 0, there exist constants T,C ′ > 0 such that for any t ≥ T ,

P̃−y
[
Et,1 ∩ Et,2 ∩ Ec

t,3

∣∣ξλ0

]
≤ C ′

t
, P̃−y-a.s.

Proof: Recall that W−y
t is defined in (2.9). Define W−y

t by

W−y
t := ⟨e−λ0·, Xλ0

Dt
−y
⟩.

By (2.6), for any t, r > 0 and z ≥ −y, Prδz

[
W−y

t

]
= re−λ0z, which does not depend on t. By this

and the special Markov property (2.8), we see that W−y
t is a non-negative Prδz -martingale. Note

that W−y
t ≤ W−y

t . Similarly to (3.9), we define

Wm,s,−y
t−s := ⟨e−λ0·, Xm,s,λ0

Dt−s
−y

⟩.
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Because Et,1 ∈ σ(ξt : t ≥ 0), by the martingale property of W−y
t , we obtain that

P̃−y

[
1Et,1

∫
[kt,t]

∫
D
⟨e−λ0·1(−y,∞)(·), wλ0

Dt−s
−y

⟩N λ0

(
ds× dwλ0

) ∣∣∣∣ξλ0

]

≤ P̃−y

[
1Et,1

∫
[kt,t]

∫
D
⟨e−λ0·, wλ0

Dt−s
−y

⟩N λ0

(
ds× dwλ0

) ∣∣∣∣ξλ0

]

= 2β1Et,1

∫ t

kt

N
ξ
λ0
s

(
⟨e−λ0·, wλ0

Dt−s
−y

⟩
∣∣∣ξλ0

)
ds = 2β1Et,1

∫ t

kt

Pδ
ξ
λ0
s

(
W−y

t−s

∣∣∣ξλ0

)
ds

= 2β1Et,1

∫ t

kt

e−λ0ξ
λ0
s ds ≤ 2βte−λ0k

1/6
t ≤ 2βte−λ0k

1/6
t /4, (3.24)

where the second to the last inequality of (3.24) holds because on Et,1 we have ξs ≥ k
1/6
t for all

kt ≤ s ≤ t. Next, for s ∈ Dm and recall that ms = ∥Xm,s
D0

−y
∥, by the martingale property of W−y

t ,

P̃−y

1Et,1∩Et,2

∑
s∈Dm∩[kt,t]

Wm,s,−y
t−s

∣∣∣∣ξλ0 ,m

 ≤ P̃−y

1Et,1∩Et,2

∑
s∈Dm∩[kt,t]

Wm,s,−y
t−s

∣∣∣∣ξλ0 ,m


= 1Et,1∩Et,2

∑
s∈Dm∩[kt,t]

Pmsδ
ξ
λ0
s

(
Wm,s,−y

t−s

∣∣∣ξλ0 ,m
)
= 1Et,1∩Et,2

∑
s∈Dm∩[kt,t]

e−λ0ξ
λ0
s ms

≤ 1Et,1

∑
s∈Dm∩[kt,t]

e−λ0ξ
λ0
s /21{ms>1} + 1Et,1

∑
s∈Dm∩[kt,t]

e−λ0ξ
λ0
s ms1{ms≤1}

≤ e−λ0k
1/6
t /2

∑
s∈Dm∩[kt,t]

1{ms>1} + e−λ0k
1/6
t

∑
s∈Dm∩[kt,t]

ms1{ms≤1}. (3.25)

Taking expectation with respect to m in (3.25), we get

P̃−y

1Et,1∩Et,2

∑
s∈Dm∩[kt,t]

Wm,s,−y
t−s

∣∣∣∣ξλ0


≤ e−λ0k

1/6
t /2P̃−y

 ∑
s∈Dm∩[kt,t]

1{ms>1}

∣∣∣∣ξλ0

+ e−λ0k
1/6
t P̃−y

 ∑
s∈Dm∩[kt,t]

ms1{ms≤1}

∣∣∣∣ξλ0


= e−λ0k

1/6
t /2

∫ t

kt

ds

∫ ∞

1
rν(dr) + e−λ0k

1/6
t

∫ t

kt

ds

∫ 1

0
r2ν(dr)

≤ te−λ0k
1/6
t /2

∫ ∞

1
rν(dr) + te−λ0k

1/6
t

∫ 1

0
r2ν(dr) ≤ C3te

−λ0k
1/6
t /4 (3.26)

for some constant C3. Similarly, for large t such that for all u ≥ k
1/3
t , (y + u) ≤ eλ0u/4, we have

P̃−y

[
1Et,1

∫
[kt,t]

∫
D
⟨(y + ·)e−λ0·, wλ0

Dt−s
−y

⟩N λ0

(
ds× dwλ0

) ∣∣∣∣ξλ0

]

= 2β1Et,1

∫ t

kt

N
ξ
λ0
s

(
⟨(y + ·)e−λ0·, wλ0

Dt−s
−y

⟩
∣∣∣ξλ0

)
ds

= 2β1Et,1

∫ t

kt

Pδ
ξ
λ0
s

(
V −y
t−s

∣∣∣ξλ0

)
ds = 2β1Et,1

∫ t

kt

e−λ0ξ
λ0
s (y + ξλ0

s )ds
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≤ 2βte−3λ0k
1/6
t /4 ≤ 2βte−λ0k

1/6
t /4. (3.27)

For large t such that for all u ≥ k
1/3
t , (y + u) ≤ eλ0u/4, we also have

P̃−y

1Et,1∩Et,2

∑
s∈Dm∩[kt,t]

Vm,s,−y
t−s

∣∣∣∣ξλ0 ,m

 = 1Et,1∩Et,2

∑
s∈Dm∩[kt,t]

Pmsδ
ξ
λ0
s

(
Vm,s,−y
t−s

∣∣∣ξλ0 ,m
)

= 1Et,1∩Et,2

∑
s∈Dm∩[kt,t]

e−λ0ξ
λ0
s (y + ξλ0

s )ms ≤ 1Et,1∩Et,2

∑
s∈Dm∩[kt,t]

e−3λ0ξ
λ0
s /4ms

≤ e−λ0k
1/6
t /4

∑
s∈Dm∩[kt,t]

1{ms>1} + e−3λ0k
1/6
t /4

∑
s∈Dm∩[kt,t]

ms1{ms≤1}. (3.28)

Taking expectation with respect to m in (3.28), we obtain that for some constant C4,

P̃−y

1Et,1∩Et,2

∑
s∈Dm∩[kt,t]

Vm,s,−y
t−s

∣∣∣∣ξλ0

 ≤ te−λ0k
1/6
t /4

∫ ∞

1
rν(dr) + te−3λ0k

1/6
t /4

∫ 1

0
r2ν(dr)

≤ C4te
−λ0k

1/6
t /4. (3.29)

Combining (3.24), (3.26), (3.27) and (3.29), we get that

P̃−y

[
1Et,1∩Et,2

(
Ṽ

−y,[kt,t]
t + W̃

−y,[kt,t]
t

) ∣∣∣∣ξλ0

]
≤ (C3 + C4 + 4β)te−λ0k

1/6
t /4.

