POTENTIAL THEORY OF DIRICHLET FORMS WITH
JUMP KERNELS BLOWING UP AT THE BOUNDARY
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ABSTRACT. In this paper we study the potential theory of Dirichlet
forms on the half-space R% defined by the jump kernel J(z,y) = |z —
Y|4 °B(z,y) and the killing potential kry*, where a € (0,2) and
B(z,y) can blow up to infinity at the boundary. The jump kernel and the
killing potential depend on several parameters. For all admissible values
of the parameters involved and all d > 1, we prove that the boundary
Harnack principle holds, and establish sharp two-sided estimates on the
Green functions of these processes.
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1. INTRODUCTION

In this paper, we study the potential theory of purely discontinuous sym-
metric Markov processes in the upper half-space Ri ={x = (Z,2q) : ©q >
0}, d > 1, with jump kernel of the form J(z,y) = |z — y|~7*B(x,y),
a € (0,2), where B(z,y) is degenerate at the boundary of R%. In our recent
papers [21] 22, 23], we have studied the case when B(z,y) decays to zero
at the boundary. In this paper, we study the case when B(z,y) blows up
at the boundary and establish the boundary Harnack principle and sharp
two-sided estimates on the Green functions.

One of our main motivation to study this problem comes from the fol-
lowing natural example of a process with jump kernel blowing up at the
boundary. Let X = (X;,P,) be an isotropic a-stable process in R?. Define
A = fot 1(X56Ri)d3 and let 7 := inf{s > 0: Ag > t} be its right-continuous
inverse. The process Y = (Y;):>0, defined by Y; = X, is a Hunt process on
R‘i, called the trace process of X on Ri (the name path-censored process
is also used in some literature, see [26]). The part of the process Y until
its first hitting time of the boundary ORY = {(#,0) : 7 € R%"1} can be
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described in the following way: Let 7 = Trd = inf{t > 0: X; ¢ R} be the

exit time of X from Ri, x=X,_ € Ri the position from which X jumps
out of Ri, and z = X, be the position where X lands at the exit from Ri.
Then 2z € R? a.s., where R? := {x = (T,24) : x4 < 0}. The distribution
of the returning position of X to Ri is given by the Poisson kernel of the
process X in R% (i.e., the density of the distribution of XTIR on ]Ri):

d

Pes(29) = [ Gl )il y)dw, g € B (1.1)

Here Gi&iﬁ (z,w) is the Green function of the process X killed upon exiting

RY, j(w,y) = A(d,a)|w — y|~% is the jump kernel of X and A(d,a) =
205~4/21((d + ) /2)/|D(~a/2).

This implies that when X jumps out of Rfﬂ from the point x, we continue
the process by resurrecting it at y € ]Ri according to the kernel

q(z,y) == /]Rd Jj(z, Z)PR‘f (z,y)dz, =€ R‘i. (1.2)

We will call g(x,y) a resurrection kernel. Since the Green function G]{{fd (,4)

is symmetric, it follows that q(z,y) = q(y,x) for all z,y € Ri. The kernel
q(z,y) introduces additional jumps from z to y. By using Meyer’s construc-
tion (see [27]), one can construct a resurrected process on RY with jump
kernel J(z,y) = j(x,y) + q(z,y). The resurrected process is equal to the
part of the trace process Y until it first hits 8Ri. It follows from [7, Theorem
6.1] (where g(z,y) is called the interaction kernel) that in case d > 3,

a/2
J(z,y) < q(z,y) < |z —y| T () . xg ANyg < |z —yl.

This asymptotic relation shows that the jump kernel J(z,y) blows up with

rate SE;Q/ > when z approaches the boundary 6R‘fr. Here and throughout
the paper, the notation f < ¢ for non-negative functions f and g means
that there exists a constant ¢ > 1 such that ¢ 'g < f < cg. We also use
a Ab:=min{a,b} and a V b := max{a, b}.

Another motivation for this paper is the process introduced in [14] 28] to
study non-local Neumann problems. See also [16] and the references therein.
For the process in [14], 28], the resurrection kernel ¢(z,y) is given by
with the Poisson kernel Ppa (z,y) replaced by j(z,y)/fRi j(z,w)dw. The

jump kernel of this process also blows up at the boundary, see Remark

26]0).
In Section [2] we substantially generalize these two examples by replacing
the Poisson kernel Ppa (z,y) and the kernel j(z,y)/ [ga j(2z, w)dw by a very
- +

general return kernel p(z,y). The kernel p(z,y), z € R, y € R?, is chosen
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so that the corresponding resurrection kernel
q(z,y) = /Rd j(x, 2)p(z,y) dy,  x,y € RY,

is symmetric. This flexibility in choosing the return kernel allows us to
obtain resurrection kernels with various blow-up rates at the boundary. The
main result in this direction is Theorem 2.4l

Note that the jump kernel J(z,y) = j(x,y) + q(z,y) of the resurrected
process may be written in the form J(z,y) = j(z,y)B(x,y) with B(z,y) :=
1+ q(z,y)/j(z,y). Since the jump kernel j(z,y) is bounded away from the
diagonal, the blow up at the boundary comes from the term B(z,y). The
estimates in Theorem contain also the asymptotics of the term B(z,y)
and imply that the resurrected process satisfies (A1)—(A4) below. The
proof of Theorem [2.4]is quite long and technical and is therefore postponed to
Section [T1] Let us mention that Sections [2] and [T1] are logically independent
from the rest of the paper, and also serve as the motivation for the general
set-up that we now introduce.

Let d > 1, a € (0,2) and assume that 0 < 81 < 82 < 1 Aa. Let ® be a

positive function on [2, 00) satisfying the following weak scaling condition:
There exist constants C1,Cy > 0 such that

®(R)

®(r)
For notational convenience, we extend the domain of ® to [0, 00) by letting
®(t) = ®(2) > 0 on [0,2). Then for any 6 > 0, there exist constants
C1,C5 > 0 depending on ¢ such that

Ci(R/r)Pr < < Cy(R/r)2, 2<r < R< . (1.3)

él(R/T‘)Blgi)((f))gég(R/T)ﬁz, 5§T<R<OO.

Let Eg be the upper Matuszewska index of ® (see [5, pp. 68-71]):
By :=inf{#>0: Ja € (0,00) s.t. ®(R)/®(r) < a(R/r)® for 2 <r < R < co}.

Note that the inequality ®(R)/®(r) < a(R/r)B2 may, but need not hold for
any a € (0,00).
Define

jz,y) = Ald, a)le —y[7*"" and  J(z,y) = j(z,y)B(z,y).
We will assume that B(x,y) satisfies the following conditions:
(A1) B(z,y) = B(y,z) for all z,y € RY.

(A2) If o > 1, there exists § > a — 1 such that for every a > 0 there exists
C = C(a) > 0 such that

0
|B(z, x)—B(z,y)| < C (M) for all x,y € Ri with z4A\yq > alz—y|.
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(A3) There exists C' > 1 such that

2 a2
c e (!x vl ) < B(z,y) < CP <|x yl ) for all z,y € RY. (1.4)
Tayd TdYd
(A4) For all z,y € R% and a > 0, B(az,ay) = B(z,y). In case d > 2, for
all 7,y € RY and zZ € RTL, B(z + (2,0),y + (2,0)) = B(z, ).

Note that (A3) implies that B(z,y) is bounded from below by a positive
constant, and (A4) implies that x — B(z,x) is constant.

For k € [0, 00) we define the function x(z) := kz;* on R% and set

=y [, [ (w0 )o@ (o, p)dydot | u(wpo(e)uo)d
R? JRE Re

where u,v : RT — R. Let F° be the closure of C°(R%) in L*(R%,dx)
under &Y := &Y + ("')Lz(Ri,daﬁ)' Then, due to B2 < 1 Aa, (E%,F%) is a
regular Dirichlet form on L?(R%,dz) (see Section [3| below). Let

Fri=FOn LARL, k(x)dx),

where F0 is the family of all £9-quasi-continuous functions in F°. Then
(E%,F®) is also a regular Dirichlet form on L*(R%,dz). As we will ex-
plain in Section 3] under assumptions (A1)-(A4), there exists a symmetric,
scale invariant and horizontally translation invariant Hunt process Y" =
((Y)t>0, (]P)x)xeRi) associated with (€%, F*). In case k > 0, the process Y*
is transient. To show these facts we will use results proved in [25].

We now associate the constant « from the killing function x(x) = rkx
with a posmve parameter p = p,{ which will play a major role in the paper.

Let e4 := (0 1). For g € (-1 52) set
(s9-1)(1—s*"9"1) B((1-5)u,1),s

Cla,q,B)= Jra- 1f0 - S)11+a ) (|(1E\2+1))(d4).a)e/‘12)d5du 4> 2

IN %3(1,s)ds, d=1

Then C(a,0,B) = C(a,a — 1,B) = 0 and the function ¢ — C(a,q,B) is
strictly increasing and continuous on [(a — 1)4,a — (2). Consequently, for
every 0 < k <lim_ . 5 C(a,q,B) < oo, there exists a unique px € [(a —

1), — ) such that x = C(a, p, B). When ®(r) = r? with 8 € (0,1 Aa),
it holds that limgq—p C(a, ¢, B) = oo (see Lemma , SO K — Dy 1S an
increasing bijection from [0, 00) onto [(a — 1)4, — (). In the remainder of
this introduction we will fix k € [0, limqw_gz C(a,q,B)), and assume a > 1
if K = 0 so that pg = o — 1 > 0. We will show in Section {4 that Y is
transient when « € (1,2). For notational simplicity, in the remainder of this

introduction, we omit the superscript x from the notation: For example, we
write Y instead of Y, and p instead of p, in (4.5)).
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The role of the parameter p and its connection to C'(«, p, B) can be seen
from the following observation. Let

L8 f(z) = pov. /R ()~ F(@)I(,5) dy — Olovp, Byeg* f(z), v € R,
+

whenever the principal value integral makes sense. If g,(z) = xg, then

Lng = 0, see Lemma Hence the operator LB annihilates the p-th

power of the distance to the boundary.

The first main result of the paper is the scale invariant boundary Harnack
principle with exact decay rate: If a non-negative harmonic function vanishes
continuously at a part of the boundary 8Ri, then the decay rate is equal to
the p-th power of the distance to the boundary.

For an open subset D of R, let 7p := inf{t > 0: Y; ¢ D} be the first
exit time of the process Y from D.

Definition 1.1. A non-negative Borel function defined on Ri is said to be
harmonicfin an open set V C Ri with respect to 'Y if for every bounded open
set DCDCV,

fx) =E;[f(Yr,) : 7D < 0] for all x € D.

A non-negative Borel function f defined on Ri 1s said to be regular harmonic
in an open set V. C Ri if

fl@)=E, [f(Yr,) : v < 0] forall x € V.
When d > 2, for a,b > 0 and @ € R%!, we define
Dg(a,b) :={z = (T,24) € R: |T —W| < a,0 < x4 < b}. (1.5)
By abusing notation, in case d = 1, we will use Dg(a,b) to stand for the

open interval (0,0) = {y € Ry : 0 <y < b}.

Theorem 1.2. Suppose p € (0,0 — B2) N [(e — 1)1, — B2). Assume that
B satisfies (A1)-(A4). Then there exists C > 1 such that for all r > 0,
w € R¥1, and any non-negative function f in ]R‘j_ which is harmonic in
Dg(2r,2r) with respect to Y and vanishes continuously on B((w,0),2r) N
8]1%‘_1;_, we have

f(;:) < cf(,?{), 2,y € Dg(r/2,1/2). (1.6)
x, Yq

The second main result is on sharp two-sided estimates for the Green

function of the process Y. We recall in Section [3] the definition of the Green
function G(z,y), =,y € RZ, and comment on its existence.

Theorem 1.3. Suppose that p € (0,0 — f2) N [(a — 1)y, v — B2) and that
B satisfies (A1)-(A4). Then the process Y admits a Green function G :
R? x RY — [0,00] such that G(z,-) is continuous in RL\ {z} and regular
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harmonic with respect to Y in Ri\B(w, €) for any € > 0. Moreover, G(x,y)
has the following estimates: for all x,y € R%,

( P P
1
lz —yl [z — y |z — yli—

p
G(z,y)= TAY A1) log|e+ zVY , a=1=d; (1.7)
eyl |z -yl
A
TRy /\1> (xVyVl|z—y)*?, a>1=d.
L\ |z =yl

Let us emphasize here that in case kK = 0 and a > 1, by using several
cutting-edge techniques developed here as well as in our previous papers
[21 22] 23], we succeeded to establish that, regardless of the blow-up rate
of the function B, the decay rate of harmonic functions as well as the Green
function is given by p = a — 1. We have shown in [23] that the same
phenomenon also occurs in case when B decays to zero at the boundary.
In view of the fact that this is the same decay rate as for the censored a-
stable process (or, equivalently, the regional fractional Laplacian), this can
be regarded as a stability result even for degenerate non-local operators.

Our strategy for proving the two main results above consists of several
steps.

The first step is to show certain interior potential-theoretic results for
the process Y. This is done in [25] in a more general setting than that of
the current paper. One of the key difficulties is the fact that Y need not
have the Feller property. Despite this obstacle we established a Dynkin-type
formula on relatively compact open subsets D of R? for functions in C?(D)
defined on R4, see Theorem Another important result coming from [25]
is the Harnack inequality, see Theorem These and some other results
are described in the preliminary Section

The second step consists of studying the action of the operator L? on
the powers of the distance to the boundary. This allows an extension of
the Dynkin-type formula to not relatively compact open sets D(r,r) for
functions zf1p r,Rr) for 2r < R, see Proposition This extension together
with Theorem plays a major role throughout this paper.

The third step is to establish certain exit probability estimates, see Lemma
and Proposition [6.5)] The key ingredient in proving these lemmas is
to find suitable test functions (barriers) and to estimate the action of the
operator LB on them. This is done in Lemma The proof of this lemma
is quite involved and relies on some rather delicate estimates of certain
integrals due to the general nature of ®, see Lemma

The fourth step is the Carleson estimate, Theorem for non-negative
harmonic functions vanishing on a part of the boundary. The proof, although
standard, requires several modifications due to the blow up of the jump
kernel at the boundary.
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The next step consists of showing interior estimates for the Green function
G(z,y), see Propositions and By interior we mean that the distance
between = and y is small comparable to the distance of these points to the
boundary. Here we distinguish two cases: d > a and d = 1 < «. The proof
of the upper bound of the former case uses the Hardy inequality, while the
proof of the lower bound employs a capacity argument. In the latter case,
we use the capacity estimates of the one-dimensional killed isotropic stable
process and a version of the capacity argument for the process Y.

Next, we obtain the preliminary upper bound of the Green function with
correct boundary decay. We first show, see Theorem [9.1] that the Green
function decays at the boundary. This allows us to use the Carleson estimate
and extend the upper interior estimate of G(z,) to all points z,y € R%,
cf. Proposition In Lemma [9.3] we insert in the upper estimate the
boundary part (TiﬁZ‘li A 1)p . The proof depends on delicate estimates of the
jump kernel, and again, on the powerful Lemma As an application, in
Proposition we give some upper estimates on the Green potentials of
powers of the distance to the boundary. These upper estimates, together
with exit probability estimates, the Harnack inequality and the Carleson
estimate, lead to a rather straightforward proof of Theorem

Finally, we use the interior Green function estimates, the boundary Har-
nack principle and scaling to obtain the sharp two-sided Green function
estimates.

We end this introduction with a few comments on the assumptions (A1)-
(A4) and their relation to the assumptions in [21], 22, 23], where the jump
kernel decays at the boundary. Assumption (A1) ensures the symmetry
of the jump kernel and hence the process Y. Assumption (A2) is used
in the analysis of the generator LB, and allows to establish a Dynkin-type
formula. Assumption (A4) is natural in the context of the half-space R%
and, in particular, ensures the scaling property of the process Y. These
three assumptions were also postulated in [21], 22] 23]. The main difference
with those papers is in assumption (A3) which provides the blow-up of
jump kernel at the boundary and is motivated by Section [2| In case when
P(t)=t,t>2 for 0 < B <anl, (A3) is equivalent to the condition

-8 -8
A V
B(z,y) = <‘”d Yd \ 1) <xd Yd \ 1) . (1.8)
[z =yl |z —yl
In [21), 22] 23], the assumptions on B(z,y) included the case when
B B
A V
Blz,y) = (“ Yd \ 1) (“ Yd \ 1) , (1.9)
|z =yl |z —yl

with 8 > 0. In case 8 > 0, this implies the decay of jump kernel at the
boundary. Thus we can regard as an extension of from 8 € [0, 00)
to B € (—(aA1),0]. Of course, (A3) is much more general than ([1.8]).

It is instructive to look at the effect of blow-up and the decay of B deter-
mined by 8 € (—(aA1),00) on the range of possible values of the parameter
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p. By using [21], we see that p € (0,a+8)N[(a—1)4,a+ ). By increasing
the parameter 3 from 0 to co (and thus making the decay of B sharper), the
upper boundary of the range of p also increases from « to co. On the other
hand, by decreasing the parameter § from 0 to —(1 A «) (and thus making
the blow-up higher), the upper boundary of the range of p decreases from «
to (a — 1)4. Therefore, the larger the blow-up at the boundary, the smaller
the effect of the killing function.