On Ec
t,3 we have Ṽ

−y,[kt,t]
t + W̃

−y,[kt,t]
t > 1/t2. Then for t large enough such that k

1/6
t > 16 log t/λ0,

we have

P̃−y
[
1Et,1∩Et,2∩Ec

t,3

∣∣ξλ0

]
≤ t2P̃−y

[
1Et,1∩Et,2

(
Ṽ

−y,[kt,t]
t + W̃

−y,[kt,t]
t

) ∣∣∣∣ξλ0

]
≤ (C3 + C4 + 4β)t3e−λ0k

1/6
t /4 ≤ (C3 + C4 + 4β)t−1.

The proof is complete. 2

Lemma 3.6 For any y > 0, we have

lim
t→∞

P̃−y[Et] = 1 (3.30)

and

lim
t→∞

inf
k
1/3
t ≤u≤kt

P̃−y[Et|ξλ0
kt

= u] = 1. (3.31)

Proof: First, by Lemma 3.4,

lim
t→∞

sup
u∈[k1/3t ,kt]

P̃−y
[
Ec

t,2

∣∣∣ξλ0
kt

= u
]
= 0. (3.32)

By Lemma 3.5, we have

lim
t→∞

sup
u∈[k1/3t ,kt]

P̃−y
[
Et,1 ∩ Et,2 ∩ Ec

t,3

∣∣ξλ0
kt

= u
]
= 0.

21



Note that

Ω = Et ∪ Ec
t,2 ∪ Ec

t,1 ∪ (Et,1 ∩ Et,2 ∩ Ec
t,3). (3.33)

To prove (3.31), we only need to prove that

inf
u∈[k1/3t ,kt]

P̃−y[Et,1|ξλ0
kt

= u] → 1, as t→ ∞. (3.34)

Recall that under P̃−y, y + ξλ0
t is a Bessel-3 process starting from y. Now let ηt := ξλ0

t + y. Then

(η, P̃−y) is equal in law with (η, Π̃y). For any u ∈ [k
1/3
t , kt], by the Markov property and Lemma

2.4, we have

P̃−y[Et,1|ξλ0
kt

= u] ≥ Π̃y+u

(
min

r∈[0,t−kt]
ηr ≥ k

1/6
t + y

)
=

1

y + u
Π0

[
(Bt−kt + y + u) 1{minr∈[0,t−kt]

Br≥k
1/6
t −u}

]
. (3.35)

Set a = u− k
1/6
t ≥ 0. Then using the fact that Π0Bt∧τ−a = 0 for any t ≥ 0, we have

0 = Π0B(t−kt)∧τ−a
= −aΠ0(τ−a < t− kt) + Π0(Bt−kt1{τ−a≥t−kt}).

Also note that by Lemma 2.2,

Π0(τ−a ≤ t− kt) = 2

∫ ∞

a/
√
t−kt

1√
2π
e−x2/2dx.

Then the right-hand of (3.35) is equal to

1

y + u
Π0

[
Bt−kt1{τ−a≥t−kt} + (y + u)1{τ−a≥t−kt}

]
= 1− 2(y + k

1/6
t )

y + u

∫ ∞

(u−k
1/6
t )/

√
t−kt

1√
2π
e−x2/2dx. (3.36)

By (3.35) and (3.36), we get

P̃−y[Et,1|ξλ0
kt

= u] ≥ 1− 2(y + k
1/6
t )

y + k
1/3
t

∫ ∞

0

1√
2π
e−x2/2dx.

By the assumption on kt, we get (3.34).

Now we prove (3.30). We claim that

P̃−y[k
1/3
t ≤ ξλ0

kt
≤ kt] = Π̃y[k

1/3
t + y ≤ ηkt ≤ kt + y] → 1, as t→ ∞. (3.37)

In fact, by Theorem 3.2 of [26], limt→∞ log(ηt)/ log t = 1/2, Π̃y-a.s. Using the fact that kt → ∞ as

t→ ∞, we get (3.37) holds. Combining (3.37) and (3.32), we have

lim
t→∞

P̃−y[Ec
t,2] = 0. (3.38)

Combining (3.37) and (3.34), we have

lim
t→∞

P̃−y[Et,1] = 1. (3.39)
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It follows from Lemma 3.5 that

lim
t→∞

P̃−y
[
Et,1 ∩ Et,2 ∩ Ec

t,3

]
= 0. (3.40)

Using (3.33), and combining (3.38)-(3.40), we obtain (3.30). 2

Lemma 3.7 For any y > 0, it holds that

lim sup
t→∞

tP̃−y

[
W̃−y

t

W̃−y
t + Ṽ −y

t

1Et

ξλ0
t + y

]
≤ 2

π
.

Proof: First note that

P̃−y

[
W̃−y

t

W̃−y
t + Ṽ −y

t

1Et

ξλ0
t + y

]
= P̃−y

[
W̃

−y,[kt,t]
t

W̃−y
t + Ṽ −y

t

1Et

ξλ0
t + y

]
+ P̃−y

[
W̃

−y,[0,kt)
t

W̃−y
t + Ṽ −y

t

1Et

ξλ0
t + y

]
.

For the first term on the right hand, we have

P̃−y

[
W̃

−y,[kt,t]
t

W̃−y
t + Ṽ −y

t

1Et

ξλ0
t + y

]
≤ P̃−y

[
1/t2

Ṽ −y
t (y + k

1/6
t )

]
=

1

yt2(k
1/6
t + y)

,

here we used the property that Et ⊂ {ξt ≥ k
1/6
t }, Et ⊂ Et,3 and the equality P̃−y

[
1

Ṽ −y
t

]
=

Q−y
[

1
V −y
t

]
= 1

y . Hence,

lim
t→∞

tP̃−y

[
W̃

−y,[kt,t]
t

W̃−y
t + Ṽ −y

t

1Et

ξλ0
t + y

]
= 0.

Therefore, we only need to prove that

lim sup
t→∞

tP̃−y

[
W̃

−y,[0,kt)
t

W̃−y
t + Ṽ −y

t

1Et

ξλ0
t + y

]
≤ 2

π
. (3.41)

Note that

P̃−y

[
W̃

−y,[0,kt)
t

W̃−y
t + Ṽ −y

t

1Et

ξλ0
t + y

]
≤ P̃−y

[
W̃

−y,[0,kt)
t

W̃
−y,[0,kt)
t + Ṽ

−y,[0,kt)
t

1Et

ξλ0
t + y

]

≤ P̃−y

[
W̃

−y,[0,kt)
t

W̃
−y,[0,kt)
t + Ṽ

−y,[0,kt)
t

1{ξλ0kt
∈[k1/3t ,kt]}

]
× sup

u∈[k1/3t ,kt]

P̃−y

[
1

ξλ0
t + y

∣∣∣∣ξλ0
kt

= u

]
. (3.42)

In the last inequality we used the Markov property of ξ. Let {(ηt)t≥0, Π̃u+y} be a Bessel-3 process

starting from u+ y. By Lemmas 2.4 and 2.2, we have

P̃−y

[
1

ξλ0
t + y

∣∣∣∣ξλ0
kt

= u

]
= Π̃u+y

[
1

ηt−kt

]
=

1

u+ y
Πu+y

[
1{minr∈[0,t−kt]

Br>0}

]
=

1

u+ y
Π0(τ−(y+u) > t− kt) =

2

y + u

∫ (y+u)/
√
t−kt

0

1√
2π
e−x2/2dx. (3.43)
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By (3.42) and (3.43), we get

P̃−y

[
W̃

−y,[0,kt)
t

W̃−y
t + Ṽ −y

t

1Et

ξλ0
t + y

]
≤P̃−y

[
W̃

−y,[0,kt)
t

W̃
−y,[0,kt)
t + Ṽ

−y,[0,kt)
t

1{ξλ0kt
∈[k1/3t ,kt]}

]

× sup
u∈[k1/3t ,kt]

2

y + u

∫ (y+u)/
√
t−kt

0

1√
2π
e−x2/2dx. (3.44)

Because limε→0+
2
ε

∫ ε
0 e

−x2/2/
√
2πdx =

√
2/π and (y + u)/

√
t− kt converges to 0 uniformly on

u ∈ [k
1/3
t , kt] as t→ ∞, we have

sup
u∈[k1/3t ,kt]

2
√
t

y + u

∫ (y+u)/
√
t−kt

0

1√
2π
e−x2/2dx→

√
2

π
. (3.45)

Using the Markov property at time kt again, we get

P̃−y

[
W̃

−y,[0,kt)
t

W̃
−y,[0,kt)
t + Ṽ

−y,[0,kt)
t

1Et

]

≥ P̃−y

[
W̃

−y,[0,kt)
t

W̃
−y,[0,kt)
t + Ṽ

−y,[0,kt)
t

1{ξλ0kt
∈[k1/3t ,kt]}

]
· inf
u∈[k1/3t ,kt]

P̃−y[Et|ξλ0
kt

= u]. (3.46)

Because W̃
−y,[0,kt)
t /(W̃

−y,[0,kt)
t + Ṽ

−y,[0,kt)
t ) · 1Et ≤ 1, the left-hand of (3.46) is bounded above by

P̃−y

[
W̃

−y,[0,kt)
t

W̃
−y,[0,kt)
t + Ṽ

−y,[0,kt)
t

1Et

]
≤ P̃−y

[
W̃

−y,[0,kt)
t

W̃
−y,[0,kt)
t + Ṽ

−y,[0,kt)
t

1Et1{Ṽ −y
t >1/t}

]
+ P̃−y

[
Ṽ −y
t ≤ 1

t

]

≤ P̃−y

[
W̃

−y,[0,kt)
t

Ṽ
−y,[0,kt)
t

1Et1{Ṽ −y
t >1/t}

]
+

1

t
P̃−y

[
1

Ṽ −y
t

]
= P̃−y

[
W̃

−y,[0,kt)
t

Ṽ
−y,[0,kt)
t

1Et1{Ṽ −y
t >1/t}

]
+

1

ty
, (3.47)

where in the last inequality we used the Markov inequality for
(
Ṽ −y
t

)−1
. Fix a constant η ∈ (0, 1),

on Et ∩ {Ṽ −y
t > 1/t}, we have, for large t such that t > η−1, Ṽ

−y,[kt,t]
t ≤ ηṼ −y

t . So when t is large,

using (3.47), we have

P̃−y

[
W̃

−y,[0,kt)
t

W̃
−y,[0,kt)
t + Ṽ

−y,[0,kt)
t

1Et

]
≤ 1

ty
+

1

1− η
P̃−y

[
W̃−y

t

Ṽ −y
t

]
.

By (3.10), we have

P̃−y

[
W̃

−y,[0,kt)
t

W̃
−y,[0,kt)
t + Ṽ

−y,[0,kt)
t

1Et

]
≤

√
2/π

(1− η)
√
t
+ o

(
1√
t

)
, as t→ ∞. (3.48)

By (3.31), (3.44), (3.45), (3.46) and (3.48), we finally get that

lim sup
t→∞

tP̃−y

[
W̃

−y,[0,kt)
t

W̃−y
t + Ṽ −y

t

1Et

ξλ0
t + y

]
≤ 2

π(1− η)
.

Since the above holds for any small η ∈ (0, 1), (3.41) holds. The proof is complete. 2
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Proof of Proposition 3.3: Applying Lemmas 3.2 and 3.7, and (3.16), we get

lim sup
t→∞

P̃−y

( √
tW̃−y

t

Ṽ −y
t + W̃−y

t

−
√

2

π

)2


= lim sup
t→∞

P̃−y

( √
tW̃−y

t

Ṽ −y
t + W̃−y

t

)2
− 2

π

− 2

√
2

π
lim
t→∞

{
P̃−y

[ √
tW̃−y

t

Ṽ −y
t + W̃−y

t

]
−
√

2

π

}
≤ 0,

which means that (3.13) holds. 2

Proof of Theorem 1.1: Let Rλ0 and R̃λ0 be the smallest closed set containing
⋃

t≥0 suppX
λ0
t

and
⋃

t≥0 suppX̃
λ0
t , respectively. Then by [20, Corollary 3.2], under condition (1.6), P(infRλ0 >

−∞) = 1. So for any 0 < η < P(Ec), there exists K > 0 such that P(infRλ0 > −K) > 1 − η. Let

y := K be fixed and define Ωk := {infRλ0 > −K} and Ω̃k := {inf R̃λ0 > −K}. Then

P(ΩK ∩ Ec) ≥ P(ΩK) + P(Ec)− 1 > 1− η + P(Ec)− 1 > 0.

For any ε > 0, put

Gt =

{∣∣∣ √
tW−y

t

V −y
t +W−y

t

−
√

2

π

∣∣∣ > ε

}
, G̃t =

{∣∣∣ √
tW̃−y

t

Ṽ −y
t + W̃−y

t

−
√

2

π

∣∣∣ > ε

}
.