Notation: Throughout this paper, capital C', with or without subscript,
is used only for assumptions or the statements of results, while lower case
cand ¢;, © = 1,2,..., are used in the proofs. The value of ¢ may change
from one appearance to another, but the value of ¢; stays fixed in the same
proof. The notation C' = C(a, b, ...) indicates that the constant C' depends
on a,b,.... We will use “:=” to denote a definition, which is read as “is
defined to be”. We will use notations log’a = (loga)®, ay := a V 0 and
a_ := (—a) V0. For any € R and r > 0, we use B(z,r) to denote the
open ball of radius r centered at z. For a Borel subset V in R%, |V| denotes
the Lebesgue measure of V in R? we use the superscript instead of the
subscript for the coordinate of processes as Y = (Y'!,...,Y9).

2. RESURRECTION KERNEL

Let p : R® x Ri — [0,00) be a function such that, for each z € R,
p(z,-) is a probability density on ]Ri, that is, [z p(2,y)dy = 1. Recall that
+

j(x,2) = A(d, )|z — 2|97, a € (0,2). Let
qz,y) = /Rd jx, 2)p(z,y)dz, @y € RE,

and define a resurrected process on Rﬁlr with jump kernel J(z,y) = j(z,y) +
q(z,y). The idea is that when an isotropic a-stable process exits Ri by
jumping to z € R%, it is immediately returned to y € ]R‘i according to the
probability distribution p(z,y)dy. Therefore we call p(z,y) a return kernel.
The kernel ¢(z,y), which we call a resurrection kernel, introduces additional
jumps from z to y, thus, the jump kernel of the resurrected process should
be J(z,y) = j(z,y) + q(z,y). The process can be constructed via Meyer’s
construction in [27], or, in case of symmetric ¢(z,y), by using Dirichlet
form theory. Since p(z,-) is a probability density, an application of Fubini’s
theorem gives that fRi q(z,y)dy = [ga j(z,2)dz < 00, z € R%.

We would like the resurrected process to be symmetric, to have the scaling
property and to be invariant with respect to horizontal translation. Since
j(x, z) = A(d, a)|z — z|~%~, the above properties will follow from the sym-
metry of ¢, the homogeneity of ¢:

q( Az, \y) = )\*d*aq(aj,y) , A>0,2,y € Rd, (2.1)



DIRICHLET FORMS WITH JUMP KERNELS BLOWING UP AT THE BOUNDARY 9

and the horizontal translation invariance (in case d > 2) of ¢:
g(z + (@,0),y + (@,0) = q(z,y), TR (22)

This will depend on properties of the probability kernel p(z,y). We now
recall the examples from the introduction.
Example 2.1. (a) For the trace process of an isotopic a-stable process on
Rd

=+

/2

202 - y— 22\ ® o

p(z,y)=C| lﬂ |z —yl d=€|2d|a<‘ | ly— 2z, (2.3)
Yaq

Yalzd|

is the Poisson kernel for RZ. The formula (2.3) can be derived from the
Poisson kernel for balls, see [2, B]. From (1.1)) and (1.2]) we see that the
corresponding resurrection kernel ¢(z,y) is symmetric, and from (2.3 that

it satisfies (2.1]) and (2.2)).

(b) For the process studied in [14], 28],

_J(zy) _ [ .
e =20 where utz) = [ iy

Clearly, the corresponding resurrection kernel g(x,y) is symmetric. Since
w(z) = ¢ zq| ™%, we get that

p(z,y) = clzal*|z —y| 7
So q(z,y) satisfies (2.1]) and (2.2)).

Motivated by these two examples, we now introduce a very general return
kernel p(z,y). Let 71,72 be two constants such that —oco <73 < v < 1Aa.
Let ¥ be a positive function on [2,00) satisfying the following weak scaling
condition: There exist constants C7,Cy > 0 such that

V(R
Ci(R/r)" < \If(()) < Co(R/r)?, 2<r<R< oo
r
For notational convenience, we extend the domain of ¥ to [0, 00) by letting
U(t) = ¥(2) > 0 on [0,2). In particular, for any § > 0, there exist C;, Co
depending on § such that

Gy (R/r)" < ‘I\;((f)) < Co(R/r)?, S<r<R<oo,
and
Ci(R/r) - < ‘I\;((f)) < Co(R/r)?+, 6<r<R<oo. (24)

Observe that after the change of variables u = uqv (when d > 2), we see
that

-/ ([ + (g + 1)) /va)
B (A2 + (ua + 1)) "
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< ‘11(2)/ /Oo g duqdi
=T el (ER+ (s DT et

_ /1 dug / / / 72+duddu
C
- 0 Ut Jpa- 1(|u| —|—1)d+a 2724 Rd—1 |u|2 d+o‘ )/2=v2

> —a—1
<c+ c/ uf* du
1

< 00
! /Rdl (7] + 1)d+°‘*272+

In the second line we used and, in the last inequality we used the fact
0<L Yoq < 1A a.

Note that for y € RS and 2 € RZ, |y — 21>/ (yal2al) > (ya+]2a])*/(yalzal) >
2. For y € ]Rd and z € R‘i, define

~ L « |y B Z|2 —d—a

p(z,y) = |za| "W ly — 277 (2.5)
Yalzd

It is easy to see that (a) p(Az,\y) = A~9(z,y) for all A > 0, z € R?,

y € R%; (b) plz + (@,0),y + (4,0)) = p(z,y) for all u € R~ 2 € RY,

y € R%; (c) There exists ¢ > 1 such that for all »r > 0 and yo € R with

B(yo,2r) C Ri and y1,y2 € B(yo, 1),

c_lﬁ(w,yl) < plw,y2) < ep(w,yy) for all w € R? (2.6)

Moreover, by the change of variables u = |zq4| ™! (§ — Z,%4) we also have the
property: (d) [pa P(2,y)dy = A for all z € RZ.
+

Thus p(z,-) := A7'p(z,-) is a probability density. When W(t) = t*/2,
t > 2, we recover the return kernel from Example 2.1](a), while ¥(t) =
gives the return kernel in Example 2.1|(b).

With the p(z,y) defined in (2.5), ¢(z,y) can be written as

jy 2P 2l ’
=C v d R 2.7
o =c [ v () papy s mveRh (D)

where C := A(d,a)A™!. From the properties (a)-(b) above we have (2.1))

and .

In the next result, we show that the kernel ¢ in (2.7)) is symmetric.
Proposition 2.2. The resurrection kernel q is symmetric.

Proof. Assume that d > 2, the proof for d = 1 being much easier. Let
x and y be any two points in Ri. If x4 = y4, by the change of variables
T —2zZ=w-—y and wg = zg we see that

alz)=C [ / <|ﬂ—2|2+|yd—2d|2> [2al*dZ dzg
Rd-1 Yalzd| |z — 2| ey — z|dte

_ C/ / U ‘1' - w‘Z + ‘ib'd - wd‘2 ]wdlad{ﬁdwd — g(y.2)
e ) Tq|wgl ly — w]dtefz — w]dte — T
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For the remainder of the proof, we assume x4 # y4. Without loss of gen-
erality, we assume that x = (21,0,24), ¥ = (¥1,0,94), and that the line
connecting x and y intersects the hyperplane z; = 0 at the origin. Then

YdT1 — TqY1 Yy — 11 Yy1—
O=———, x1=""""2q4, 1=

Yd — Zd Yd — Zd Yd — Zd

For r > 0, we define Tz = r2z/|z|?>. We choose r so that Tz = y and

Ty =z, i.e., |30‘2(361,0 zq) = (y1,0,yq). Thus

Yd-

|~”’3|2 Ld |?/|2 r 2 2 r’ Yd
2y M Tt =g =g, O

Zd
We now fix this r. We also write Tz as z*. Then Tx = y and Ty = «.
We have zq = r22%/|2*|? and

2 ok 2 %
lx—z| = |Ty—T=z"| = rly =2 *Z ’, ly—z| = |Tx—Tz"| = rlz =2 *z ‘ (2.9)
lyl[2*| |2[2*|
Hence, by (2.8), (2.9) and the fact z4 = 722} /|2*|?,
ly — z|? B r?lx — 2*|? B r’zq |z — 2*|? - z*|?
Yal 2l [2Pyalzyl  |2Pya walz)] zal2y|
and
—d—a

|l’ _ Z|—d—o¢|zd|o¢|z_ | — |y_ z*|—d—a|z*|a‘z* o x’—d—ar—2d|z*‘2d_

Note that |det(JTz)| = r2¢/|z|?>?. Consequently

S*|—d—a |z — Z*\Q 21 —2d| *|2d
q(z,y) C/ ly — 2*| \I/< P ’x_z*’dJrar |z*|*%dz

d
%2 ‘Z*’a
=C d—a\l, |l‘ < | d dz* = ’ ) 0O
/ ly—2*[" < P AT q(y, )
Define
u
g
U (u) ::/ (v)dv, u > 2.
1 v

Lemma 2.3. (a) U; <1 when 2 < 0. (b) When v > 0, we have ¥y < U.
(c) When v2 > 0, there exists a constant C' > 0 such that

1< Ui (R)

Wy (r)

< C(R/r)?log(R/r), 2<r<R<oo.

Proof. Since W, is an increasing function by definition, clearly, 1 < gll((f))
for 2 < r < R < co. When v > 0, for any v > 2 and A > 1, since

U(w) = ¥(2) for all w € [0, 1], we have
u 1
Uy (M) = / POD) 1y < ex //A P gy < ex2(wy (u) +/ L dw)

1/x w w /AW
=cA\?(Uy(u) +log A) <cA?(Uy(u) + (V1 (u)/T1(2)) log A) <cWq(u)A7? log .
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When 7, < 0, for any u > 2, since U(v) = ¥(2) for all v € [0, 1], we have

U, (2) <\1/1(u):/1“ V) gy < vy (2) /1u vld_”w <c0y(2) /100 Uld_”w <cWy(2).

v

If 41 > 0 we have that for u > 2,

u) < U(u)u 72 UU*HQ v <c¥(u uvfl\ll(v) v=cV¥i(u
V) = W [ < eva) [T Gl = e )
:c\I/(u)/1 vt iég;dv < c\I/(u)u'“/1 vy < U (u). O

We now state the main result of this section — sharp two-sided estimates
for the resurrection kernel ¢(z,y) and the jump kernel J(z,y). Since the
proof of this result is quite technical and long, we postpone it to Section [11]

Theorem 2.4. Let x,y € Ri.
(a) For zg Ayq > |xr —y|, it holds that

q(x,y) = (wa Aya) ™% = (24 V ya) (2.10)
and
‘CL‘ _ y’ >d+a
B(xz,y) —1x < . 2.11
@)1= (20 (211)
(b) For xq Ayq < |z —y|, it holds that
2
—d— r—y
(o) = Toa) = o=y o (E2I0) )
Ld¥d
In particular, if v1 > 0, then
—d—a |QS‘ B y|2
q(z,y) < J(z,y) < |z — y[~7*Y( ) forxzgnya<l|z—yl, (213)
Td¥d
and, if y2 < 0, then
q(z,y) = J(w,y) < |z -y~ for zg Aya < |z —y|. (2.14)

Recall that we can write J(x,y) = j(x,y)B(x,y) with B(z,y) := 1 +
q(z,y)/j(z,y). We have already shown in and that the function
B(z,y) satisfies (A4). Note that, by Proposition [2.2] and [25, Lemma
7.2], (A1)-(A2) hold. Moreover, combining Theorem with Lemma
2.3((c), we now see (A3) holds too. Therefore, the resurrected process with
the resurrection kernel satisfies (A1)—(A4).

From Theorem [2.4(b), we also see that if 74 > 0, then the function ¥ and
the function ® from (1.3]) can be taken to be the same. The next corollary,
which is an immediate consequence of the theorem above, shows that the
functions ¥ and ® may not be the same in general.
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Corollary 2.5. Let v € (—o0,1 A ) and § € R. Suppose W(t) = t"log’t,
t > 2, that is, up to a multiplicative constant,

B s \y—2|2>
- |zq| ¥ log (yd\2d|

p(Z,y) - y; |y _ Z|d+a_277

d d
z€RE,y e RY.

Then for any x,y € RL with x4 A yq > |z — y|, it holds that

d+a
—d— A "E—y
q(z,y) =< (xg ANya) T O=(2q Vya) Y Blzy) —1x (‘ )
Td N\ Yd

and for x,y € ]Rff_ with xq A\ yq < |x — y|, it holds that

q(z,y) < J(x,y)

lz=y12 )7 100 (Iw—y\z) .
( Tavd ) log2 Tavd when v > 0;
log‘prl <7|9;;5(l ) when § > —1,~v =0;
—d—a 2
= |z — lz—y| _ —0- 2.15
| yl log <e+10g (%)) when § = —1,v = 0; ( )
1 when § < —1,~v=0;
1 when v < 0.

Remark 2.6. (a) When W(t) = t*/2 t > 2 (so v = /2, § = 0), which
corresponds to the trace process, see Example (a), we get from ([2.15))
that for x,y € R‘i with 24 A yqg < |z — y|,

Ldyd
This generalizes [7, Theorem 6.1] to dimensions 1 and 2.

(b) When ¥(t) =1 (so v = § = 0), which corresponds to Example [2.1|(b),
we get from ([2.15)) that for z,y € Ri with z4 A yg < |z — yl,

d |$—y|2 o2 d_—a/2 —af2
J(2y) = qlay) = |z — y| 1o () = o — oy,

L |z — y|? e |z — |
T, y) = qle, y) = [r—y| =+ log ( oy log e+ 241 |
Tqyd Td N\ Yd

3. CONSEQUENCES OF MAIN RESULTS OF [25]

In this section, we recall the main results of [25] and apply them to our
setting. The paper [25] deals with a general proper open set D C R with
weaker assumptions. For readers’ convenience, we restate some results in
[25], that will be needed in this paper, in the present setting.

Let d > 1, a € (0,2), and J(z,y) = j(z,y)B(z,y), z,y € R%, where
gz, y) = j(jx — y|) = A(d, )|z — y|~% and B(x,y) satisfies (A1)-(A4).
We recall the assumptions (H1)-(H5) imposed in [25] in case D = RY.
The assumption (H1), respectively (H4), are precisely (A1), respectively
(A2). The other three assumptions are:
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(H2) For any a € (0, 1) there exists C = C(a) > 1 such that for all z,y € RZ
satisfying x4 A yqg > alr — g/, it holds that C~! < B(x,y) < C.

(H3) For any a > 0 there exists C' = C'(a) > 0 such that
/ J(z,y)dy < Cx;*, =x¢ ]Ri.
R4 |y—z|>azy

(H5) For any € € (0,1) there exists C' = C(e) > 1 with the following
property: For all zg € Ri and r > 0 with B(zg, (14 €)r) C Ri, we have

C™1B(x1,2) < B(xa,2) < CB(z1, 2)

for all 21,22 € B(zo,7), 2z € R\ B(zo, (1 +¢€)r).

It is shown in [25, Section 7] that (A1)-(A4) imply the assumptions
(H1)-(H5). This allows us to use here all the results proved in [25]. Note
that (H5) immediately implies that for any ¢ € (0,1) there exists C' =
C(e) > 1 with the following property: For all xzy € R‘i and r > 0 with
B(zg, (14 €)r) C R, it holds that

C Y J(z1,2) < J(x2,2) < CJ(z1,2) (3.1)

for all 21,22 € B(zo,7), 2z € R\ B(zo, (1 + €)r), see [25, (1.8)].
Recall from Section 1| that for x(z) = kz;, Kk € [0, 00), we introduced

enu)i=g | i i () (o) o) o) [ wla@n(z)da,

=
where u,v : RL — R. Let F° be the closure of C:°(R%) in L?(R%, dz) under
) =&Y+ (., ')LQ(Ri,dx) and let F* := FO N L*(RY, k(x)dx), where FO is
the family of all £)-quasi-continuous functions in F°. Then (€%, F°) and

(€%, F*) are Dirichlet forms on L?(R%,dz). By [25, Proposition 3.3] there
exists a symmetric Hunt process Y = ((Y")>0, (Pz) veRY ) associated with

(%, F*) which can start from every point x € R%. By (* we denote the
lifetime of Y" and define Y;* = 0 for t > (", where 0 is a cemetery point
added to Ri.

If D ¢ RY is an open set, let 7p := inf{t > 0 : Y* ¢ D} be the exit
time of Y* from D. The part process Y is defined by Yf’D =YFif
t < 7p, and is equal to 0 otherwise. The Dirichlet form of Y is (£*, F5),
where F5§ = {u € F* : u = 0 quasi-everywhere on RZ \ D}. Here quasi-
everywhere means that the equality holds everywhere except on a set of
capacity zero with respect to Y*.

Let CapYK’D and Cap™ ” denote the capacities with respect to the killed
processes Y and killed isotropic stable process X respectively. The
following result is proved in [25, Lemma 3.2]. Set dp := diam(D) and
6p = dist(D, ORL).
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Lemma 3.1. [25, Lemma 3.2] For every a > 0, there exists C = C(a) > 0
such that for all relatively compact open subset D of Ri with dp < adp, and
for any Borel A C D,

C’_lCapYK’D(A) < CapX” (A) < CCapYN’D(A). (3.2)
We will also need the following mean exit time estimates.

Proposition 3.2. [25, Proposition 5.3] (a) There exists a constant C > 0
such that for all xg € Ri and r > 0 with B(xg,r) C ]Rff_, it holds that

ExTB(zo,m) = Cr%, @ € B(x0,7/3).

(b) For every e > 0, there exists C = C(e) > 0 such that for all o € RY
and all v > 0 satisfying B(zo, (1 +¢)r) C RY, it holds that

EyTB(z,ry < Cr%,  x € B(xo,7).