Define P∗∗(·) = P(·|ΩK ∩ Ec). By (3.13) we have limt→∞ P̃−y[G̃t] = 0. Thus,

P(ΩK ∩ Ec)

y
lim
t→∞

P∗∗[V −y
t 1Gt ] = lim

t→∞
P̃−y[G̃t ∩ Ω̃K ∩ Ẽc] = lim

t→∞
P̃−y[G̃t] = 0,

where Ẽ := {∃t ≥ 0 such that ∥X̃λ0
t ∥ = 0} with P̃−y-probability 0. Then by Proposition 3.3, we

have

V −y
t 1Gt −−−→

t→∞
0 in probability with respect to P∗∗. (3.49)

Notice that on the event ΩK := {infRλ0 > −K}, we have

V −y
t = V −K

t = ∂Wt +KWt > 0, W−y
t =W−K

t =Wt,

and limt→∞ V −y
t = ∂W∞ > 0 P∗∗-a.s.. Together with (3.49) we get limt→∞ P∗∗[Gt] = 0 for any

ε > 0, which says

√
tW−y

t

V −y
t +W−y

t

=

√
tWt

∂Wt + (K + 1)Wt
−−−→
t→∞

√
2

π
in probability with respect to P∗∗. (3.50)

Recall that P(Ec) = 1− e−λ∗
> 0 and P∗∗(Wt > 0, ∀t > 0) = P∗∗(limt→∞Wt > 0) = 1. According

to (3.50) we get
∂Wt√
tWt

−−−→
t→∞

√
π

2
in probability with respect to P∗∗.

For any γ > 0, define

At =

{∣∣∣ ∂Wt√
tWt

−
√
π

2

∣∣∣ > γ

}
.
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Then limt→∞ P∗∗[1At ] = 0. Noticing that P∗(·) = P(·|Ec) and P∗[1At1ΩK
] = P∗∗[1At ]P(ΩK ∩

Ec)/P(Ec), we obtain that

1At1ΩK
−−−→
t→∞

0 in probability with respect to P∗,

which means lim supt→∞ P∗(At) ≤ limt→∞ P∗(At ∩ ΩK) + P∗(Ωc
K) ≤ η/P(Ec). Since η is arbitrary,

we deduce that limt→∞ P∗(At) = 0 for any γ > 0, which says

∂Wt√
tWt

−−−→
t→∞

√
π

2
in probability with respect to P∗.

This is also equivalent to say that, on the event Ec, we have

√
tWt −−−→

t→∞

√
2

π
∂W∞ in probability with respect to P (3.51)

On E , (3.51) holds obviously. The proof is now complete. 2

4 Proof of Theorem 1.2

Recall the definitions of the process {(Zt,Λt)t≥0} and the probability measures P(µ,η) and Pµ with

µ ∈ M(R) and η ∈ Ma(R), defined in Subsection 2.3. Set P := Pδ0 . By the skeleton decomposition

forX, (Λt,P) is equal in law to (X,P). To prove Theorem 1.2, we only need to prove that on survival

event
(
EΛ
)c

where EΛ := {limt→∞ ∥Λt∥ = 0},

lim sup
t→∞

√
t⟨e−λ0(·+λ0t),Λt⟩ = +∞ P-almost surely. (4.1)

The intuitive idea for proving the limit above is that the behaviour of Λ is determined by the

skeleton Z. By branching property of Z we only consider the law P(δ0,δ0). Let {en : n ≥ 1} be iid

exponential random variables independent of Z. Let T0 := 0 and Tn =
∑n

i=1 ei for n ≥ 1. If we look

at Z at independent times {Tn : n = 1, 2, ...}, then {ZTn , n ≥ 1} is a branching random walk. We

expect the behavior of this branching random walk to dominate the behavior of Λ. Let {Zn, n ≥ 1}
be the translation of {ZTn , n ≥ 1} defined in (4.4) below. We will show that {Zn, n ≥ 1} satisfies

conditions of Aidekon and Shi [1]. Then by [1, Theorem 6.1],

lim inf
n→∞

(
LZ
n − 1

2
log n

)
= −∞ P(δ0,δ0)-almost surely,

where LZ
n is minimum of the support of Zn. Let L

Z
t be minimum of the support of Zt. By definition

(4.4), LZ
n = λ0(L

Z
Tn

+ λ0Tn), and then we have

lim inf
n→∞

(
λ0(L

Z
Tn

+ λ0Tn)−
1

2
log Tn

)
= −∞ P(δ0,δ0)-almost surely. (4.2)

We will bound ⟨e−λ0(·+λ0Tn),ΛTn⟩ from below by immigrations along the path of LZ
· , and then use

the limit result (4.2) for LZ
Tn

to get (4.1).

Now we prove the above rigorously. Note that

P(·) =
∞∑
k=0

(λ∗)k

k!
e−λ∗

P(δ0,kδ0)(·), (4.3)
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and P(EΛ) = P(E) = e−λ∗
. It is obvious that P(δ0,0δ0)(EΛ) = 1. Together with (4.3), we know

that for k ≥ 1,P(δ0,kδ0)(EΛ) = 0. Thus, to prove Theorem 1.2, it suffices to show that, for any

k ≥ 1, the limsup in (1.8) is valid P(δ0,kδ0)-almost surely. By the branching property, without loss

of generality, we only need to deal with the case of k = 1.

Let {en : n ≥ 1} be iid exponential random variables with parameter κ ∈ (0,∞), independent

of Z. Put T0 := 0 and Tn =
∑n

i=1 ei for n ≥ 1. Now for n ≥ 1, we define Zn so that, for any

f ∈ B+
b (R),

⟨f,Zn⟩ = ⟨f (λ0(·+ λ0Tn)) , ZTn⟩. (4.4)

Then {(Zn)n≥1,P(δ0,δ0)} is a branching random walk. Define m :=
∑

n≥0 npn = F ′(1−), where we

used (2.14). It is easy to check that λ0 =
√
2ψ′(λ∗)(m− 1). We first check that the conditions of

[1, Theorem 6.1] for Z are satisfied. More precisely, under assumption (1.7), (1.1) (1.2) and (1.3)

hold. For simplicity, we define

WZ
n := ⟨e−·,Zn⟩, DZ

n := ⟨·e−·,Zn⟩, DZ,2
n := ⟨(·)2e−·,Zn⟩, DZ,+

n := ⟨(·)+e−·,Zn⟩.

The additive martingale associated to Z with parameter λ is defined as

WZ
s (λ) := e−λcλs⟨e−λ·, Zs⟩ = e−(λ−λ0)2s/2⟨e−λ(·+λ0s), Zs⟩, (4.5)

where cλ := λ/2 + ψ′(λ∗)(m− 1)/λ = (λ2 + λ20)/(2λ) and λcλ = (λ− λ0)
2/2 + λλ0.