Forf:Rd%RandxeRi,set

LBf(x) := pov. / (F) — F(@)J(@.y) dy. (3.3)

.
whenever the principal value integral on the right-hand side makes sense.
Define

LEf(z) .= LBf(z) — k(z)f(zx), =€ R‘fr .
By [25, Proposition 4.2(a)], if f € C%(R?), then LBf and LBf are well
defined for all x € ]Ri. Moreover, by [25, Proposition 4.2(a)] and using the

same argument as in |21l Section 8.2] (or derive directly from (3.3)), we see
that for u € C2(R?%) with v =0 on R? and any r > 0,

LEf(@) = [ (u(0) ~ ula) = Vule) Ly wicr) - (s~ ) (v, 2)dy
R+
+ [ VU@t - (0= i0,2) By ) — Bl )y
— B(z, ) » Vu(@)1{jy—z)<ry - (¥ — 2)j(y, z)dy. (3.4)

The expression (3.4)) was crucially used in the proof of [21, Lemma 5.8(a)].
In this paper we also use to estimate the action of the operator LB on
suitable test functions (barriers), see the proof of Lemma

The following Dynkin-type formula is one of the main results of [25] and
will be extremely important in this paper.

Theorem 3.3. [25, Theorem 4.7] Suppose that D C ]Rﬂlr is a relatively

compact open set. For any non-negative function f on R‘i with f € C%(D)
and any x € D,

E[f(Y2)] = f(2) + E, /0 7 LB (vr)ds.
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We also need the following Krylov-Safonov type estimate. Let Ty be the
first hitting time to A for Y'*.

Lemma 3.4. [25, Lemma 5.4] For every e € (0,1) there exists C = C(e) > 0
such that for allx € RL and r > 0 with B(z, (14 3¢)r) C RY, and any Borel
set A C B(z,r),

Al

>(C——— .
]P)y(TA < TB(m,(1+26)T‘)) = C‘B(J?,T‘” ) y e B(‘TJ (1 + 6)7’)

The following scale invariant Harnack inequality is one of the main results
in [25].
Theorem 3.5. [25] Theorem 1.1] (a) There exists a constant C > 0 such
that for any r € (0,1], B(xo,7) C RL and any non-negative function f in
R% which is harmonic in B(xz,r) with respect to Y*, we have

flz) <Cfy), for all z,y € B(xo,r/2).
(b) For any L > 0, there exists a constant C = C(L) > 0 such that for any
r € (0,1], all x1, 22 € RL with |x1 — 22| < Lr and B(z1,7)U B(z2,7)RL and
any non-negative function f in Ri which is harmonic in B(x1,7)U B(x2,7)
with respect to Y, we have

fla2) < Cf(21).

For a Borel function f : Rf{_ — R, let

CKZ
Gf(x) :=E, fYF)dt, xeRL,
0

be the Green potential of f. It is shown in [25, Proposition 6.2] that if Y*
is transient, then there exists a symmetric function G : Ri X Ri — [0, o0
which is lower semi-continuous in each variable and finite off the diagonal
such that for every non-negative Borel f,

Gf(a)= [ | Gl ) dy.
RY

Moreover, G(z,-) is harmonic with respect to Y in R% \ {z} and regular

harmonic with respect to Y* in R% \ B(x,¢) for any € > 0. The function

G(-,-) is called the Green function of Y*. Transience of the process Y* is

clear in case k > 0, see [25, Lemma 6.1]. For the case k = 0, see Lemma

4. SCALING AND CONSEQUENCES

In this section we discuss scaling, transience in case « € (1,2) and k = 0,
and the role of the constant k = C(«, p, B).

Let F be the closure of Cgo(ﬁi) in L2(R%,dz) under the norm &Y :=
E0+ (-, ')LQ(Ri,dz) . Then (€9, F) is a regular Dirichlet form on L?(R%, dx).

Let ((Y¢)i>0, (P2) be the Hunt process associated with (£°, F), where

RY\No )
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N is an exceptional set. We write (P¢);>0 and (Pf)¢>o for the semigroups
of Y and Y* respectively.

Let (€9, 7Ri) be the part form of (€%, F) on R%. i.e., the form correspond-
ing to the process Y killed at the exit time TRd 1= inf{t >0:Y; ¢ R4}
It follows from [18, Theorem 4.4.3(i)] that (50’?Ri) is a regular Dirichlet
form on L?(R%,dr) and that C°(R%) is its core. Hence ?Ri = FY im-
plying that Y killed upon exiting Ri is equal to Y°. Thus we conclude
that Y is a subprocess of Y, that the exceptional set Ny can be taken to

be a subset of 8]1%‘1, and that the lifetime ¢° of Y° can be identified with
TR - Suppose that for all z € Ri it holds that IP’QE(TR?r = 00) = 1. Then

(Y0, Py, z € RY) £ (Y, P,, 2z € RY), implying that F° = Fry = F.

For any r > 0, define processes Y(T) and Y* (") by ?ET) = 1Y, -a; and

Yf’(r) =rY",,. We have the following scaling and horizontal translation
invariance properties of Y and Y*.

Lemma 4.1. (a) For any k > 0, r > 0 and z € R%, (Y(T),IP’I/T) and
(Y”’(T),Px/r) have the same laws as (Y,P;) and (Y",P,) respectively.
(b) In case d > 2, for any k >0, Z € R and x € ]Iii, (Y+(2,0),P,_z0))
and (Y" + (2,0),P,_z0)) have the same laws as (Y,P;) and (Y",P,;) re-
spectively.
(¢) If Y* is transient, then for all x,y € ]R‘i, x#y, and all v > 0,

G(z,y) =G (f, y) ro=d, (4.1)

r.r

Proof. Part (a) follows in the same way as in [2I, Lemma 5.1] and [23|
Lemma 2.1], while part (b) is an immediate consequence of (A4). Part (c)
is a direct consequence of part (a), see the proof in [22 Proposition 2.4]. O

The following two results address the case when k = 0.

Lemma 4.2. Suppose o € (1,2) and k = 0. Then F° # F and P,(¢" <
00) =1 for all z € RY.

Proof. Take u € Cgo(ﬁi) such that u > 1 on B(0,1)NRY, then u ¢ FO. In
fact, if u € F°, then by Hardy’s inequality for censored a-stable processes
(see [12] 15]),

u(r) — u(y))?
oo>€(u,u)ZC/Rd /]Rd Mdacdy

2
> c/ @daz > c/ |z|~Ydx = oo,
R T4 B(0,1)NRY

d
+

which gives a contradiction.
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The fact that 7O # F implies that there is a point zo € Ri such that
P,,(¢° < c0) > 0. Then by the scaling property of Y? in Lemma (a),
we have that P,(¢(° < 00) = Py (¢° < 00) > 0 for all z € RZ. Now, by
the same argument as in the proof of [4, Proposition 4.2], we have that
P;(¢" < oo) =1 for all z € RY. O

Consequently, in case a > 1, the process YV is transient. This is the
reason why in the sequel we consider only o > 1 when there is no killing.
The next result says that Y dies at the boundary aRi at its lifetime.

Corollary 4.3. Suppose o € (1,2) and k = 0. (a) For any = € Ri,
]P)x(YC%, € ORY) = 1. (b) There exists a constant ng > 2 such that for any

T € ]Rff_, P, (TB(;B,noacd) = CO) > 1/2.
Proof. Using Lemma [4.1|(a), we see that
0 0 d
Py (TB(Ivn-Z’d) =¢") = Pa (TB((E)‘ ) =€ ), zeRL.

The sequence of events ({TB G.1)m) = = ("})n>1 is increasing in n and

u;o:l{TB(@),n) = ("} ={¢® < o0}. (4.2)
Thus, by Lemma [4.2] we have
Jim Pg (TB(@.1)m) =) =B (¢° <o0) =1L (4.3)

Moreover, since there is no killing inside Rd, it holds that {TB 0)n) =
("} c {YC% € OR4} for each n > 1. Thus it follows from and @.3)
that P(ﬁ,l)(yg%— € OR%) = 1. The claim (a) now follows by Lemma (a)
and (b).

For (b), note that by (4.3]) there exists ng > 2 such that P(ﬁ,l) (TB((’OVJ)
CO) > 1/2. Therefore,

Py (TB (z,nozq) CO) 0 ©,1) (TB((a,l),no) = CO) > 1/2, x e Ri O

7n0) -

Recall the constant C(c, ¢, B) from the introduction: Let e4 := (0,1). For
qe (_17 Oé),

1 (st-1)(1—so—a-1y B((1—)@1).seq) ,
C(a’q’ ) fRd lq e (glqs)11+0< (Ju|?+1) (d+a)/2 deU, d > 2
I %B(l s)ds, d=1

Lemma 4.4. (a) For any q € (—14 ., a—Bs), Cla, . B) € (oo, 00) is well
defined. Further, C(a,q,B) =0 if and only if ¢ € {0,a—1}. (b) For any q €
[a—p1, @) it holds that C (e, q, B) = oo. Moreover, limgyq—p, C(c, q, B) = 0.

Proof. We only give the proof for d > 2. The case d = 1 is simpler.
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(a) We first choose (3 such that (|1.3)) holds and ¢ € (—1 4 B2, — B2). Due
to the sign of (59 — 1)(1 — s*~971), we see that
€(0,00]  ge(B2—1,(a=1)A0)U((—1)4,a = Ba);
C(a7Q7B) =0 qZO,OZ—l,
€[-00,0) g€ (a—1,00U (0, —1).

In the rest of the proof we assume that ¢ # 0 and ¢ # o — 1. By (A3),

— &\2(|77]2 B2
B((1—s)u,1),seq) < cl (a2 +1)1/2 <(1 s)"(|ul +1)>
MNNEERTe) s
el gapiyre (4.4)

(241241
Note that for 0 < s < 1/2,
sThtama=l (o 1) VO < g<a— P
(s7—1)(1 — s@7971) —s7 P2, 0<g<a-1,
sP2(1 — s)l+a=26 = sP2ta, Ba—1<qg<(a—1)A0;
—gPte—l 1< ¢<0,

and, for 1/2 < s < 1,

(59— 1)(1 — so—9-1)
5/82(1 _ S)1+a*252

_Ja—ster2 ge (Br—1,(a— 1) A0) U (o — 1)g, 0 — Bo);
Tl -1-s) 2 ge(a—1,00U(0,a—1).

Thus, for g € (=1 + B2, — (B2),

1 P =D s _ _
/Rdl (|a|? + 1)(d+a)/2 /0 (1—s)l+e B((l - s)u, 1), Sed)ds du

a2 g1
<. 1 Ga+nt/24 (89— 1)(1 — s )|ds g
= Jra-1 ([a]2 4 1)(dta=282)/2 ] sP2(1 — )l+a—28:
1 1 |(sq _ 1)(1 _ Saqul)’ _
" C/]Rdl (|Ja|? + 1)(d+a)/2 /(lﬂ|2+1>1/2 (1 —s)lta ds du < oo,

(al2+1)t/241

which implies that
€(0,00)  ge(Ba—1(a=1)A0)U((a—1)p,a—[F);

Cla,q,B){=0 q=0,a—1;

€ (—00,0) g€ (a—1,00U(0,a—1).

(b) By (A3), for (a—1)V0<g¢g<a—pfrand 0<s<1/2,

(s7—1)(1 —s*7271)
(1 _ 5)1+a

B((1-s)u,1),seq) > cs~Prrema=lg2 4 1),
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Thus,
du 1/2
> —B1+a—g—1
Gl g B) 2 C/Rdl (|a]? + 1)(d+a*2f31)/2 A 5 ds,
which implies the claim. O

As already mentioned in the introduction, the function ¢ — C(«,q, B)
is strictly increasing and continuous on [(a — 1)+, — 2). Consequently,
for every 0 < Kk < hqua—Eg C(a,q,B) < oo, there exists a unique p, €

[(v — 1)4, e — B2) such that
k = C(a, ps, B). (4.5)
In the rest of this paper, unless explicitly mentioned otherwise, we will fix

k€0, lim C(a,q,B)),
qta—pB2
and assume o > 1 if Kk = 0. Moreover, we omit the superscript x from the
notation, i.e., write Y, 7p and ¢ instead of YL, 75 and C* respectively.
Also, we denote by p the constant py in (4.5)).
The connection between p and C(a,p,B) is explained in the following
result which is an analog of [4, (5.4)]. For ¢ > 0, let g4(y) =y = 5Ri (y)d.

Lemma 4.5. Let p € (BQ —1,a— Bg) Then
ngp(:r) =Cla,p, B2, z€ Ri.
Proof. We only give the proof for d > 2. The case d = 1 is simpler.

Recall 4 = (0,1). By (A4), we can for simplicity take z = (0,z4). Fix
z = (0,74) € RY and let € € (0, (x4 A 1)/2]. Let

P
zd—l

Il(é“) Z—/ =
R (312 g 12> (/)2 |(Z, 2a) — ea]*Fe

B(ed, (g, Zd)) dzdd}f.

We see, by the change of variables y = x4z and (A4), that LBg,(z) =
25" lim._0 I1(e) . Using the change of variables Z = |zq — 1|u, we get
I (6) B / Zg —1 B(ed, (|Zd — l‘ﬂ, Zd))
1(e) = —
RY |2~ 1[2[@2+za—1[2>(e/za)? [2a — LM ([0]? + 1)(dFe)/2
du
= I m
/]Rd_l 2(€7u) (’6‘2 + 1)(d+0¢)/2,

dzgdu

where
I 1—(e/aq)(|a>+1) /2 25 -1 5 1 J
2(e,u) = /0 W (eda (|za — 1fu, Zd)) Zd
(o] Zp -1
+ [ e Bled, (|20 — 117 20)) dz.
14+(e/zq)(a241)-1/2 |2d — 1|1H ( )
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Fix @ and let ¢ = (g/xq)(|a|?> + 1)7'/2. Using the change of variables
s = 1/z4, (A1) and (A4), by the same argument as that in the proof of
[21, Lemma 5.4], we have that Iy(e,u) = I21(g,u) + Iz2(e, u) where

1—eg sP — Safl p_ ga 1
Isi(e,u) := /0 ( 1)(4;(—3)14”1 )B(((l—s)fi,l),sed) ds,

ﬁ Soc—l—p _gP B
Too(e,70) = /160 (1_(81)1+a)8(((1—8)u, 1), seq) ds.

From the proof of Lemma we see that I21(e,u) is bounded and
VP —1)(1 — s@7P~h)
lim I u) = 1-s)u,l . 4.
tim n(e.) = [ S B (- 9 ) se ds. (46)
On the other hand, by (4.4]), B((l - s)u, 1), sed) is bounded by a positive
al2+1)1/2 . ~ _
% < s < 1. Since xq/e > 2> 1+ (|a|> +1)71/2 for
e € (0,24/2], we have that for € € (0,z4/2],
1 a2 +1 1/2
1—60:1—%21_ - —_ ~(|u’+) .
(Ja]? + 1)1/ (a2 +DY2+1  (Ja)r+1)"2+1
Therefore, using the facts that ¢y < 1/2 and ﬁ <l—e€+ 6(2) < 1, we have

constant when

1—60+6% 1—gP
(1—s)lta
(cf., [, p.121]) which implies that lim._, I22(e,u) = 0. Therefore, I5(e,w)
is bounded on (0, (x4 A 1)/2] and lim._, I2(e,u) = lim._o I21(e,u). We
conclude that

(sP —1)(1 — s*7P~ I)B((l—s)ﬂ,l),sed) ~
) /]Rd 1/ (1 —s)tte (|2 + 1)(d+e)/2 dsdi=C(a,p, B).

ds < ceg_a, g€ (0,(xqgN1)/2],

[Ian(e, )| < /

1—ep

a

An immediate, but important, consequence of this lemma is the fact that
forpe(ﬁg—l a— 52)

LBgy(x) = Ligy(x) — w(w)y = Ligy(x) — Cla,p, By " =0,
for all = € R(-jw Thus, the operator L? annihilates the function zh.

5. DYNKIN’S FORMULA AND SOME ESTIMATES

Recall that Dg(a,b) was defined in . Without loss of generality, we
will mostly deal with the case @ = 0. We will write D(a,b) for Dg(a,b) and
U(r) = Dj(5, 5). Further we use U for U(1). Incase d =1, U(r) = (0,7/2).

In the rest of the paper (except Subsection E 2[ and Proposmon m 4§ that
exclusively deal with the case d = 1), all the proofs, and even the statements
of some lemmas, are given for d > 2 only. The case d = 1 is much simpler.

We first recall an important consequence of the Lévy system formula
that will be used repeatedly in this paper, see e.g. [22 (3.2), (3.3)]: Let
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I Ri — [0,00) be a Borel function, and let V, W be two Borel subsets of
Ri with disjoint closures. Then for all x € Ri,

B, [f(Yay ), Yoy € W] = / / f@) I (Yary)dyds.  (5.1)
The next lemma will be used several times in this paper.

Lemma 5.1. Let B2 be the constant in (1.3) and let g € [0, — 32). There
exists C = C(q, f2) > 0 such that for all0 <r < R < oo and all y € U(r),

2 2
Z
/ i) ( 12 > - / / < 12l > d‘ia dzZdzg
R zy>R/2 \YdZd) |Z] R 3z>R/2  \Ydzd) |?]

q—a+532
<o < ) LA
Yd rf2

Proof. Let y € U(r). By the change of variables z = z4u and the facts that
a—20y>—1,0—a<0and g+ P —a <0,

/ <I> ( | 2|2 ) zddz
RY zy>R/2 \Ydza) |27
00 ~9 -
= g—1l-a ) (|U| + ]-)Zd du d
“ /R/Q “d /Rd—1 ( Yd (|a|2 + 1)(d+a)/2 <d
r - du
< I P q—1—a+pP2
= ef <yd> " /R/2 “d Rd—1 (‘ﬂ|2 + 1)(d+a—2ﬁ2)/2 dzq

= 3 <r> P2 Ra—athe,
Ya

On the other hand, using the fact that ¢ — B > —f2 > —1,

R 2 q
z _
/ / o ( 1= ) L dzdzg
0 Jri-1z>r2 \Ydza) |2
R =12 q
z z -
= / / P (H> ~dd+a dzdzg
0 JRI1|Z|>R/2 Yaza) |Z|

R o~
r dz
< cy® <> 7“62/ zq_52dzd/ —_—
Ya o ¢ Ri-13)>p |2]1T720
r —B2 pq—PB2+1 > —a+252—2 r —B2 pg—a+p2
<cs® | — ) r "R t dt <cg® | — | 72R .
Yd R Yd

This completes the proof of the lemma. O
For ¢, R > 0, let hy p(x) = zi1pr ) (z), = € R4.

Lemma 5.2. Suppose that p € (0, — B2) N[(a — 1)y, — Ba). There exists
C > 0 such that for any R > 0,

0> LPh, r(z) > —CRP™®(R/z4), z€ U(R).
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Proof. We first choose (2 such that (1.3) holds and p € (0, — fB2) N [(a —
2
1)4,a — B2). Then, since B(z,y) < (I)(?E—Ld) for y € D(R,R) N RL and
z € U(R), using Lemma we have that for z € U(R),
———
D(R,R)*nR< ly — z|dte

Let z € U(R). By Lemma LBg,(z) = 0. Thus, by (5.2),

B(z,y)dy < c(p)RP"*®(R/zq). (5.2)

p
0> LBhy, p(z) = —/ %B(z,y) dy > —c(p)RP"*®(R/zq).
D(R,R)°NR% ly — z|

Next we extend the Dynkin-type formula in Theorem [3.3] to some not
relatively compact open sets.

Proposition 5.3. Let p € (0, a—Bg) N[(a— 1)+,a—§2), R>1andr <R.
For any x € U(r) it holds that

TU (r)
&mmmwm=mﬂm+&/' Phyr(Yo)ds.  (53)
0

Proof. We first choose 85 such that holds and p € (0, — B2) N [(x —
1)y, — fB2). For k € Nlet Uy := {w € U(r) : wg > 27%}. Then Uy is a
relatively open compact subset of ]R‘i and hy, r € C 2(Ug). By Theorem
for every k € N, it holds that

TUk
ol (Vo) = @) + o [ LoV ds. (5
0

Since 7y, — Ty(y), the left-hand side converges to E;[hqr(Y7,,,)] by the
dominated convergence theorem. By Lemma LPh, r(z) < 0 for all

z € U(r). Thus we can use use the monotone convergence theorem in the
right-hand side of (5.4) and obtain ([5.3)). |

Lemma 5.4. Letp € (0,a—B2)N[(a— 1)y, a—Ba). There exists a constant
C > 0 such that for all R >0 and all x € U(R),

TU(R) d
E, /O ®(R/Y ) dt < CR* Pzh).

Proof. We first choose (2 such that (1.3 holds and p € (0, — B2) N [(av —
Dy,a— ). For R > 0, let C(R) := (D(R,R) \ D(3R/4,3R/4)) N{y €
R% : yg > |g|}. Note that for z € U(R) and y € C(R) we have |z — y| <
2yl < 2v2y4, 2] < R/V2 < 4|y|/(3v/2), and therefore (v2 — (4/3))yq <
(V2 = (4/3))lyl < V2(lyl = |2]) < V2|2 — y| < 4ya. Thus,

—yl? B
Blz,y) = @ (‘y’) - <\y'> - (R) (ryi) |
ZdYd 2d 2d R
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Using (5.1) we get for z € U(R) (with constants c3, ¢4 independent of R),
Exlhp r(Yey )] = Eglhp (Y, Y, € C(R)]

TU(R) 7'U(R)) TU(R)

T(R) da (W (R
ZCSEw/ / Y, —y| 4 <> (=7 | yhdydt
cr) Jo R yd) e
TU(R)
ern [ e (e [ (5) )
C(R) 0 Y,

Note that,
R™5 yhly| =P dy < RPe / hlz|mIme TP gy < R
C(R) cq)
Thus, by Proposition [5.3] and Lemma [5.2] for all R > 0,

—o TU(R) R
cs RP°E, /0 ) v dt < Bylhpr(Yry )] (5.5)
t

TU(R)
:xZ+EI/ LPhy, p(Ys)ds < of. O
0

Corollary 5.5. Let p € (0,a — B2) N [(a — )4, — B2). Then there eists
C > 0 such that

Ex/o o (Yd> ds < CP, (Yy, € D(1,1)) for all z € U.

S

Proof. This corollary follows from ({5.5) and the fact that hy; is bounded
by 1 and supported on D(1,1) so that

TU 1
P, (Yy, € D(1,1)) > Ey[hp1(Yry,)] > cEx/O o <Yd> ds. O

Corollary 5.6. Letp € (0, — Ez) Nla—1)4,a— Eg) There exists C > 0
such that, for all r > 0 and x € U(r), it holds that

Pu(Yry, & D(r,7)) < C (%)p

Proof. We first choose 2 such that (1.3]) holds and p € (0, — 52) N [(ov —
1)+, — [2). By scaling in Lemma (a), it suffices to prove the claim
for r = 1/2. Let D = D(1,1). For 2 € U and w € R% \ D, it holds that

|z — w| =< |w|. Hence, by (5.1,

P, (Y / / J(w,Yy)dw dt
Rd
2
< cﬂEx/ / jw| 42 <]w|d> dw dt.
0 JRI\D wqY,

It follows from Lemma [5.1] (with r = 1/2 and R = 2) that

2 1
/ lw| =4 < il d) dw < co® <d> .
R4\D wqY; Yy
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Therefore, by using Lemma [5.4] we get

TU 1
]PI(YTU ¢ D) S Cg]Ex/(; 0] (}/d) dt S C4.CU§. O
t

Proposition 5.7. Let 35 be such that holds and let p € (0, — fB2) N
[(a — 1)y, — B2). Then there exists C = C(B2) > 0 such that for all
0<4r <R < oo andw € D(r,r),

ro—p2 ws

eRY \ B(w,R)) < Oyt

]P)w (YTB(w,T)ﬁRi

Proof. Let @ =0, 0 < 4r < R < 0o, w € D(r,r) and y € B(w, ) NRY and
z € A(w, R,4) NRL. Then |z — y| < |2| < |z —w| > R > y4. Thus,

1 |z —y|? 1 2|2
J = ) = ) .
92) ly — 2|4+ ( Ydzd 2|4t \ yazq

Thus by using (5.1) in the first inequality below and Lemma in the last
inequality, we get

T (w,'r)l’TJR+ ‘Z|2 dZdt
IP’(Y eR?\ B ,R)< E/B ‘i/ o P
w TB(w,r)ij_ +\ (w ) =€ wo Ri\B(w,R) YtdZd ’Z|d+a

TB(w,r)ﬁR;; |Z’2 dzdt
SCE'LU/ /d ¢<Yd |Z|d+a
0 R4\D(R/2,R/2) 2a

<cr PR othE, / el g <rd> dt.
0 Y

Since B(w,r) N R;r C D(2r,2r), applying Lemma we get that for all
0<4r <R <ooand w € D(r,r),

d —B2 p—atB TD(2r,27) r
Pw (YTB(wy’f')ﬁRi S R+ \ B(w’R)) S cr QR QEw/O q) <}/d> dt
t
ro=hz wh
< CRa—BQ T.ip O

6. THE KEY TECHNICAL RESULT AND EXIT PROBABILITY ESTIMATES

6.1. The key lemma and exit probability estimates. The following
lemma is the key technical result of the paper. It will allow us to obtain exit
probability estimates essential for the proof of Theorem

Lemma 6.1. Let p € (@ — 1)y, — Ba). (a) There exist a C2-function

Y : R = [0, 00) with compact support, and a constant Cy > 0 such that
LPy(x) < C1®(1/zq), weU,

and the following assertions hold:

(b) The function ¢(z) = hy1(z) — Y(x), € RL, satisfies the following

properties:

(b1) ¢(x) = 2% for all z = (0,x4) € U with 0 < x4 < 1/4;
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(b2) ¢(z) <0 for allz € U NRY;
(b3) There exists Co > 0 such that LP¢(x) > —Co®(1/2q) for all x € U.

Note that Lemma has the stronger assumption p > (a — 1)y, which
requires the killing function to be strictly positive. The proof of this lemma
is long and involved, therefore we postpone it to the end of this section. We
now prove several consequences of Lemma (6.1

Lemma 6.2. Letp € ((a —1)4,a— Ba). For any x = (0,24) with 0 < 24 <
1/4, it holds that

TU
Ex/o o(1/Y ) dt > Cytal), (6.1)
where Cy is the constant from Lemma [6.1].

Proof. We first choose /35 such that holds and p € ((a —1)4, o — B2).
Recall that ¢ = h, — . For k € Nlet Uy := {y € U : yg > 27*}. Then U
is a relatively open compact subset of Ri and by Lemma ¢ € C*Uy).
Let 2 = (0, z4) with 0 < x4 < 1/4. By Theorem (applied separately to
hp1 and 1, and then taking the difference), for every k € N with 27k < x4,
it holds that

E,[6(Yr, )] = 6(z) + E, /0 U LB oY) ds.

From Lemma (b3), we know that LB¢(z) > —Co®(1/z4) for all z € U.
Therefore,

E:[¢(Yr, )] — ¢(z) > —CoE, /0 ®(1/Y") ds. (6.2)

Since 7y, — Ty, by letting £ — oo, and using the monotone convergence
theorem, the right-hand side converges to —Cj [{V ®(1/Y{)ds. Since v
and hp1 are bounded, by the dominated convergence theorem, we have
Eo[(Yn, )] = Eu[6(Y)] and Eylhy(Yry, )] — Eqlly(¥,)]. Hence, by

U

letting & — oo in (6.2)), and using Lemma (b1)—(b2), we get
U
—aly > B0V )] = 0(e) = =Ca [ 81/ ds.
This proves (6.1)). O

Lemma 6.3. Ifp € ((a —1)4,a — Bo) then there exists C > 0 such that for

z=(0,z4) € D(1/8,1/8),
Py (Yrpa aasm € D(1/4,1)\ D(1/4,3/4)) > Ca}y.

Proof. For y € D(1/4,1/4) and z € D(1/4,1) \ D(1/4,3/4), it holds that
Ya < Zd, |2] < |y — 2| < z¢g <1 and y4 < 2|y — z|. Hence, B(y, z) < ® (1/yaq)
and, by using (5.1)) and Lemma [4.1](a), we get that for 0 < z4 < 1/8,

P(ﬁ,xd) (YTD(1/4,1/4) € D(1/4v 1) \ D(1/4a 3/4)>
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TD(1/4,1/4) J dz
) Jo D(1/4,1\D(1/4,3/4) |2|%T*

TD(1/4,1/4) d U d
> cE(ayxd)/O d(1/Y2) dt xE@%d)/O ®(1/Y)dt .

The claim now follows from Lemma [6.2] d
Note that in the next two results, we allow p = (a — 1) .

Lemma 6.4. Suppose p € (0,a—Bo)N[(a—1)4,a—Pa). There exists C > 0
such that for any x € U(27%),
P, (Y, € D(1,1)) < CP, (Y, € D(1/2,1)\ D(1/2,3/4)).
Proof. We first choose (2 such that (|1.3) holds and p € (0, — B2) N [(a —
1)+, o — 52) Let
Hy :={Y,, € D(1,1)}, Hy:={Y;, € D(1/2,1)\ D(1/2,3/4)}.
We first note that, by Lemma [4.1|(b),
Pw(Hl) > Pw(YTDm(1/471/4) € D@(1/47 1) \ D@(1/47 3/4))

=P wy Ys € D(1/4,1)\ D(1/4,3/4)). (6.3)

When p = a —1 > 0, we choose a ¢ € (o — 1, — (2) and let x*(x)

TD(1/4,1/4)
Cla,q,B)x;“. Let Y*" be the process associated with Dirichlet form & (u, v)+
Jga w(x)v(z)s*(z)dz. By Lemma we get that, when p = a — 1,
+

P@,wd)(y;g‘ww@ € D(1/4,1)\ D(1/4,3/4)) > cwl, w € U(1/4).
Thus, by this and (6.3]),
Po(H1) 2 PG (Yo 01y € DL/ D\D(1/4,3/4)t > cwfy,  w € U(L/4).

When p € ((v — 1)1, 0 — B2), we just use and Lemmas directly to
obtain that Py, (Hy) > cwh, for w € U(1/4).

Therefore, we see that for all p € (0, — f2) N [(a — 1), — B2), there
exists ¢ € (( — 1)4,¢ — fB2) with ¢ > p such that P, (H;) > cwd for
w € U(1/4). Using this and Proposition the remaining part of the proof
closely follows that of [22, Lemma 6.2] and [23, Lemma 5.5] (Proposition
is used in the proof). Therefore we omit the rest of the proof. O

The next comparability result summarizes the exit probability estimates
obtained so far and will play a crucial role in the remainder of this paper.
Proposition 6.5. Let p € (0, — ng) Na—1)4,a— 52) For all r > 0,

Po (Yo € D)) =< Pa (Yo, € RE) < (24)" for allw e U(27).

Proof. By scaling in Lemma a) it suffices to prove both results for
r = 1. By Proposition Lemma [5.2] and the fact that Ay, is bounded by
1 and supported on D(1,1), we have that for every z € U(27%),

Py (YTU S D(la 1)) > Eﬂc[hnl(YTU)]
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TU TU 1
— a;§ + Egc/ LBhpﬁl(Yis) ds > xZ — clEx/ d <Yd> ds.
0 0 S
Thus, by Corollary

TU 1
b < clEx/O o <Yd> ds+P,(Vs, € D(1,1)) < csPy(Yy, € D(1,1)).  (6.4)

S
On the other hand, for y € U and z € D(1/2,1) \ D(1/2,3/4), it holds
that yg < zq, |2| < |y—2| < 24 and yq < 2|y —z|. Hence, B(y, z) < ® (|2]/ya)
and, by using (5.1) and Lemma we get that for every x € U(27%),
P, (Y, € D(1/2,1)\ D(1/2,3/4))
dzdt

TU
< c3E, / d(1/v4 / —
S A/YE) D(1/2,)\D(1/2,3/4) |2]1T=P2

TU
< C4EI/ (1/Y) dt < esal.
0
Thus, by Lemmal|6.4, P, (Y, € D(1,1)) < cga?) for every 2 € U(27%). Com-
bining this with (6.4) and Corollary we get that for every z € U(274),
cytah <P, (Yr, € D(1,1)) < Py(Yy, € RY)
=P, (Y, € D(1,1)) + P,(Ys, € RL\ D(1,1)) < crah. O

6.2. Auxilliary lemmas. In this subsection we give two lemmas needed in
the proof of Lemma [6.1] The index (2 below is such that 82 < 1 A a and

(T.3) holds.

The next lemma, is one of the key technical results in this paper.

Lemma 6.6. (a) For any k € R, there exists C > 0 such that for 0 < zq <
R/2,

|z — y|? dy
® d+a—k
Da(R,R){Jy—z|>za/2} Taya ) | —y
R*“®(R/x4)(1 + 11 p,=ay log(R/2a)), k + f1 >0
<CAIRMB(R/za)al N LRS00, 2] |t g <a<k+ By (65)
xflia(l + 1{k+ﬁ2:a} log(R/z4)), k+B<a.
(b) For any k > «, there exists C > 0 such that for 0 < xq < R/2,

B($7y) k—
_PY) g < CRFO(1V ®(R/2)).
/D;;(R,R) |z — y|dta=k ( (B/z4))

Proof. Without loss of generality, we assume = = 0. Let R > 0 and
Tq < R/ 2.
(a) Define

|z — y|? dy
I(k) ::/ i) < —
D(R,R)N{|z—y|>wa/2} raya ) | —yl
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‘), “f
/D<R,xd/2> D(RR)\D(R324/2) J(D(R32a/2\D(Rxa/2)0{|y—2]>7a/2}
=: I1(k) + L(k) + Is(k).