Lemma 4.1 If
∑

n≥1 n(log n)
2pn <∞, then

P(δ0,δ0)

[
WZ

1

]
= 1, P(δ0,δ0)

[
DZ

1

]
= 0, P(δ0,δ0)

[
DZ,2

1

]
<∞ (4.6)

and

P(δ0,δ0)

[
WZ

1 log2+W
Z
1

]
<∞, P(δ0,δ0)

[
DZ,+

1 log+D
Z,+
1

]
<∞. (4.7)

Proof : Step 1 : Define WZ
s and DZ

s by

WZ
s := ⟨e−λ0(·+λ0s), Zs⟩, DZ

s := ⟨(·+ λ0s)e
−λ0(·+λ0s), Zs⟩.

Then by [19], WZ
s and DZ

s are the additive martingale and the derivative martingale associated to

the branching Brownian motion Z in the critical case λ = λ0 respectively.

By some direct calculation and the martingale property, we have

P(δ0,δ0)

[
WZ

1

]
=

∫ ∞

0
κe−κsP(δ0,δ0)

[
WZ

s

]
ds =

∫ ∞

0
κe−κsds = 1,

P(δ0,δ0)

[
DZ

1

]
=

∫ ∞

0
κe−κsP(δ0,δ0)

[
DZ

s

]
ds = 0.

Now define

DZ,2
s := λ20⟨(·+ λ0s)

2e−λ0(·+λ0s), Zs⟩.

Using the many-to-one formula, we get

P(δ0,δ0)

[
DZ,2

1

]
=

∫ ∞

0
κe−κsP(δ0,δ0)

[
DZ,2

s

]
ds =

∫ ∞

0
κe−κsλ20e

λ2
0s/2Π0

[
(Bs + λ0s)

2e−λ0(Bs+λ0s)
]
ds
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= λ20

∫ ∞

0
κe−κsΠ−λ0

0

[
(Bs + λ0s)

2
]
ds = λ20

∫ ∞

0
κse−κsds <∞.

Thus, (4.6) holds.

Step 2 : In this step we prove the first inequality of (4.7). Define a new probability QZ by

dQZ

dP(δ0,δ0)

∣∣∣∣
σ(Z1

r ,r≤s)

:=WZ
s , s ≥ 0.

Then under QZ , Z has the following spine decomposition:

(i) There is a initial marked particle moving as a Brownian motion with drift −λ0 starting from

0, we denote the trajectory of this particle by ws.

(ii) The branching rate of this marked particle is ψ′(λ∗)m and the offspring distribution of the

marked particle is given by p̃n := npn/m, n = 1, 2, . . . .

(iii) When the marked particle dies, given the number of the offspring, mark one of its offspring

uniformly.

(iv) The unmarked individuals evolve independently as Z under P(δ0,δ0).

Note that

P(δ0,δ0)

[
WZ

1 log2+W
Z
1

]
=

∫ ∞

0
κe−κsP(δ0,δ0)

[
WZ

s log2+W
Z
s

]
ds. (4.8)

By a change of measure, we have

P(δ0,δ0)

[
WZ

s log2+W
Z
s

]
= QZ

[
log2+W

Z
s

]
.

Let A > 4 be a constant such that

logA(logA− 2 log 2) ≥ sup
a≥1

(
log2(a+ 1)− log2 a

)
. (4.9)

There exists such an A since for all a ≥ 1, by inequality ln(x+ 1) ≤ x, we have

log2+(a+ 1)− log2+ a = (log(a+ 1) + log a)
(
log
(
1 + a−1

))
≤ (2a− 1)× a−1 < 2.

Now let b, c ≥ A. Using (4.9), it is easy to check that the inequality

log2(b+ c) ≤ log2 b+ log2 c (4.10)

holds by assuming b ≥ c and b = ac. For ℓ ≥ 1, we use Γℓ to denote the ℓ-th fission time of the

spine under QZ , and Oℓ the number of offspring at the fission time Γℓ. Then

WZ
s =

∑
ℓ≥1

1{Γℓ≤s}e
−λ2

0ΓℓWZ,Γℓ
s−Γℓ

1{
e−λ20ΓℓW

Z,Γℓ
s−Γℓ

<A
}

+
∑
ℓ≥1

1{Γℓ≤s}e
−λ2

0ΓℓWZ,Γℓ
s−Γℓ

1{
e−λ20ΓℓW

Z,Γℓ
s−Γℓ

≥A
} + e−λ0(ws+λ0s)

= : H1 +H2 +H3, (4.11)

where, given the information along the spine, WZ,Γℓ is the additive martingale associated with the

branching Brownian motion starting from the Oℓ − 1 unmarked individuals. Note that for any
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x, y, z > 0, we have log2+(x+y+ z) ≤ log2+(3x)+ log2+(3y)+ log2+(3z) and log2+ x ≤ 4x. Then (4.11)

implies that

log2+W
Z
s ≤ log2+(3H1) + log2+(3H2) + log2+(3H3) ≤ 12H1 + log2+(3H2) + log2+(3H3). (4.12)

Since H1 ≤ A
∑

ℓ≥1 1{Γℓ≤s}, we have

QZ [H1] ≤ A

∫ s

0
ψ′(λ∗)mdr = Aψ′(λ∗)ms. (4.13)

Also, note that ws + λ0s under QZ is a standard Brownian motion, so

QZ
[
log2+(3H3)

]
≤ 2(log 3)2 + 2QZ

[
log2+(H3)

]
≤ 2(log 3)2 + 2λ20QZ(ws + λ0s)

2 = 2(log 3)2 + 2λ20s. (4.14)

Here in the first inequality above we used inequality

log2+(ab) ≤ (log+ a+ log+ b)
2 ≤ 2 log2+ a+ 2 log2+ b. (4.15)

Define

W
Z,Γℓ

s−Γℓ
:= eλ0wΓℓWZ,Γℓ

s−Γℓ
.