(a-i) Clearly, yq < zq4 for yq € D(R,x4/2). Using the change of variables
Ya = Tqh and r = x4s in the second line below, we get

za/2 1 (zq — ya) +1)*
) dyg d
/ / ((zq — ya) + r)dtak ( TqYd ) dyadr

- Rfza r1/2 1 [(1—h)+ s]?
= a3 +k/0 r /0 AT -0 ; )dh ds,

which is, using 1 — h =< 1, comparable to

R/z4 d—2 1/2 2
—a+k S (1 + S)

-_ 0] .
K /o (1+ s)Trat /o (g Jns

Since [)/? ®((1+ s)2/h)dh < c®((1 + 5)?) [y/* h=P2dh, we have

R/:Ed Sd*Z@((l +S)2) R/iﬂd @(82)
—a+k a+k
Ii(k) < cxy /0 15 s)Trat ds < cx) (1+/1 52+a—kd5)'

(6.6)
In order to estimate I3(k), for a > 0 we define K, := {y € R?: |y] <
axq/2, |yq — x4 < axg/2}. Then Kyva C B(z,z4/2) C K1, hence
3(k) < / )dy
(D(R73wd/2)\D(vad/2))\Kl xd
2

—d—a T —
—|—/ ’l’ — y| d +k¢(#)dy =: Igl(k‘) + 132(]{7)
Kl\Kl/f xd

For yq € (D(R,324/2)\D(R, 24/2))\ K1, we have yg < x4 and z4 < 2|z —1y]|.
Thus, using the change of variables y; = rt + x4 in the second line below,
we get,

R 324/2 2 — gl 4 )2
I31(k‘) _ C/ T’d2/ (|xd . yd| + T)fdfoﬂrkq)((‘ d y;l‘ ) )dyd dr
xd/2 xd/2 xd

2
—d—a+k [z —y
|z —y[ " (5

Td

R :
zq/2 —52 a

d

o
which is, by the change of variables r = x4s, comparable to
R/zq 1/s
x’;—a/ sTat(k-1) / O((t+1)%) (t+ 1) drds.  (6.7)
1/2 0
Since fol/s ((t+1)%%)(t + 1)74trdt < ®(s?)/s for s > 1/2, from (6.7)

we get

R/xq P (52
Is (k) < cag a+k(1+ /1 32+(a_)kds). (6.8)
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For y € K \Kl/\/E it holds that z4/(2V/d) < |y — 2| < Vdzg. By using that
the volume |K; \Kl/\/&‘ = ¢, we get

Iso(k) < / :U;dfaJrk(I)(l) dy < x;aﬂg,
Kl\Kl/\f
Together with this gives
R/xq d 2
I3(k) < cx;aJrk <2+/ () ds).

1 g2ta—k
Therefore, combining this inequality, (| and the fact that f F/za ;DM )k ds >
2
13/2 S;Il(i,)k ds > ¢ > 0, we conclude that
B R/xq @(52)
Li(k) + I3(k) < cayotr /1 s (6.9)

(a-ii) Clearly, yq > x4 for yq € D(R,R) \ D(R,3x4/2). Thus, using the
change of variables y; = x4h and r = x4s in the second line below, we get

k) <C/2er—2/R q)((@/d_xd)"'r)Q) dyq dr
N (3z4/2) ZTdYd ((ya — wa) + r)dtak

R/zq r2R/zq 592 [(h _ 1) + 8]2
— otk
=z / / T - . )ds dh, (6.10)

which is, by the change of variables s = (h — 1)t and using (h — 1)/h < 1,
equal to

R/xq % td—2 (h - 1)2
fa+k d )
/ / (h— 1)1+0‘*k(1_|_t)d+afkq)( h (1+1) )dtdh

R/zq tie; O (h(1 +1)2
- x;a_t,.k/ h—l—a+k/(h Dea ((7d—&-)—,lztd_2dtdh' (611)
3/2 0 (14 ¢t)dte

Then, for 3/2 < h < R/z4, we have % > RQ_}id > 2. In particular,

2R
G-hzg ®(ht?)dt 2 ®(ht?)dt
/<h e S(ht7)dt / O(ntT)dt ®(h), 3/2<h< R/,
1 1

12+a—k t2+a—k
Thus,
W SO0 g g0 [T OME)d [T D(he)de
o pmert OO e = o e
(6.12)

Combining (6.10)—(6.12)), we get

R/xd 2
—otk T o (ht*)dt dh
I(k) < cx® /3 / t2+0‘ R iFa—k- (6.13)
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Since x4 < R/2, we have

R/va ro=tay O(ht?)dt 2 O(ht2)dt  dh _ w d(12)dt
t2+a—k h1+a k 3721 t2t+a—k plta— kT 2+a—k "

1 (6.14)

Combining (6.9),(6.13) and (6.14)), we conclude that

) < camorth /R/xd /w g ®(ht2)dt  dh

t2+o¢ k hlto— k

- 6R/za 30 &(h2)dt  dh -
+k/ / f2ta—k plta—k 2 R II(k,6R/xq)  (6.15)

where, by Fubini’s theorem (for a > 4),

o/h & (ht?)dt o/t (ht2)dh  dt
I(k, a) / / £2+a—k h1+a k / / hita—k j2+a—Fk (6.16)

a/t dh
=¢ /1 ®(at) (a> /1 h—Bitita— kt2+a k- (6.17)

When k > a — 1, from (6.17) we have

< o000 (3) " e e [ e

@ dt o dt
k—« k—« - Jk—a
<ca (I)(a)/1 P <ca <I>(a)/1 g =0 O (a). (6.18)

If Kk =a — B, from m we have

I1(k,a) < ca*"®(a /2)/ (I)((%)) g(a /t)— < cd**®(a )/jlog(a)tﬁtgz
< clog(a)a""®(a) /100 tﬁitﬁz = log(a)a**®(a). (6.19)

Ifk<a—pr,using2+a—k—p1—pPo>1+a—k—p > 1, from (6.17)

we have

I1(k,a) < ca P ®(a/2) /1a (at) dt /100 dh

(D(a/2) t2+06—k?—,31 hl"r()é—k’—ﬁl

. > dt _
< ca BI(I)(CL/Q)/l m =a Bl@(a/Q) (620)

If £k > a— B2, from (6.16) we have

a a/t  gh dt a dt
B2 428 _anoat o k+Bo—a ™%
II(ka a) < c/1 h2 e /1 hlta—k $24a—k /1 (a/t) ’ t2—k+a—2p2

@ dt > dt
- kt+Be—a k+pP2—a - kt+Pe—a
a /1 P <a /1 =g =@ . (6.21)
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If kK = a — B9, from (6.16) we have

a/t
/ / 12627,52 / t252// dh dt
— hl ﬁ2t1+a t1+a

< cloga/1 t2*5 < cloga. (6.22)

Ifk<a—pf using2+a—k—20y>14+a—k— [y > 1, from (6.16) we get
o dt o0 dh

II(k,a) < c/1 t2+ak262/1 TiFa—hom < O (6.23)

Therefore, combining (6.15)—(6.23)), we conclude that (6.5)) holds.
(b) If we further assume that k > «, then for x4 < R/2,

lgctvy) u/h dy k—
T —dy < —————— + R"“®(R/zy)
/D(R,R) |z — y|dta=k (ly—a|<zq/2} [y — x|dTeF

<cxh™® 4 cRF®(R/2q) < cRFT + cRFO®(R/2g) < RF (1 V ®(R/x4)).
O

Lemma 6.7. For every a € [1,2), there exists C = C(a) > 0 such that for

all z € U,
|B(y, 2) — B(z, 2)|
dy
/D am |y —zldtest
O(1/za)(1+ 1p14p,=ayllog 24])  if 1451 > o
<CK[® (l/z)l‘”ﬁl] _52 if 1481 < a <1+ Ba;

g (14 111y gy=ay 1Og 24|) if 1+ B < a.

Proof. Since B(z,z) < c¢B(y, z) for all y, z € le_, we have

/ 1B(y, 2) —df’a(iz)\dy </ 1B(y, 2) —dfcfiz)\dy
D(7,7) ly — 2| D(7,1)0{ly—z|<za/2} ly — 2|

B(y, z)
+ c/ T dta—T
DT {ly—2|2za/2}1Y — 2]

If y € B(2,2712y), then |y — z| < 24/2 < y4 and y4 < z4, hence by (A2),
we have that

zq/2
I< czd_e/ ly — z\edaﬂdy:czd_e/ refadrgczé_o‘. (6.24)
ly—2]<z4/2 0

dy =:1+1I.

Since

—B : .
lagc{zd P < e®(1/zq) if1+p51 > o (6.25)

z _
d [@©(1/24)25 “TPIA 2P 1461 < <1+ B,
combining ([6.24) with by Lemma [6.6]a), we get the lemma. O
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6.3. Proof of Lemma Let 9 be a non-negative C7 function in Ri
with bounded support and bounded derivatives such that

", ye D(27%272%);
Y(y) =K1, yeD(2,2)\U;
0, y € D(3,3),

where v > 2 will be chosen later, and ¥(y) > 477 for y € U \ D(272,272).
The function 1 in R‘fr can be constructed so that, for y = (y,yq) with
ya € (0, %), ¥ (y) depends on y only. We extend 1 to be identically zero in
R?.

Note that (A4) implies that z +— B(z,z) is a constant on R%. Without
loss of generality, we assume that B(z,z) = 1 and for simplicity, in the
remainder of this subsection, we neglect the constant A(d, «) in j(z,y).

For z € U and |y — 2| > 6, |y| > |y — 2| — |2| > 5. Thus by (with
r =6), for a € [1,2), we have that for z € U,

—Y(z)=VY(z) (y—z
RI N{|y—z|<6} ly — 2|
1
—Y(z / —B(y, z)dy
(2) RY A {Jy—z|>6} [y — 2|9t (®:2)
Vi(z)-(y—z Viy(z) (y—z
+/ P(2) (gﬂ )(B(y,z)—l)dy—/ Y(2) (gﬂ )dy
RYN{ly—2|<6} Y — 2] Re A{|y—z|<6} Y — 2
By, z Vi(z) - (y — 2
<o [ By [ Vo) = 2 iy, 2) — 1jay
Riﬁ{|y—z\<6}|y_z‘ RE N{|y—z|<6} ly — 2|
+/ |V¢(Z)'(g+; Ny, (6.26)
B(z6)\B(z,2) Y — 2|

(a) When a € (0,1), L534(2) is not really a principal value integral and,
since a < 1, by Lemma, b) with k =1,

ng(z) _ ¢(y) — w(z)B(y,z)dy < / 1/’(?/) — T/J(Z) B(y, Z)dy

re |y — 2|dte RYn(Jy—z|<6) Y — 2T
B(y, z)
< 02/ e dy < c3®(1/zaq).
Do(r7y |y — 2|4Tet

Thus, the conclusion of (a) follows for a € (0,1). For the remainder of the
proof of (a), we assume that « € [1,2).

(al) a € [1,2) and z € D(272,272): Since z € D(272,272), we have that
b(z) = $(3) = |37 and [V(E) - (G 2)| < el 17— 2], We use (6.20
and get

B(y, 2) Vy(2) - (¥ — 2)|
LEy(2) <c / ’dy+/
(2) < Do(77) |y — 2[4Te72 perry |y —zl4te

1B(y, z) — 1| dy
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o Vo) (-3,
B(z,6)\B(z,z4)

‘y _ Z’d—f—a
Since 2 > «, by Lemma b) with & = 2 we get that I < ¢5®(1/zg).
Estimating I1 by Lemma and using (6.25)), we get that

1T+ 111

y=:1+II+III.

e B(y,z) — B(z,z e d
< colz| 1/ Blv.2) d+a(71 )|dy+cﬁ|zn 1/ %
ps(17) 1y — 2| B(2,6)\B(z,2q) |Y — Z|
®(1/2a)(1 + 1{148=a or a=1}/108 24]) i 1+ 1 > o
< erZ T [@(1/2a) 2y TP A 2 if 1481 < o<1+ B
2571+ 10 gy—ay | log 24) if 14 < o

Combining the estimates for I, I1 and I1I, we get that
LBy (2) < eg®(1/2q) — Clav, p, B)|z|"z;*

D(1/24)|1og 24| if 1451 > q
+esZ T [@(1/z0) 2 PPN 148 <a <146y (6.27)
2y | log 24 ifl1+6<a

= CS(I’(l/Zd) — Cg’gl’y—l

®(1/za) (C(OZSP’B) <I>(1/EL)zg — [log Zd‘) if1+5 >
1-a+p -3 C(a,p,B) 1Z]
(001 /207y 2 (o o 1)
if14+61 <a<1l+4 By
if 1452 < a.
(6.28)

l_a C(a7p78) |sz‘
5 ( & Z—|logzd|

We consider three cases separately:
Case 1 + B3 < a: Let v = 3 and choose % € (0,1) so that t~1/2 —

C(;%Hogﬂ > 0 for t € (0,8]. When |z] > z;/Q and zg < K, it follows
from (6.28]) and the choice of k that

El <C(a,p, B) _1/2
Zd

a—1
Z C8

LBy (2) < cg®(1/2q)

- |logzd]> < cg®(1/2q).

In case when |Z] < chl/z and zg < K, using the fact that 2 — a > 0, we

estimate the last term in (6.27)) by
lg\zzé_al log z4| < z§_a| log z4| < ¢g < c10P(1/2q).

Thus, in this case we can disregard the middle term in and obtain
again that LBy(z) < ¢11®(1/24). Finally, it follows from that for
z € U with zg > & it holds that LBy (z) < c12 < ¢13®(1/24). Therefore
LB (2) < c14®(1/2y) for all z € D(272,272).
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Case 141 < a < 14 f5: Choose a v > 3 such that 1 > (y—1)/v > B2 — (1.
Then, using 1 4+ 81 < a < 1+ B2, we have

Ba — 1 >a—1—ﬁ1
14+p1—=0B2  14+pB1—pe

y—1> 0.

Let
(v =1+ p1 = B2)
a—1-75

When [z] > & ,pB ([®(1/2q)z +ﬁl] Nzy ﬂQ)l/M it follows from ) that

M = > 1.

LEyY(2) < es®(1/2q)

_68’g|7—1([ (1/Zd) 1- 01+51] 52) (([ (1/Zd) 1+51] /\Za 52) (M-1)/M _ 1)
< cg®(1/zq) — 08|5|771([ (1/24 ) 1= O‘+51] Az 2) (Zd_(a_’BQ)( -1)/M _ 1)
< cg®(1/2q).

< ([8(1/20)2 “ﬁ] A zg P UM using ®(1/24) <
01526?62, we estimate the last term in (6.27)) by

In case when |z] < 0(678

cs|Z T B(1/za) 2y T < eapl(@ (1/Zd) S/ 2)

= cro[@ (1) 20) 2 R TR (1 2)
a—1-p3

= c16[®(1/2a)2 521% B 0(1/24) < 17 ®(1/20).
Thus, in this case we can disregard the middle term in (6.27)) and obtain
LBy (2) < c18®(1/2y).
Case 146 > a: Let v = 2 and choose % € (0,1) so that t—(=52)/2_|log ¢| >

0 for t € (0,K]. When |z] > %zéa_&)m and zg < K, it follows from

(6.28) and ®(1/24) < c152, P2 and the choice of & that

IEY(2) < es(1/20) —es310(1/20) (C“”” 2 zdr)
“d

C8C15

< cg®(1/2q) — cs|2|P(1/24) ( ~(a=f2)/2 \logzd|> < c199(1/2g).

In case when [z] < 3845 z(afﬂQ)/Q, we estimate the last term in (6.27) by
C(a,;p,B) ~d

1Z1@(1/24)| log za| < eanl25" "% 10g 24| ®(1/24) < ea1®(1/2a).

Thus, in this case we can disregard the middle term in and obtain
LB (2) < c20®(1/24). Finally, it follows from that for z € U with
zqg > R it holds that LPvY(2) < co3 < co4®(1/24). Therefore LBy(z) <
cos®(1/24) for all z € D(272,272).
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(a2) a € [1,2) and z € U\ D(272,272): We show that there exist constants
co6 > 0 and k € (0,1/4] such that (i) for zy < k and |Z] € [1/4,1/2) it holds
that LBvy(z) < 0; (ii) For z4 € [r,1/2), it holds that LB (z) < cag.
We use (6.26) to get
By, z) [1—B(y, 2)|
LEp(z) < 027/ T Ay + 627/ P e
Da(77) |y — 2|4Te2 Da(77y [y — z]4Ftet
dy
+ 627/ T idtacl
B(z,6)\B(z,z4) ‘y - Z‘d+a !

Combining this with Lemmas [6.6{b) and we get that there exists a
positive constant cog > 0 such that

LBy(2) < caszg TV Plog 2y, z€U.

Thus there exists cog = co6(k) such that LBy (z) < LBy(2) < co6 for all
z € U with z4 > k.

Finally, we assume that |Z| € (47!,1). By the assumption on 1, we
have that ¥ (z) = (z,24) > 477. Since a := 1 A (o — 52) > 0, we have
lim., 0 25| log z4| = 0 so we can choose x > 0 so that

Cla,p, B)4™7

€28

24| log z4| — <0

for all z4 € (0, k). Then,
LP(2) = Liy(z) = Cla,p, B)zg “(2) < Lgip(2) — Cla,p, B)A ™2,

< e <z§\logzd| - Clep BT 7) <0
€28

for all z € U\ D(272,272) with |Z] € (471, 1) and 24 € (0, k).

(b) Recall that hy1(z) = 251 p(11)(x). Define ¢ := hy 1 —1p. The function ¢

is obviously non-positive on U¢, hence Lemma (b2) holds true. Moreover,

since ¥((0,z4)) = 0, we have that ¢((0,z4)) = 2%, for (0,24) € U, which is

Lemma [6.1] (b1). Furthermore Lemma/6.1] (b3) follows from Lemma 5.2 and
Lemma (a). In fact, for z € U

LB¢(2) = LPhy1(2) — LP(2) > —ca0®(1/24) — c30®(1/2q) = —c31P(1/24)-
O

7. CARLESON ESTIMATES

In this section we deal with the Carleson estimate. The proof is similar
to that of [22, Theorem 1.2] and we provide only the part which requires
some modification.

Theorem 7.1 (Carleson estimate). Suppose p € (0,x— B2) N [(a—1) 4, a —
B2). There exists a constant C' > 0 such that for any w € ORL, r > 0, and
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any non-negative function f in Ri that is harmonic in Ri N B(w,r) with
respect to Y and vanishes continuously on 8Ri N B(w,r), we have

fx) <Cf@)  for all z € RE N B(w,r/2), (7.1)

where (0 € RY N B(w,r) with l'g)) >r/4.

Proof. We first choose 32 such that holds and p € (0, — 52) N [(x —
1)4,a—B2). By Lemmal[d.1](a) and (b), it suffices to deal with the case r = 1
and @ = 0. Moreover, by Theorem [3.5, we can assume that 2(©) = (0,4/5).

If k = 0, then Corollary (b) states that there is ng > 2 such that for
every T € Ri it holds that P (75(zmezs) = ¢) = 1/2. If kK = C(a, p,B) > 0,
then

& C(a,p,B)ds
PI(TB(x,nozd) = C) > ]PI(TB(m,xd/Q) = C) = EI/O lB(m,xd/Q) (}/S)((Y'd)oz)

> C((Lp, B)(xd/Q)_aExTB(x,md/2) > cC’(a,p, B))

where the last inequality follows from Proposition (a). Therefore, there
exists a strictly positive constant d, depending on x such that for the corre-
sponding process Y (recall that we suppress dependence on & in the notation)
it holds that

Po(TB(wngry) = C) = 6, for all z € RY. (7.2)

Let f be a non-negative function on Ri which is harmonic in Ri NB(0,1)
and vanishes continuously on 9R% N B(0,1). By Theorem [3.5](b), it suffices
to prove for z € R N B(0,1/(48ny)).

Choose v € (0,1/4) such that 0 < v < (o — B2)/(d + a — 2/33) and
v < log12/(log ng + log 12) (the latter condition is equivalent to ng/(l—v) <
12). Recall that z(© = (0,4/5) € R% N B(0,1) and fix it. For any z €
R% N B(0,1/(24ny)), define

Bo(z) = B(z,nozaq), Bi(z) = B(z,z)) and Bs = B(z(©,4/15).

Since x € B(0,1/(24np)), we have x4 < 1/(12ng). By the choice of 7, we

Y 1=y 1-
have that By(z) C By(x). (Indeed, (noxq)/(z;) = nor,; ' < no/(12n9)" 7 =
(ng/7 /12)1-7 < 1)

By (7.2), Pu(TBy(z) = ¢) = 6x for z € Ri N B(0,1/(24ng)). By Theorem
ﬁ (b) there exists y > 0 such that f(z) < x;Xf(z(¥) for z € RL N
B(0,1/(24ny)). Since f is harmonic in R% N B(0,1), for every z € RL N
B(0,1/(24n0),

f(@) =B [f(Y (TBo(x)); Y (TBy(w)) € Bi(x)]
+Eo [f(Y(TBy())); Y (TBo(2)) € Bi()].
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Using (3.1)), (5.1]) and Propositionwith By := B(z(©,2/15), by the same

arguments as in steps 1-2 of the proof of |21, Theorem 1.2], we have that

f®) > ¢ / J@©,y) f(y) dy (73)

R%\Bs

and
Eo [f(Y (7o) Y (TBo(a)) & Bi(w)]

<o / + / () F(y)dy = cax (I + ). (7.4)
(RE\Bi1(z))NBS  J (REL\Bi(z))NB3

Suppose now that |y — x| > 2] and z € R% N B(0,1/(24ny)). Then
ly = <ly—al +2 <y —al + 22,y — 2| < 32,y — 2.

Moreover, since (1/x4)'™27 > (24n0)!™% > 4, we have that x((io) =4/5 >
:1:3[27. Therefore,

_ 1 ly — x| o —y|~ot2P2 g [y — 2O
J(x’y%!w—y!d*“@( e )= |2(0) — y|262 (wa”/za) W

(zjly — O —dot2 <\y - x(o)!2> —y(d+a—282)~B2 7/ (0
<y Tz, P20 — | <5z J(x(),y).
‘x(o) — y’2,32 d -rg))yd d
Now, using this and (7.3]), we get
)
< g/ (d+a—282)— B3 0) <_ fl@ o
L< C5Z 4 (Ri\Bl(:p))ﬂé];J; 7y)f(y) dy < xg(dJra,QBQ)JrﬁQ (7 5)
If y € Bs, then y4 < 1 and
4 1 1 1
2> 2O+ z[+ly—20| > [y—2| > O] |z|-|y—2| > 5 48ng 4 4
Thus, for y € Bs,
Cc7 ‘.%' — y‘2ﬂ2 —pB2

J(x,y) < < csw
’ |z — yldte x§2y52 d

Moreover, by Theorem there exists ¢g > 0 such that f(y) < cof(z(®)
for all y € Bs. Therefore,

I < cof (@) / J(a,y) dy
(D\B1(x))NB3

< clgf(a:(o))/ aﬁgﬁ2 dy < cnx;&f(a:(o)). (7.6)
2>|y—x|>1/4
Combining (7.4), (7.5) and (7.6) and using o — B2 > y(d + a —252) > 0
(by the choice of ), we obtain

Eo[f(Y (TBo(a)): Y (Tho(w) & Ba(@)] Scraf (x(O)al P21 e7202) (7.7



DIRICHLET FORMS WITH JUMP KERNELS BLOWING UP AT THE BOUNDARY 39

We choose 1 > 0 so that no~f—r(d+a=28) < =1 Then for x € Ri N
B(0,1/(24ng)) with z4 < 1, we have by (7.7),

E, [f(Y(TBO(m))); Y(TBo(:L“)) ¢ Bl(x)]
< ¢19 f(x(o)) (U*W(d+a*252)*52+a + 77*52+a) < f(x(o)).

The rest of the proof is the same as that of [21, Theorem 1.2]. Therefore we
omit it. O

8. INTERIOR GREEN FUNCTION ESTIMATES

The goal of this section is to establish interior two-sided estimates of
the Green function. We will distinguish between two cases: d > a and
d=1<a.

8.1. Interior estimate: case d > «a. In this subsection we establish the
following interior two-sided estimates of the Green function in case d > a.

Proposition 8.1. Suppose d > «. For any a > 0, there ezxists C = C(a) > 1
such that for all x,y € R‘i satisfying |x — y| < a(xg A yq), it holds that

C Mz —y|" " < G(z,y) < Clz — y| .

We will first prove the upper bound which is more difficult. The idea of
obtaining the upper bound of the Green function using the Hardy inequality
originated from [22]. The proof will be given through a number of auxiliary
results.

For b >0, let RY, := {z € R% : x4 > b}. Define

Qu,u) == /R . /R , (0(a) =)o)y

and D(Q) = {u € L*(R{,) : Q(u,u) < oo}. Then (Q,D(Q)) is a regu-
lar Dirichlet form and the corresponding symmetric Hunt process X1 =
(Xt(l))tzo is the reflected stable process on R{,, see [4]. Let p(!)(t,z,y) be

the transition density of XM, Using the estimates of pM (¢, z,y) (see [11])
we get that for every v € (0, (d/a — 1) A2),

o0 [o.¢] t
h(z,y) == 1pM (¢, 2, y) dt x/ £ (td/“ A ) dt
(z,9) /0 P (tx,y) ; o= g

1

- d
= ‘x_y‘d—(v-ﬁ-l)a’ :):,yERH
and
T > -1 (1) 1 d
h = T t dt < —— € RY_.
($7y) /0 p ( 733,:1/) ‘$—y‘d_’7a7 z,y 1+
Thus, B
h(:v,ed) 1
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It now follows from the Hardy inequality in [8, Theorem 2 and Corollary 3]
that there exists ¢; > 0 such that

Qu,u) > ¢ / u(x)

RY, |z — eq|

Using (8.1]), we now follow the argument leading to [22, Corollary 4.4] line
by line to get the following result.

2B pallue I2RY).  (8.1)

Proposition 8.2. Suppose d > «. There exists C' > 0 such that for every
non-negative Borel function f satisfying [pa f(x)Gf(z)dx < co and every
+

z, = (0,b) with b> 0, it holds that

2
/ M de < C | f(2)Gf(z)dz.
RY, |z — eq| R4

Proposition 8.3. Suppose d > «. There exists C > 0 such that for any
z € RL with x4 > 6, it holds that fB(x 4)(G13($’4) (y))*dy < C.

Proof. Without loss of generality we assume that x = (6, xq). Set B =
B(z,4) and let u = G1p. It follows from (8.1)) that for any v € C2°(R%),

< c(2a)(Q(v, ).

Thus 15(y)dy is of finite 0-order energy integral and u € F,, where F, is the
extended Dirichlet space. By the definition of F., there exists a @)-Cauchy
sequence {u,} C F with u, — u almost everywhere. Thus by and
Fatou’s lemma,

d
/ u?(y)dy < c(xq) lim inf/ u? (y)dy < lim inf/ u%(y)iy
B B R ly — eq|®

n— 00 n—oo d
1+

< c(zq) linn_1>i£fQ(un,un) = c(zq)Q(u,u) < 0.

Let z = (0,24 — 6) and B = B((0,6),4) C R$,. By using the change of
variables w = x — z and the fact that |{w —e4| < 1 for w € B in the first

line, and then Proposition and the Cauchy inequality in the third line
below, we have
dw

ull2a s :/g\u(w—i—z)]de gcl/d GLa(w+ )P

1+ |
< [ 160)GLa() dy < ol Bl
+
Since [|ul|r2(p) < oo, we have that [[ul|z2p) < co| B|*/?. This completes the
proof. O
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Proof of Proposition Upper bound. By and Theorem it
suffices to deal with =,y € Ri with |z —y| = 1 and x4 A yq > 10.

We fix now two points z(® and y(o) in Ri such that \x(o) — y(o)\ =1,
2D Ay > 10 and 20 = 0. Let E = B(x©,1/4), F = By©,1/4)
and D = B(z(®),4). Let f = G1p and u = G1p. Since z — Gy, 2) is
harmonic in B(z(?), 1/2) with respect to Y and f is harmonic in B(y(),1/2)
with respect to Y, by applying Theorem to f and z — G(y(©), 2), we get

16%) = [ 66,2z = alBl6w. ). [ iy > alFlieO)

Thus, using the symmetry of G and Proposition we obtain

1 1 1 vz .
G20 0 < 0 < / 24 P
(x 'Y ) f(y ) = Cl’E‘ CQ‘F’ Ff(y) Y = ’E‘?’/QHUHLZ(D)
for c3 = 01_102_1/2 > 0.

~ alB|
We have shown that there is a ¢4 > 0 such that G(z,w) < ¢4 for all
z,w € RY with |z —w| =1 and 24 Awy > 10. By Theorem there exists
c5 = cz(a) > 0 such that G(z,w) < ¢5 for all z,w € RY with [z —w| = 1 and
2q N\ wq > a?

Now let z,y € R satisfy |z —y| < a(zq A yq) and set

__*r o__Y
= , oy = :
|z =y u—m
Then 2% — ()] =1 and :UEI) A y(o) 1 5o that G(z(@,y©) < ¢5. By
scaling in Lemma [4.1}(c),
G(z,y) = Gz, y© ad o %5 0
(z,y) = Gz, y"V) |z —y|** < PR

We continue now by providing a proof of the lower bound and will use
a well-known capacity argument to show that there exists ¢ > 0 such that
G(z,y) > c for all z,y € RY satisfying |z — y| = 1 and z4 A yqg > 10. For
such z and y, let D = B(x,5), V = B(«x,3) and W, = B(y,1/2). Recall
that, for any W C Ri, Tw = inf{t > 0:Y; € W}. By Lemma (with
e =1/2 and r = 5/2), there exists a constant ¢; > 0 such that

Wy
D)
Recall that Y is the process Y killed upon exiting D and denote by G p(+-)

the Green function of YP. Let u be the capacitary measure of W, with
respect to Y'P (i.e., with respect to the corresponding Dirichlet form). Then

s concentrated on Wy, u(D) = Cap D(W ) and P, (TW < ) = Gpu(x).
By (8.2) and applying Theorem 3.5 - to the function G(z, ), we get

P.(Tw, < 1p) > c1 =c>0. (8.2)

c2 < Pu(Tw, < 7p) = Gpu(w /prz (dz) /sz (dz)
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< e3G(,y)u(D) = 3G, y)Cap”” (W,). (8.3)

Recall that X denotes the isotropic a-stable process in R? and that X is
the part of the process X in D. By Lemma and monotonicity of Cap™ D,

CapYD(Wy) < C4CapXD(Wy) < C4CapXD (V).

The last term, CapXD(V), is just a number, say c5, depending only on the
radii of V and D. Hence, CapYD (Wy) < cacs. Inserting in (8.3)), we get that

G(z,y) > cacglegtes !

Proof of Proposition Lower bound. We have shown above that
there is a cg > 0 such that G(z,w) > cg for all z,w € R% with |z — w| =1
and zg Awg > 10. The rest of the proof is completed by the same argument
as that used for the upper bound. O

8.2. Interior estimates: case d = 1 < «. In this subsection we establish
the following interior two-sided estimates of the Green function in case d =
1 <a.

Proposition 8.4. Suppose d = 1 < «. For any a > 0, there exists a
constant C = C(a) > 1 such that for all z,y € RL satisfying |z — y| <
a(xqg AN yq), it holds that

ClavyV]r—y)*  <Ga,y) <C@VyViz—y)*", a>1;

C_110g<e+ xvy)gG(aﬂ,y)SClog<e+ :U\/y) a=1.
|z =y |z —y|

Again, we prove this result through a number of lemmas. The first one
deals with the isotropic stable process killed upon exiting an interval. This
result might be known. Since we could not pinpoint a reference, we give a
full proof.

Lemma 8.5. Suppose d = 1 < «a. There exists C > 1 such that for any
zo € R and r € (0,3/4),

C (14101 log 2 (1/r)) < CapX """ (B(zo, 7)) < C(1+1az1log t(1/r)).
Proof. Without loss of generality, we assume that g = 0. Recall that
Gg(o 1)(.7), y) is the Green function of the isotropic a-stable process X killed
upon exiting B(0, 1). It is known that, see e.g. [9, Corollary 3],

G oy Lo (1 SR oo
POVEZ [0~ felyomn/2(a — ytemnse) p QAo sy

lz—yl ’
(8.4)
Let P denote the family of all probability measures on B(0,7). It follows
from [17, p.159] that

- —1
CcapX” V(B 0,7)) = ( inf sup G x . 8.5
pX" (B0, 7)) (ue%up‘;w Sonn()) (85)
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Let m, be the normalized Lebesgue measure on B(0,r). By (8.5,

(0.1) o -1
Cap¥”"" (B(0,7)) > ( sup Gg(o’l)mr(a:)) : (8.6)
z€B(0,r)

Further, using (8.4]) in the second line below, we have that for o = 1,

sup Goyyme(z) = sup /B o Gl ) me(a)

z€B(0,r) z€B(0,r)

<c s [ dog (1ol ) mildy)
B(0,r)

z€B(0,r)
c 9 c 2 1
< - log (1+[x —y|™?) dy < - log — dy < clog -,
7 JB(w,2r) m JBoz2) Yl r

for some constant ¢ > 0. Similarly, for o > 1,

sup G ymn(r) < ¢ sup / my(dy) = c.
z€B(0,r) zeB(0,r) Y B(O,r)
This together with yields the desired lower bound.

For the upper bound we use that for any probability measure p on B(0,r)
it holds that

_ ~1
Cap™” " (BO,M) < ( inf G ul@))
z€B(0,r) ’
see [6l, Lemma 5.54] (and note that there is a typo in the display — the inf
on the left-hand side should be taken over z € K). Take p = d,. Then in

case a > 1, for x € B(0,7),

1—r)®
X — X > _oaa—1 (
Gpok(@) = Gy (z,T) = c ((1 nTIA S >

=c(1 —r)>! (1 A 1;;) > c(1/4)*7! <1 A 81T> > c.

Hence, CapXB(O’l)(B(O,T)) <ec.

In case a = 1, for x € B(0,r),

G0 h(r) = Gy (@, 7) < log (1 L a —( ) (1 — r))

> 1o 1+(1_T)2 >log (14 —— ) > clo (1/r)
=08 (2r)2 )~ & 432 ) = GO
Hence, Cap™ """ (B(0,7)) < ¢/ log(1/r). 0
Let B, =(1—-2"1(1+2™),14+271(14+27"), n=1,2.

Lemma 8.6. Suppose d =1 < a. There exists C > 1 such that for every
x € By,

C M1+ 1ot log (1/]z — 1)) < G, (2,1) < CO(1 + Loy log (1/|z — 1])).
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Proof. Fix # € By and let r := 27z — 1|. Since B(1,r) is a compact

subset of Bj, there exists a capacitary measure p, for B(1,r) with respect
to Y'B1 such that .

Cap” " (B(1,7)) = ur(B(1,7))
and Gp, pir(z) = Px(T% < 00) = Px(Tm < 7p,) for x € By (see, for
example, [I| Section VL.4] for details). Then by Theorem 3.5 and using (3.2)

we have

/B() Gy, (2, y)ir(dy) =< G, (x,1)Cap”" (B(1,7))
1,r

= Gp, (x,1)CapX " (B(1,1)). (8.7)
Moreover, ¢ < P, (Tﬁ < 7p,) < 1, where the left-hand side inequality

)

follows from Lemma (with € = 1/10 and the r there equal to 5/8).