Using (4.10) and (4.15) again, we deduce that

log2+(3H2) ≤ 2(log 3)2 + 2 log2+(H2)

≤ 2(log 3)2 + 2
∑
ℓ≥1

1{Γℓ≤s}1{e−λ20ΓℓW
Z,Γℓ
s−Γℓ

≥A
} log2+

[
e−λ2

0ΓℓWZ,Γℓ
s−Γℓ

]
≤ 2(log 3)2 + 4

∑
ℓ≥1

1{Γℓ≤s} log
2
+W

Z,Γℓ

s−Γℓ
+ 4

∑
ℓ≥1

1{Γℓ≤s} log
2
+

(
e−λ0(wΓℓ

+λ0Γℓ)
)

≤ 2(log 3)2 + 4
∑
ℓ≥1

1{Γℓ≤s} log
2
+W

Z,Γℓ

s−Γℓ
+ 4λ20

∑
ℓ≥1

1{Γℓ≤s}(wΓℓ
+ λ0Γℓ)

2. (4.16)

Similarly, we have

QZ

∑
ℓ≥1

1{Γℓ≤s}(wΓℓ
+ λ0Γℓ)

2

 = ψ′(λ∗)m

∫ s

0
QZ
[
(wr + λ0r)

2
]
dr = ψ′(λ∗)ms2/2. (4.17)

Now given w,Γℓ and Oℓ, by the spatial homogeneity of branching Brownian motion, we have that

QZ
[
W

Z,Γℓ

s−Γℓ

∣∣w,Γℓ, Oℓ

]
= Oℓ−1. By the branching property of Z, we haveW

Z,Γℓ

s−Γℓ
=
∑Oℓ−1

j=1 W
Z,Γℓ,j
s−Γℓ

,

where W
Z,Γℓ,j
s−Γℓ

, j = 1, · · · , Oℓ − 1, are independent and have the same distribution given w,Γℓ and

Oℓ. Thus,

QZ
[
log2+W

Z,Γℓ

s−Γℓ

∣∣∣w,Γℓ, Oℓ

]
≤ 2 log2+(Oℓ − 1) + 2QZ

[
log2+

(
max

j≤Oℓ−1
W

Z,Γℓ,j
s−Γℓ

) ∣∣∣w,Γℓ, Oℓ

]
. (4.18)

By the Markov inequality,

QZ

[
log2+

(
max

j≤Oℓ−1
W

Z,Γℓ,j
s−Γℓ

) ∣∣∣w,Γℓ, Oℓ

]
=

∫ ∞

0
2ydyQZ

[
max

j≤Oℓ−1
W

Z,Γℓ,j
s−Γℓ

> ey
∣∣∣w,Γℓ, Oℓ

]
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=

∫ ∞

0
2ydy

1− ∏
j≤Oℓ−1

(
1−QZ

[
W

Z,Γℓ,j
s−Γℓ

> ey
∣∣∣w,Γℓ, Oℓ

])
≤
∫ ∞

0
2ydy

1− ∏
j≤Oℓ−1

(1− e−y)

 =

∫ ∞

0
2y
[
1− (1− e−y)Oℓ−1

]
dy. (4.19)

When Oℓ − 1 < ey/2, using the fact that (1− x)k ≥ 1− kx for all x ≤ 1, we get

2y
[
1− (1− e−y)Oℓ−1

]
≤ 2y(Oℓ − 1)e−y ≤ 2ye−y/2;

while when Oℓ − 1 ≥ ey/2, which is equivalent to y ≤ 2 log(Oℓ − 1), we have

2y
[
1− (1− e−y)Oℓ−1

]
≤ 2y ≤ 4 log(Oℓ − 1).

Hence, combining (4.18) and (4.19), we get

QZ
[
log2+W

Z,Γℓ

s−Γℓ

∣∣∣w,Γℓ, Oℓ

]
≤ 18 log2(Oℓ − 1) +

∫ ∞

0
4ye−y/2dy. (4.20)

By (4.16), (4.17) and (4.20), we obtain

QZ
[
log2+(3H2)

]
≤2(log 3)2 + 2λ20ψ

′(λ∗)ms2 + 4QZ

∑
ℓ≥1

1{Γℓ≤s}18 log
2(Oℓ − 1)


+ 4

∫ ∞

0
4ye−y/2dyQZ

∑
ℓ≥1

1{Γℓ≤s}

 = K1 +K2s+K3s
2, (4.21)

here

K1 = 2(log 3)2, K2 = 4ψ′(λ∗)m

∫ ∞

0
4ye−y/2dy + 72ψ′(λ∗)

∑
k≥2

k log2(k − 1)pk,

K3 = 2λ20ψ
′(λ∗)m.

By (4.8), (4.12), (4.13), (4.14) and (4.21), we deduce that P(δ0,δ0)

[
WZ

1 log2+W
Z
1

]
<∞.

Step 3 : In this step we prove the second inequality of (4.7). We use similar arguments as in

Step 2. First we have

P(δ0,δ0)

[
DZ,+

1 log+D
Z,+
1

]
=

∫ ∞

0
κe−κsdsP(δ0,δ0)

[
DZ,+

s log+D
Z,+
s

]
, (4.22)

here

DZ,+
s := λ0⟨(·+ λ0s)+e

−λ0(·+λ0s), Zs⟩.

For any ϵ > 0, there exists a constantKϵ > 0 such that supx∈R [(x)+e
−ϵx] ≤ Kϵ. Using the definition

(4.5) of the additive martingale WZ
t (λ), one can easily get that

DZ,+
s ≤ Kϵλ0⟨e−(λ0−ϵ)(·+λ0s), Zs⟩ = Kϵλ0e

ϵ2s/2WZ
s (λ0 − ϵ).
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By the inequality log+(xy) ≤ log+ x+ log+ y and the equality P(δ0,δ0)

[
WZ

s (λ0 − ϵ)
]
= 1, we get

P(δ0,δ0)

[
DZ,+

s log+D
Z,+
s

]
≤ Kϵλ0e

ϵ2s/2 log+

(
Kϵλ0e

ϵ2s/2
)
+Kϵλ0e

ϵ2s/2P(δ0,δ0)

[
WZ

s (λ0 − ϵ) log+W
Z
s (λ0 − ϵ)

]
. (4.23)

By (4.22) and (4.23), to complete the proof, it suffices to prove that, for fixed ϵ2/2 < κ, we have∫ ∞

0
e−(κ−ϵ2/2)sdsP(δ0,δ0)

[
WZ

s (λ0 − ϵ) log+W
Z
s (λ0 − ϵ)

]
<∞. (4.24)

As in Step 2, we define QZ,ϵ by

dQZ,ϵ

dP(δ0,δ0)

∣∣∣∣
σ(Zr,r≤s)

:=WZ
s (λ0 − ϵ), s ≥ 0.

Then Z has another spine decomposition, which is the same as the spine decomposition at the

beginning of Step 2 except with λ0 replaced by λ0 − ϵ, also see [19, page 59–60]. Set g(t) =

e−ϵ2t/2−(λ0−ϵ)λ0t. Using the same notation as in Step 2, we have

WZ
s (λ0 − ϵ) =

∑
ℓ≥1

1{Γℓ≤s}g(Γℓ)W
Z,Γℓ
s−Γℓ

(λ0 − ϵ)1{
g(Γℓ)W

Z,Γℓ
s−Γℓ

(λ0−ϵ)<A
}

+
∑
ℓ≥1

1{Γℓ≤s}g(Γℓ)W
Z,Γℓ
s−Γℓ

(λ0 − ϵ)1{
g(Γℓ)W

Z,Γℓ
s−Γℓ

(λ0−ϵ)≥A
} + g(s)e−(λ0−ϵ)ws

=:H1 +H2 +H3,

where A > 1 is a constant such that logA > 1 ≥ supa≥1 [log(1 + a)− log a] , which means that

log(b+ c) ≤ log b+ log c for all b, c ≥ A. Also note that (4.12) and H1 ≤ A
∑

ℓ≥1 1{Γℓ≤s} still hold.