Therefore,
c< [ Guymla <. (538)
B(1,r)
Combining (8.7)-(8.8) and applying Lemma we conclude that
1 log (1/r) <log(1/|x —1|) if a=1;
Gp, (z,1) < B = .
Cap™ "' (B(1,7)) 1 if > 1.
O

Lemma 8.7. Suppose d = 1 < a. There exists C > 0 such that for all
z,y € (0,4/7) satisfying |z —y| < (z Ny),

log <e + |£XZ\) if a=1;
(zVvyVilz—y)* ! ifa>1

Goy(z,y) =2 C { (8.9)

Proof. Note that by Lemma (4.1)(a), if z < 4/7,
Go(@y) > Gy 1y (2,y) =227 Gp, (1,y/2).
Thus, by Lemma for z,y € (0,4/7) with [z — y| < 3(2 A y) we have
G (z,y) > 27 'Gp, (Ly/r) 2 cx® (1 + Lot log(z/|y — 2l)),

S0 follows from this and the fact that z <z Vy V |z —y|. O

Proof of Proposition Note that, if |z — y| < a(z A y), then z < y.
Without loss of generality, we assume z < y. We first consider the case

[z —y| < 2z. By (1),
G(x,y) = 27 'G(z/z,y/z) = 2*1G(1,y/x).
Thus, it suffices to show that for z € Bo,
G(1l,2z) <1+ 14=1log(1/|z —1|). (8.10)
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By the strong Markov property, we have
G(1,2) = Gp,(1,2) + E [G(XTBl,z)}. (8.11)

Since G(1,z) > Gp,(1,z), the lower bound in (8.10]) follows from Lemma
3.0l
For the upper bounds in the proposition, define h(v, w) := E, [G (XTB1 , W )} .
By Lemma to prove (8.10) we only need to show that
sup h(1,z) < oo. (8.12)
26372

For each fixed v € By, the function w +— h(v,w) is harmonic in B; with
respect to Y and for each fixed w € By, v — h(v,w) is harmonic in By with
respect to the process Y. So it follows from Theorem and the fact that

h(v,w) < G(v,w) (see (8-11)))

sup h(1,2) <c¢ min h(v,w) <c¢ min G(v,w) <cG(1,1/2) < co.
2€By v, WE Ba v,wE By

We have shown that @ and so hold. Thus, we have proved the
proposition for |z —y| < gx. In particular, we have that G(z,y) =< 1 for
17 < |z —y| < x. Using this and Theorem we have G(z,y) < 1 for
12 < |z — y| < az. The proof is complete. O

9. PRELIMINARY UPPER BOUNDS OF GREEN FUNCTION AND GREEN
POTENTIAL

The following result allows us to apply Theorem to get Proposition
below, which is a key for obtaining the upper bound of Green function.
In this section, we always assume p € (0, — B2) N [(a — 1)+, @ — Ba).

Theorem 9.1. For anyy € Ri andw € OR‘L it holds that limRiaz_}w G(x,y) =
0.

Proof. By Lemma (b) it suffices to show limjg 0 G(7,y) = 0. We fix
y € R% and consider x € RL with |z < 2719, Let B; = B(y,v4/2),
By = B(y,vyq/2) and By = B(y,yq/4). For z € Bi, we have that |z —
x| > yi/2 —xq > (7/16)yq. Thus, by the regular harmonicity of G(-,y) in
RN\ Bz, (7/16)ya),
G(, y) = EZ[G<YT§17y)7YT§I € B \ BQ] + Eﬂ?[G(YTgl ) y)v YT§1 € BQ]
=: 1 + I, (91)

where, for any V C R%, Ty, := inf{t > 0:Y; € V}. For z € By, zg > yq/2
and so |z — y| < yq/2 < zq A yq. Thus, by Proposition

G(z,y) < |z — y\*dﬂy, z € By. (9.2)
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Using (9.2)), we have
c
2 p (Yry, € Bi\ Ba).

I < sup G(z,y)P(Yr, € Bi\B2) < =P,
z€B1\ B2 ! Ya

Further, it is easy to check that J(w,z) =< J(w,y) for all w € RL \ By and
z € By. Moreover, by (9.2),

Gy, z)dz < cl/

B(y,y4/4)

p ya/4 L
|z —y| 74Tz = 03/ s s < cqyg-
B> 0

Therefore, by (5.1)),

I = Ex/ J(Yy, 2)G(z,y)dzdt < 05]]33;/ J(Ye,y)yg dt
0 . 0

B
Ti
1
< [ " (o [ e de) de = —Top v, € B
0 |32’ B> yd «a 1

Inserting the estimates for I; and I3 into (9.1) and using Proposition we
get that

C8 d €8 d €9
G(z,y) < dia]P)ﬁ(YT§1 €eR}) < WPI(YTU(%M) eERY) < mﬂfsa
d Ya Ya
which implies the claim. O

Using Theorem we can combine Propositions [8.1] and [8.4] with Theo-
rem [7.1] to get the following result.

Proposition 9.2. There exists a constant C' > 0 such that for all x,y € Ri,

|z — y| e if d> o
G(z,y) < C{ log (e + |§Xg‘) ifd=1=q (9.3)

(xVyVier—y)¥?t ifd=1<q.

Proof. When x4 A yq > |x — y|/8, is proved in Propositions and
In particular, for all z,y such that |z —y| =1 and 2 > x4 Ayg > 1/8,
it holds that G(z,y) < ¢ for some ¢; > 0.

By (4.1), we only need to show that for z,y € Ri with |z — y| = 1 and
TaN\Yd < 1/87

1 if d > a;
G(z,y) <caqlogle+ (zVy)) ifd=1=a; =c3. (9.4)
(xvyvDelt ifd=1<a
Suppose that x,y € R‘i with [z—y| =1, 24 < ygand x4 < 1/8 < y4. Since
z — G(z,y) is harmonic in B((Z,0),1/4) with respect to Y and vanishes on

the boundary of Ri by Theorem [9.1] we can use Theorem and see that
there exists ¢4 > 0 such that

G(z,y) < csG(x + (6, 1/8),y) < cqcy. (9.5)
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Suppose that =,y € Ri with |z —y| =1, g < yqg and yq < 1/8 (d > 2).
Then, since z — G(z,y) is harmonic in B((z,0),1/4) with respect to Y and
vanishes on the boundary of Ri, by (9.5) and Theorem we see that

G(z,y) < csG(x + (6, 1/8),y) < c3c1. This finishes the proof of (9.4). O
Lemma 9.3. There exists C' > 0 such that for x,y € RSIF,

P W if d > a;
Zq N\ Yd zVy .
G(z,y) <C |:1c—y|/\1 X log(e+|x_y‘) ifd=1=q;
(xVvyViz—y)* ! ifd=1<a.

Proof. We first choose 82 such that holds and p € (0, — B2) N [(x —
1)4,a— B2). Suppose x,y € Ri satisfy x4 < 2712 and |z — y| = 1. Without
loss of generality we assume that & = 0. Let r = 275, For z € U(r) and
w € R% \ D(r,r), we have |w — 2| < |w|. Moreover, by Proposition
G(w,y) < ¢ for w € R‘fr \ B(y,r). Thus, by using Lemma with ¢ =0
and ,

)
/Ri\p(r,r) |2 — w|dte
2 d 2 d
<o, e ) e | o (1)
R NB(y,r) zqwg ) |w|*Te RE\(D(rr)UB(yr) \ZdWd ) W]

1 1 1
<cs® () / ﬂ%dw + c3® <> =:c3P <> (I+1).
Zd/) JRLNB(y,r) wy” |w]|dta—20z 2q Zd

(9.6)

(i) We first estimate I for d > «: Since x € U(r) and |y — z| = 1, we see
that |w| < 1 for w € B(y,r). If r < y4/2, then wy < yq for w € B(y,r), and
hence by Proposition |9.2

d
I< 64/ G(w,y)dw < 05/ % < cg.
Blyr) Blyr) [y =]
If r > yq4/2, then B(y,r) NRL C Dy(3r,3r) and thus by Proposition

w;52dw
I <cr 7| = w|d—a
B(yya/2) 1Y

2\ P2
—w dw
+ C7y52 / <|y | ) —at2p = cr(I1 + I).
DyG3rann{ly—wlzya/2} \ Yawa /) [y — | 2

Clearly,

_ dw _
leydBQ/ ﬁé%yf} 62§09~
B(y.ya/2) |y — wl

To estimate I we use Lemma (a) with k = 2a — 232 by taking ®(t) = %2
and B; = [ there. Since k + f3 > «, by Lemma (a), we get I <
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clgy§2y;ﬁ2 = c¢y190. Combining the estimates for I; and Is, we get that
I S C11-
(ii) We now estimate I for d =1 < a: Since 1 <y < 1+27Y we have w < 1
for w € (y —r,y + 7). Thus, by Proposition

y+r

v 1 1 1 Lia=1}
I §/ w1 G (w, y)dw < 612/ w21 Hog(e + )dw
y y-r lw —y|

b

ytr 1.,
= C12/ w2 log(e + {a=1) Ydw < ¢13 < 0.
y—r ‘w - y‘

(iii) By using (5.1)), and the estimates for I in (i) and (ii) in the first
inequality below, and Lemma in the second, we get that

TU(r) r
Ey[G(Yry (), ¥); Yoy, & D(r,r)] < 0141[‘393/0 ¢ (Yd> dt < ezt (9.7)
t

Let zo := (0,7). By Theorem Propositions and and scaling
in Lemma [4.1|a), we have

E:’C [G(YTU(rwy)? YTU(T) € D(T7 T)] S ClﬁG(x()? y)]P)LE<Y’TU(r) € D(Tﬂ T)) S C17$§.
(9.8)

Combining (9.7) and , we get that for z,y € R‘i satisfying x4 < 2712,
T=0and |z —y|=1,

Gl2,y) = By [G(Vay) )i Yoy & D7)
+E,; [G(YTU(T>,y); Yoy € D(r,r)} < cigh.

Combining this with Proposition (4.1) and symmetry, we immediately
get the desired conclusion. O

As an application of Lemma we get the following upper bound on
Green potentials.

Proposition 9.4. (a) Suppose d > «. There exists C > 0 such that for
any w € R, R > 0, any Borel set D satisfying Dg(R/2,R/2) C D C
Dg(R,R), and any x = (w,xq) with 0 < x4 < R/10,

. Ra+’¥*7’w§’ > p— o
Em/ (Y7 dt = / Gp(z,y)y, dy < C  2hlog(R/xq), v=p—
0 b x5, —p—1<vy<p-—a.

(b) Suppose d = 1 < a. Let~y > p— «a. There exists C > 0 such that
for any R > 0, any Borel set D satisfying (0, R/2) C D C (0, R), and any
0 <z < R/10,

™
Ex/o (Ytd)Wdt:/DGD(x,y)ygdy<C’RO"M_pr.
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Proof. (a) Using Lemma the proof is same as that of the upper bound
of |22, Proposition 6.10].

(b) Note that, by scaling in Lemma[4.1](a), it suffices to show the lemma for
R = 1. We first consider the case d =1 < . By Lemma[9.3

G(LL’, y) < cxa7110<y<:r/2 + xailclz/2§y<2x + cxpyaipil]-yZQw

Thus, using v > p — « and the fact that D C (0,1), we have
1
/ Gp(z,y)y" dy < / G(z,y)y'dy
D 0

z/2 2z 1
< ex™! / y'dy + cx¥ ot / dy + ca:p/ yIreTmPgy
0 x/2 2z

1
< cx® 4 ezt 4 ca:p/ YTy < exP
0
We now consider the case d =1 = a. By Lemma (9.3

T
G(.le, y) < C]-O<y<x/2 + clog (6 + ‘.%'—y‘) 1x/2§y<2x + C(.ﬁ/y)plyzgm.

Thus, using v > p — 1 we have

1
/Gp(ﬂf,y)y”dyS/ G(z,y)y dy
D 0

x/2 2z P 1
< c/ yldy + cx”/ log <e + > dy + cxp/ Yy Pdy
0 z/2 |z -y 2

1 1
1
< cx'tT 4 c:cH'Y/ log (e + t> dt + carp/ Y Pdy < caP. O

0 0

10. THE PROOF OF BOUNDARY HARNACK PRINCIPLE AND FULL GREEN
FUNCTION ESTIMATES

Proof of Theorem [1.2. By scaling in Lemma (a), it suffices to deal
with the case r = 1. Moreover, by Theorem (b), it suffices to prove
for z,y € Dg(278,27®). Since f is harmonic in Dg(2,2) and vanishes con-
tinuously on B(w,2)NORZ, it is regular harmonic in D(7/4,7/4) and van-
ishes continuously on B(w,7/4) NORY (see [20, Lemma 5.1] and its proof).
Throughout the remainder of this proof, we assume that z € Dg(278,27%).
Without loss of generality we take @ = 0.

Define 2o = (7,27%). By Theorem Lemma and Proposition
we have for z € U,

f(@) =Eo[f(Yry)] = Ee[f(Yry ); Yoy € D(1/2,1) \ D(1/2,3/4)]
> c1f(20)Pe(Ye, € D(1/2,1)\ D(1/2,3/4)) > caf(x0)ah.  (10.1)
Set wp = (0,277). Then, by (5.1),
f(wo) = By [f (Y, ); Yo, ¢ D(1,1)]
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TB(wg,2—10)
> 5, | [ gty
0 RI\D(1,1)

> 3BuwoTB(wy,2-10) J(wo, y) f(y)dy
RI\D(1,1)

. / J (w0, 9) f (y)dy, (10.2)
RI\D(1,1)

where in the last line we used Proposition (a).
Note that |z —y| < Jwg —y| < |y| > ya V1 > 24 for any z € U and
y € R4\ D(1,1). Thus for z € U and y € R \ D(1,1),

= 2% I (wo,y). (10.3)

1 lyl® g9y 1
J(Zay) < C5Wq)(zdyd) <c Q(P( )’y|d+a

Combining ((10.3|) with (10.2)) and using (5.1)) in the equality below and

Proposition in the last inequality, we now have

B (V) Yoy # DOLD) =B, [ /Rd\m (Yoo ) (0)dyit
U Ay B
< erF, /0 (¥;) P2 / 00

< cs f(wo)Es /0 (YA P2dt < cof (wo)a, (10.4)

On the other hand, by Theorem [3.5| and Theorem [7.1]in the first inequal-
ity, and Proposition in the second, we have

o [f(Yry): Yoy € D(1,1)] < c10f (20)Ps (Ya, € D(1,1)) < e11 f(z0)2%. (10.5)

Combining (10.4)) and (10.5)), and using Theorem we get
f@)=E, [f(Yr,);Yr, € D(1,1)]|+E, [f(Yr,); Yr, ¢ D(1,1)]
< enn f (o)l + co f (wo)xt) < craf (wo)ah).

This with (10.1)) implies that f(z) < f(zo)z}. For any y € D(27%,278), we
have the same estimate with f(yo) instead of f(zg), where yo = (7,274). By
the Harnack inequality, we have f(z9) < f(yo). Thus,

fa) _ o -

f) —

Remark 10.1. Using , one can follow the proofs [23, Propositions 5.7
and 5.8] and show that any non-negative function which is regular harmonic
near a portion of boundary vanishes continuously on that portion of bound-
ary, cf. [4, Remark 6.2] and [10, Lemma 3.2]. Thus, the boundary Harnack
principle also holds for regular harmonic functions. We omit the details.
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Proof of Theorem We first prove (1.7). Without loss of generality,
we assume that z4 < y4 and ¥ = 0. By (4.1)), we can assume |z —y| = 1 and

just need to show that
(xa AP (yg AP ifd > a,
G(z,y) <{ (zAD)Plog(e+vy) ifa=1=d, (10.6)
(AP (yv1)et ifa>1=d.
By (4.1)), Theorem and Propositions and we only need to show
(10.6) for z4 < 273 and |z — y| = 1. In this case ((10.6) reads

p,p
_ gy, ifd>2,
Glay) = {xp ifd=1.

Thanks to Theorem (10.7) is a direct consequence of Theorems and
see the proof of [23] Theorem 1.2].

From ([1.7)) it follows that SUD_eRd \ B(z.r) G(z,2) < oo for all z € R? and
r > 0. The continuity of y — G(z,y) on R \ {z} is a consequence of this
observation and [25, Proposition 6.3]. ]

Using Propositions 8.1 and [0.2] and Lemma[6.3] the proof of the following
lower bound is the same as that of [22, Theorem 5.1], hence we omit it.

(10.7)

Theorem 10.2. Suppose d > «, p € (0, — 52) N[(a—1)4,a— §2) For
any € € (0,1/4), there exists a constant C > 0 such that for all w € ORY,
R >0 and z,y € B(w, (1 —e)R)NRY,

p p
T4 Yd 1
G d(a:,y)20< /\1) < /\1) )
B(w, R)NKY. |z —y] |z — y] |z — y|d=

We now consider the lower bound in case d =1 < a.

Theorem 10.3. Let d = 1. Suppose p € (0, a—§2)ﬁ[(a—1)+, a—EQ). Then
there exists a constant ¢ > 0 such that for all R > 0 and all x,y € (0, R/2),

Ay p zVy ; —
Gom(e.y) > ¢ (727 ) tog (e + 22) fa=1,
O,R)\L:Y) = Ay p a—1
g M (xVyVi]z—y|) ifa>1.

Proof. By Lemma [4.1|(a), without loss of generality, we assume R = 1 and
x <y <1/2. When |z — y| < 3z, the theorem follows from (8.9).

Suppose |z —y| =y —z > %x. Theny —zx<y=y—x+x< %(y—x).
Thus, we just need to show that G 1)(z,y) > ey (x/y)P.
Since y < 1/2, by Lemma [4.1f(a), we have
Gy (@) = Gy (@,y) =y* G (l,z/y).
Since x/y < 8/(13), using Theorem [1.2| we get
Gy y) =y G (1, 2/y) > cGo2)(1,1/2)y* H(a/y)P = cy™ (z/y)" .
We have proved the theorem. O
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As an application of Theorems and we now get the full estimates
of the following Green potentials.