And we have

QZ,ϵ[log+(3H3)] ≤ log 3 + sϵ(λ0 − ϵ/2) + (λ0 − ϵ)QZ,ϵ|ws + (λ0 − ϵ)s|

= log 3 + sϵ(λ0 − ϵ/2) + (λ0 − ϵ)

√
2

π

√
s.

Similarly we define W
Z,Γℓ

s−Γℓ
(λ0 − ϵ) by

W
Z,Γℓ

s−Γℓ
(λ0 − ϵ) := e(λ0−ϵ)wΓℓWZ,Γℓ

s−Γℓ
(λ0 − ϵ).

Then using an argument similar to (4.16), we have

log+(3H2) ≤ log 3 + log+H2

≤ log 3 +
∑
ℓ≥1

1{Γℓ≤s} log+

(
g(Γℓ)e

−(λ0−ϵ)wΓℓ

)
+
∑
ℓ≥1

1{Γℓ≤s} log+W
Z,Γℓ

s−Γℓ
(λ0 − ϵ)

and

QZ,ϵ

∑
ℓ≥1

1{Γℓ≤s} log+

(
g(Γℓ)e

−(λ0−ϵ)wΓℓ

) ≤ ψ′(λ∗)m

∫ s

0

[
QZ,ϵ |wr + (λ0 − ϵ)r|+ ϵ

(
λ0 −

ϵ

2

)
r
]
dr.
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Since (4.18) and (4.19) hold with W
Z,Γℓ

s−Γℓ
replaced by W

Z,Γℓ

s−Γℓ
(λ0 − ϵ) (we only use the martingale

property and branching property), (4.20) holds for W
Z,Γℓ

s−Γℓ
(λ0 − ϵ). Applying Jensen’s inequality

for W
Z,Γℓ

s−Γℓ
(λ0 − ϵ) in (4.20), we finally deduce that there exist constants Kϵ

j , j = 1, 2, 3, 4, 5, such

that for all s ≥ 0,

P(δ0,δ0)

[
WZ

s (λ0 − ϵ) log+W
Z
s (λ0 − ϵ)

]
≤ Kϵ

1 +Kϵ
2

√
s+Kϵ

3s+Kϵ
4s

3/2 +Kϵ
5s

2. (4.25)

Combining (4.23), (4.24) and (4.25), we obtain P(δ0,δ0)

[
DZ,+

1 log+D
Z,+
1

]
<∞. 2

Lemma 4.2 If (1.7) holds, then
∑

n≥1 n(log n)
2pn <∞.

Proof : By the definition of {pn : n ≥ 2}, we only need to prove that∫
(0,∞)

∑
n≥2

n(log n)2
(λ∗x)n

n!
e−λ∗xν(dx) <∞. (4.26)

Define h(x) := (log(1 + x))2, then h′′(x) = 2
(1+x)2

(1− log(1 + x)). When x ≥ 2 > e− 1, h′′(x) < 0,

which implies h is concave in [2,∞). By Jensen’s inequality,∑
n≥3

n(log n)2
(λ∗x)n

n!
e−λ∗x = λ∗x

∑
n≥2

(log(1 + n))2
(λ∗x)n

n!
e−λ∗x

≤ (λ∗x)

∑
n≥2

(λ∗x)n

n!
e−λ∗x

{log [∑n≥2 n(λ
∗x)ne−λ∗x/n!∑

n≥2(λ
∗x)ne−λ∗x/n!

+ 1

]}2

≤ λ∗x

{
log

[
λ∗x(1− e−λ∗x)

1− e−λ∗x − e−λ∗xλ∗x
+ 1

]}2

. (4.27)

Since

lim
x→∞

log

[
λ∗x(1− e−λ∗x)

1− e−λ∗x − e−λ∗xλ∗x
+ 1

]
/ log x = 1,

there exists K > 0 such that when x ≥ K, we have

log

[
λ∗x(1− e−λ∗x)

1− e−λ∗x − e−λ∗xλ∗x
+ 1

]
≤ 2 log x. (4.28)

Together with (4.26), (4.27) and (4.28), we complete the proof. 2

Proof of Theorem 1.2: By the first two paragraphs of this section, to prove Theorem 1.2,

it suffices to show that, the limsup in (1.8) is valid P(δ0,δ0)-almost surely.

Case 1 : β ̸= 0. Let LZ
t be the left-most point of Zt. Note that, for any x ∈ R,

NE
x (⟨1, w1⟩ > 0) = lim

θ→+∞
NE
x

(
1− e−θ⟨1,w1⟩

)
= lim

θ→+∞
− logPE

δx

[
e−θ⟨1,X1⟩

]
=− logPE

δ0 [∥X1∥ = 0] = NE
0 (⟨1, w1⟩ > 0) ∈ (0,∞).

Suppose that the continuous immigrations in the skeleton decomposition of X along the trajectory

of LZ
t such that ⟨1, w1⟩ > 0 are given by

{
(τn, X̄

(1,τn)) : n = 1, 2, ...
}
. Then it is obvious that
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{τn − τn−1 : n = 1, 2, ...} are iid and independent of Z. The law of τn − τn−1 is exponential with

parameter 2βNE
0 (⟨1, w1⟩ > 0) and the law of the immigration is

NE
LZ
τn

(·∩{⟨1,w1⟩>0})

NE
0 (⟨1,w1⟩>0)

.

Since (1.7) holds, using Lemmas 4.1 and 4.2 with Tn = τn, we know that Zn satisfies (1.1), (1.2)

and (1.3). Noticing that the left support of Zn is λ0(L
Z
τn + λ0τn), by [1, Theorem 6.1],

lim inf
n→∞

(
λ0(L

Z
τn + λ0τn)−

1

2
log n

)
= −∞, P(δ0,δ0)-a.s. (4.29)

By the strong law of large numbers, τn/n→ (2β)−1 as n→ ∞. Hence, (4.29) is equivalent to

lim inf
n→∞

(
λ0(L

Z
τn + λ0τn)−

1

2
log τn

)
= −∞, P(δ0,δ0)-a.s. (4.30)

Define WΛ
t by

WΛ
t := ⟨e−λ0(·+λ0t),Λt⟩.

Then √
τn + 1⟨e−λ0(·+λ0(τn+1)),Λτn+1⟩ ≥

√
τn⟨e−λ0(·+λ0(τn+1)), X̄

(1,τn)
1 ⟩ =: HnJn. (4.31)

Here Hn and Jn are defined as

Hn :=
√
τne

−λ0(LZ
τn

+λ0τn), Jn := e−λ2
0⟨e−λ0(·−LZ

τn
), X̄

(1,τn)
1 ⟩.

Then by the construction of the continuous immigration in the skeleton decomposition and the

spatial homogeneity of super-Brownian motion, we deduce that {Jn : n = 1, 2, ...} are iid and for

every n, Jn is independent of σ(Hℓ, ℓ ≥ 1). Define Gn := σ(Hℓ, Jℓ : 1 ≤ ℓ ≤ n). By (4.30), we have

lim supn→∞Hn = +∞, P(δ0,δ0)-a.s., which together with the second Borel-Cantelli lemma (see e.g.

[8, Theorem 5.3.2]) is equivalent to that, for any K > 0,

∞∑
n=1

P(δ0,δ0)

[
Hn > K

∣∣Gn−1

]
= +∞, P(δ0,δ0)-a.s. (4.32)

Now it is clear that P(δ0,δ0)(Jn > 0) = 1, so there exists a constant ε > 0 such that for all n ≥ 1,

P(δ0,δ0)(Jn > ε) > 0. By (4.32) and the independence between Jn and Gn−1, we deduce that, for

any K > 0,

∞∑
n=1

P(δ0,δ0)

[
HnJn > K

∣∣Gn−1

]
≥

∞∑
n=1

P(δ0,δ0)

[
Jn > ε, Hn > K/ε

∣∣Gn−1

]
= P(δ0,δ0)[J1 > ε]

∞∑
n=1

P(δ0,δ0)

[
Hn > K/ε

∣∣Gn−1

]
= +∞. P(δ0,δ0)-a.s.,

which is, according to the second Borel-Cantelli lemma, equivalent to

lim sup
n→∞

HnJn = +∞, P(δ0,δ0)-a.s. (4.33)

In view of (4.31) and (4.33), we get

lim sup
t→∞

√
tWΛ

t ≥ lim sup
n→∞

√
τn + 1⟨e−λ0(·+λ0(τn+1)),Λτn+1⟩ = +∞, P(δ0,δ0)-a.s.,
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which implies the desired result.

Case 2 : ν ̸= 0. Suppose that ν ((ε,+∞)) > 0 for some ϵ > 0. Then ν ((ε,+∞)) <∞. Suppose

that the times and masses of the discrete immigration along the trajectory of LZ
t in the skeleton

decomposition with initial immigration mass large than ε are {(τ̃n,mn) : n = 1, 2, ...}. Then {τ̃n −
τ̃n−1 : n = 1, 2, ...} are iid exponential random variables with parameter κ =

∫
(ε,∞) ye

−λ∗yν(dy),

mn > ε for all n ≥ 1 with law ye−λ∗y1{y>ε}ν(dy)/
∫
(ε,∞) ye

−λ∗yν(dy), and {τ̃n : n = 1, 2, ...} is

independent of Z. Applying Lemmas 4.1 and 4.2 with Tn = τ̃n, we get

lim inf
n→∞

(
λ0(L

Z
τ̃n + λ0τ̃n)−

1

2
log τ̃n

)
= −∞, P(δ0,δ0)-a.s. (4.34)

By the same argument as Case 1, we have√
τ̃n⟨e−λ0(·+λ0τ̃n),Λτ̃n⟩ ≥

√
τ̃ne

−λ0(LZ
τ̃n

+λ0τ̃n)mn > ε
√
τ̃ne

−λ0(LZ
τ̃n

+λ0τ̃n). (4.35)

Combining (4.34) and (4.35), we also get the desired results. 2

A byproduct of the proof of Theorem 1.2 is the following result:

Corollary 4.3 Let Lt be the minimum of the support of Xt, i.e., Lt := inf{y ∈ R : Xt ((−∞, y)) >

0}. If (1.6) and (1.7) hold, then on Ec, it holds that

lim inf
t→∞

(
Lt + λ0t−

1

2λ0
log t

)
= −∞ P-almost surely. (4.36)

Proof: Let LΛ
t be the minimum of the support of Λt. We keep the notation in the proof of Theorem

1.2.

If ν ̸= 0, by the definition of LΛ
τ̃n
, we have LΛ

τ̃n
≤ LZ

τ̃n
, ∀n ≥ 1, P(δ0,δ0)-a.s. By the branching

property, we deduce that on
(
EΛ
)c
, LΛ

τ̃n
≤ LZ

τ̃n
, ∀n ≥ 1, P(δ0,δ0)-a.s. Together with (4.34), we get

(4.36).

If β ̸= 0, for a fixed constant A, define Jn by

Jn := ⟨1(−∞,A+LZ
τn

)(·), X̄
(1,τn)
1 ⟩ = ⟨1(−∞,A)(· − LZ

τn), X̄
(1,τn)
1 ⟩.

Put Hn := λ0(L
Z
τn + λ0τn)− 1

2 log τn. By the spatial homogeneity of super-Brownian motion, {Jn}
are iid and for every n,Jn is independent of σ(Hℓ, ℓ ≥ 1). We also define G̃n := σ(Hℓ,Jℓ, 1 ≤ ℓ ≤ n).

SinceP(δ0,δ0)

(
∥X̄(1,τn)

1 ∥ > 0
)
= P(δ0,δ0)

(
∥X̄(1,τ1)

1 ∥ > 0
)
= 1 and limA→+∞ Jn = ∥X̄(1,τn)

1 ∥,P(δ0,δ0)-

a.s., there exists an A such that P(δ0,δ0)(Jn > 0) = P(δ0,δ0)(J1 > 0) > 0. We see that for any K > 0,

∞∑
n=1

P(δ0,δ0)

[
Jn > 0,Hn < −K

∣∣G̃n−1

]
= P(δ0,δ0) [J1 > 0]

∞∑
n=1

P(δ0,δ0)

[
Hn < −K

∣∣G̃n−1

]
= +∞,

P(δ0,δ0)-a.s., where in the last equality we used (4.30) and the second Borel-Cantelli lemma. There-

fore, for all K > 0,P(δ0,δ0) (Jn > 0,Hn < −K i.o.) = 1. Note that

{Jn > 0,Hn < −K} ⊂
{
λ0(L

Λ
τn+1 + λ0τn)−

1

2
log τn < −K + λ0A

}
,

we get

P(δ0,δ0)

(
λ0(L

Λ
τn+1 + λ0τn)−

1

2
log τn < −K + λ0A i.o.

)
= 1.
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Since (τn+1)/τn → 1 as n→ ∞ and K is arbitrary, we get that (4.36) holds P(δ0,δ0)-almost surely.

By the branching property argument, we get the desired result. 2
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