Proposition 10.4. Suppose d > a, p € (0,a — o) N [(a — 1)y, — Ba).
Then for any w € R, any Borel set D satisfying Dg(R/2,R/2) C D C
Dg(R, R) and any x = (W, xq) with 0 < x4 < R/10,

ROt ~Pgl, v >p—a;

™
EI/ (Y, dt = / Gp(z,y)y, dy =<  2hlog(R/zq), v=p—a,d > q;
0 b a:ng'y, p—1l<y<p—oa,d>a

where the comparison constant is independent of w € R4, D, R and x.

Proof. The upper bounds are given in Proposition Moreover, using
Theorem the proof for the lower bound for d > « is same as that of
the lower bound of |22, Proposition 6.10].

Suppose d =1 < @ and v > p — a. By Lemma[4.1|a), it suffices to show
the lemma for R = 1. By Theorem [10.3

Go1/2)(@,y)y" > caPy’ ™ 1P if 1/4 >y > 2z
Thus, using v > p — « and the fact that D D (0,1/2), we have that for

0 <z <1/10,

1/4
/DGD(fc,y)y”dyz ; Go,/2) (7, y)y dy

T

1/4 1/4
> cacp/ YTy > cmp/ Yy reImPdy — caP. O
2z 1/5

11. PrROOF OF THEOREM [2.4]

In this section we give a proof of Theorem for d > 2. The case d =1
has already been treated in [25]. Let e; = (1,0, ...,0) be the unit vector in
the 21 direction in R?~!. For a,b > 0, define

B U(([a] + 1+ (1/a))?) -
hla,b) = /]Rdl (Ju] + 1)d+e(ju] + 1+ (1/a))d+e .

- U((Ja— (1/a)er| + 1)%b)
T = [ TR G T
and f(a,b) := Y(a,b,b), g(a,b) := Y(a,b,1).

4,

Lemma 11.1. For any M > 0,

ha.b) = a®™W(b/a?®) ifa < M,b > 0;
T w(b) ifa>M,b>0

with comparison constants depending on M.
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Proof. Using (2.4]), we have that for a > M,

U((Ju] +1)%0) _ < P((v+1)2% _
h(a,b) X/Rdl Wdux\l’(b)/o qj(b)((v+1)2d+)2a“d *dv
pd—2

< cU(b) /O EEE N (O}

Similarly, using the lower bound in (2.4)),

vd—2

2 2
- -2, _
h(a,b) > c\Il(b)/O o T dv = \I/(b)/o v 2dy < U(b).

For a < M,

(([E + 1+ (1/a)))
ha.b) = /a|<1/a (lul + Do (ful + 1+ (1/a))dte

2
= ad+°‘/ 7:11(1)/& d)+a du
al<1/a (U] +1)

du
> ad+°‘\I/(b/a2)/ = a® W (b/a?).
al<1/m (Ju] +1)dte
For the upper bound, we use (2.4)) and get that for a < 1/M,
U (b/a? W (|al?b
h(a,b) = ad+a/ _bfa]) dﬂ+/ V()
|

<1 /a (U] +1)dFe >1/q |U]?dT2e

du

dii © W (be?)
< d+a\11 2 / ] 2 /
> a (b/a) wa1 (Ja] + 1)d+e +c¥(b/a”) /o U(b/a?)pd+2+20 dv

[e’e) a2’yg+

< d+a 2 2 —
<ca® ¥ (b/a*) + c¥(b/a )/1/a pdt2+20=272

dv < ca®™W(b/a?).
O

Lemma 11.2. There exists a constant C > 0 such that g(a,b) < C¥(b) for
all a,b > 0.

Proof. Since d + a — 272, > 0, (Ju — (1/a)e| + 1)4T@=22+ > 1. Thus,
(lu| +1)~"du

gla,b) < c\I!(b)/

it (i — (1/a)e| + 1P
du
<c¥(b ————— < c¥(b). 0
<0 [, T e <<vO
By the change of variables 1/a — u; = v; and u = v, and using that
|v] = [(v1,0)| = |(—v1,0)|, we see that for all a,b,1 > 0,
[ V(- (faal + %)
Ri-1 < 2 ([U] + 1/ D ([u = (1/a)er] + 1)d+e
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U ((|o] +1)%b
=/ T (] + 1)) . (11.1)
Ri-1 0> L ([0] + 1) ([v = (1/a)er] +1/1)
Thus, for all a,b,l > 0,
U((|u—(1/a)e;| +1)%b
T(a,b,l)S/ (= /)| + 1)

pi-t > [@T ([T — (1/a)e] + Do

U ((|a| +1)%b _
+/ = d(Jr(LL )’ e du
Ri-1 2 <y (U] + 1) — (1/a)e]

du

+/ U((|a] +1)%b)du
Ri-1, 3 s> L ([U] + 1) e(a — (1/a)ér| 4+ 1/1)4H
= [+ II+1II(]). (11.2)

We use the above notations I, I and I1I(l) in the next two lemmas.

Lemma 11.3. For any M > 0, we have that for all a € (0, M] and b > 0,
g(a,b) < a®™*W(b/a?), with comparison constants depending on M.
Proof. For 2= < [u], we have

1. o 2 ~ 1 1 2 . 1
§|U| = |u] - §\U| < |u-— 561\ to- §|U\ < u-— 5€1|- (11.3)

Thus, since W(¢)t~(@+%)/2 is almost decreasing because 2., — (d+«)/2 < 0,
using the upper bound in (2.4)), we have that for 2 < |u],

2a —
U((|a— (1/a)er| +1)%)  U((Ju— (1/a)é] + 1)2b)bld+e)/2
(la — W/a)er |+ e~ [([u— (1/a)e| + 1)2b](@d+e)/2

W + VPR (7] + 1))
=l + e = (e
V(@) _

= qu(b)\p(b)ﬂm + 1)d+a = C‘a|d+a72fyg+ ’

(11.4)

Moreover,
v((ja - (1/a)a| + D)%) _ w(h)
(i~ ()@ [+ DT = = (1a)a] + )T

Using (11.3)—(L1.5), for a < M with u = (u1,u) for d > 3 (the case d = 2 is
simpler),

(11.5)

I< / , ;ﬁ(j'“f Wa)er] + 1)25) da
Ri-1, 35y > Loui™ ¥ (ju — (1/a)er| + 1)4+e
+C/ U ((Ja— (1/a)er| + 1)%)
Ri-1, 3 <yy (U1 + [U)3He(|u — (1/a)er| + 1)dHe
du
ra-1 ([U = (1/a)er] + 1)1+

duidu

< ca®tw(b)




DIRICHLET FORMS WITH JUMP KERNELS BLOWING UP AT THE BOUNDARY 55
duldﬁ

+c¥(b) / ~N\2d120—272

Ri-1,2 <y (w1 + [Ul) -

dv
< d+a\I/ b /
= ca ( ) Ri-1 (’m + 1)d+a7272+

o0 du1 dﬁ}\
+C\I/(b) /3 ‘WQ—QV%L/Rd2 (1_|_ |ﬂ7|)2d+2a—2’yz+

2a¢ Uy

< C‘I/(b)(ad+a +ad+o¢+(1+a—272+)) < Cad+a\11(b) (11.6)

where in the last inequality we have used the facts 1 + a — 2y, > 0 and
a< M.

For 3/(2a) > u; > 1/(2a), we have b/(4a?) < (Ju| + 1)?b. Thus, using
the fact that W(t)t~(@+2)/2 is almost decreasing, we have for 3/(2a) > u; >

1/(2a),
([l +1)%) _ w((al+1)%)p 2 w(b/a?)pldte)?

= _ d+a 2
(|a] + 1)+ [(Ja| + 1)2p](d+)/2 = c[b/(4a2)](d+a)/2 = ca® "V (b/a”).
(11.7)
Using the upper bound in , we have
Y((fal+1)%) _ o) (@l +1)%) _ U (b) U 1)
(Ja] + 1)T+e U(b)([a] + 1)d+re = 7 (ja] + 1)dre—2ry = T|gjdta-ey
(11.8)

Using (11.3) and (11.7)-(11.8), we get

dv
< d+0é 2 < d+0( 2
ITI(1) < ca®™™ W (b/a )/Rdl s = ca® W (b/a*)

and, by the change of variables w = (u1,u) = (u1,wyw) for d > 3,

du
II <cU(b _—
S C ( )/Rdl,23a§u1 ‘a|2d+2a72'\/2+

o dU1 dw
< c¥(b) / s dF2r%a-2v, /R (1 + [@])2H2o=22

2¢ Uy

< W (b)attotita=2n,), (11.9)
Therefore using ((11.1)), (11.6) and the fact a < M, we have
g(a,b) <c (ad+°‘\1/(b) + ad+a‘ll(b/a2)> = a¥*W(b/a?), a € (0, M].

We now show the lower bound: Note that, using the fact a < M, we have
that for 3/(2a) > u; > 1/(2a) and |u] < 1/(2a),

) +1<((3/2)% + (1/2))Y2a™ +1 < (V10 +2M)/(2a).  (11.10)
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Using (2.4), (11.1), (11.10) and the change of variable (v1,0) = (u1 —
(1/a), ) we have

g(a,b) > /
Rd— 1 3 >u1>f

2a’

W ([ + 1)%) .
1<y (i + ([ = (/)] + D

du
>cad+°‘\11(b/a2)/ — —
Ri-1 35y > La<t ([ — (1/a)er] + )%t
do
d+o 2 _ . dto 2
ca®™ WU (b/a )/ = ca”T ¥ (b/a*).
Ri-1 o< L o< ([U] + 1)d+e

Therefore using (T1.1]), we get g(a, b) > ca®**¥(b/a?) for all a € (0, M]. O
Lemma 11.4. For any M > 0, there exists C = C(M) > 0 such that

f(a,b) SCad+a\I/(b)+Cad+aba+1\I/( b 5), b>0andae (0, M(1AD)]. (11.11)

Proof. By (11.6) and (11.9), we see that
I+ 11 < ca®™™w(b). (11.12)

Since a < M, for 5= > uy > o, we have [4]+1/a < |G +u +1 = |u|+ 1.
Using this, by the change of variables v; = u; — 1/a and © = 4, and then
v = t/a,

U(([3] + 1/a)2b) R
III dod
/ /R (18] + 1/a) T (5] + vg + 1/b)dta 7

ol 1/2 ((|5|+1/a)2b) "
/ /Rd 2 ([9] + 1/a)dte (o] +(5+t)/a)d+ad dt. (11.13)

Using the change of variable v = [(§ 4 t)/a]w, (11.13) is equal to

1/2 U(((2 4+ )| 124
aa-‘rl/ ( —}-t) —2—« d+a/ - (((/lz + )|ZU+‘+A) a2) - didt
o b ra-2 ((§ +0)[@] + )¢ (|w] + 1)+

a 2b\.d-3
droapt [T o0 [ (s +1)%5)s
ca t y dsdt. (11.14)
a o (ts+1)dte(s 4 1)d+e

Using the upper bound in (2.4)), for a/b <t <a/b+1/2 < M +1/2,
oo P((ts+ 1)22b)gd-3 00 —d—a ¢d—3
/ ((ts+1)*5)s s < \Il(b)/ (s+1) s“ds
0 0

(ts + 1)d+a(s + 1)d+a ™ = T (ts + 1)Fro—2s

b o 1345
<c¥ —_—.
¢ (a2)/0 (s + 1)dte
Therefore ((11.14]) is less than or equal to
d+2a+1\1,( b )/ +1/§—2 adt = ad+2a+1( ) —1\1,(£) d+aba+1\p( )
a? a b a?

Therefore using this, (11.2)) and (11.12)), we obtain (11.11]). O

b
a2
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Note that for all a > 0 and p € [(1 A ) + 1, 00),
0< /OO v PU(v)dv < c¥(a)a7? /OO v PT2dy < e(a,p) < oo (11.15)
a a
and

1/a 00
/ up2\11(1/u)du:/ vPU(v)dv < 1, (11.16)
0 a

with comparison constants depending on a.
For all z,y € Ri, let

=(z, y) :=/ /Rd 1 (2] + 1+ 20)*/(Waza)_ - Zdzg. (11.17)

BT+ 22)™(] + L+ z0)7

Lemma 11.5. For all z,y € RY with |z — y| = V2 and yq > x4, we have

x;d @ forxzg > 1/4;
=(x,y) < ,
(@9) flldyd U(v)L  forzqg <1/4.
2yq

Proof. By the change of variables © = Z/zq , we get

- [T . “o(ata) a1 Y((El + 14 (1/24))%(24/ya)) Jid

== % %4 T+ Do d+a PO

Rd-1 (lu] + D) (lul + 1+ (1/2a))

:/ —d—a- 1/ U (([a] + 1+ (1/24))*(24/va)) diid=.
T4 Rd-1 (

“ [+ DT (@] + 1+ (1/20))%F

Case 1: x4 > 1/4. In this case, yq < 4 > 1/4 so using ([2.4]), we have that
for zq > xqg > 1/4,

U(([a] + 1+ (1/24))%(= -
/Rd (|l (ﬁ 1’>d+a<rﬂ\(+/ 1d)+) (g/dz/dy)[;pm dii = h(za; za/ya) = (24, 24/ %a)-

Thus, by Lemma [11.1{and (11.15)), for z4 > 1/4 (so x4 < yq),

00 U (v)dv
—_ —d—a—1 —d—a —d—a
Ex g dzg < x =z )
/“ “d (xd) d d /1 pdt+atl d

Case 2: x4 < 1/4. In this case, by Lemma m

== [Tt e = [t
xq

)dzd+/2 2 (— ! )dzq.

Yd zq 2dYd
Note that
0o 0o (24 o0
—d—a—1— d—a— —d—
1xc/ 2y “ Vl_dzdg/ zdd « 1\PEy1;dzd<c/ 2, a+72+dzdx1,
2 2 U 2
and

/W qf(v)d—v > /;d \If(v)@ = \If(i) /;d v ldv < \If(l).

1 v Ya  J L1 Yd
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Thus, = < ( )+ xdzdlllf( )ddefﬂdyd\I/ ) O

ZdYd Tuy

Suppose that z,y € RY, T =0, |z — y| = V2, ya > x4 and y = (|7]e1, ya)-
Let

z— lyle1| + z _
I = L(e.y) / zd/ ((z d\+y! é1l + ya)*/(yaza)) g
Rd—1 |Z’+$d (12 — |ylér] + ya)it

and

((1z = |gler] + ya + 24)*/ (yaza)
I2 —I2 ac y / Zd/ d+a (i)+o¢d dZd.
Rd—1 Z|+2d (1z = |yler] + ya + za)

Since rg <X g+ zq and yqg X yq + 24 if zg < xg and zg < xg + 24 if 2q > 24,
we see that

q(z,y) < Ii(x,y) + I2(z,y). (11.18)

Proposition 11.6. For all z,y € Ri with |z — y| = v/2, we have

(g Aya) ™4 < (g Vya) 4 for xg ANyq > 1/4;
q(z,y) > 1 (11.19)
[ W (u) L for zg Nyg < 1/4.

Proof. Suppose that x,y € ]Ri, T =0, lz —y| = V2 and y4 > x4. Without
loss of generality we assume that y = (|y|e1, yq). Since

2= [gle1] +ya < 121+ 9] + ya — w4 + wa < [Z] +2V2 + 2, (11.20)
we have that, for z4 > x4,
Z — [gle1] + ya + za < 2] + 2V2 + 2z4. (11.21)

Since t — t_(d+°‘)/2\11(t) is almost decreasing, using (11.21)) we have that
for zq > x4,

U ((I1z = [yler] + ya + 2a)?/ (yaza))
(IZ = [gle1] + ya + zq)

B 1 U((|Z - |gler] + va + 2a)*/ (yaza))

 (Ya2a) O [(1Z = [gler] + ya + 24)?/ (Yaza)](@+e)/?

S c (2] + 1+ 24)*/ (yaza)) _ C‘I’((|5| + 1+ 22)*/(yaza))
T (Yaza) T2 (2] + 1+ 2a)%/ (Yaza)]@F)/2 (2l + 14 zg)tte

(11.22)

Thus, Iy > ¢Z, where E = Z(x,y) is the function defined in (11.17)).
If |y| <1/2 and 24 < 1/4, then

Yo —Tq =2 92> /2-1/4=7/2. (11.23)
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Thus v/7/2 < yq. Applying Lemma we get that for |y| < 1/2 and
xq < 1/4,

1 1 1
Tqvq d Tquq d gt d
L>cE> / R 10 c/ R T c/ Py ()2
1 v L v 1 v
2y4 Vad

Since x4 < yq, by the change of variables u = z/z4, we get

z— lyle1| + z Z,
[2>c/ Zd/ ((Iz d|y\ 1]+ za)?/ (ya d)d) ey
Ya Rd-1 |Z|+Zd to(|z — |yler] + zq)dte

> [ S g e/ ) = el
Yd

If |g] > 1/2, then /2 = |z —y| > || > 1/2. Thus, by Lemma [11.3} we get
that for |y| > 1/2 and x4 < 1/4,

2 2 2
' d
Iy > cl3 > C/ dd a=l d+a\I/( )dzd—/ 1\11( )dzdﬂ/yd \I/(u)ﬁ
Yd Yd 1

o
Yd Yd
Thus, combining this with Lemma for |y| > 1/2 and z4 < 1/4,

2 1
vd d E d
Iy >c¢(I3+E) > c/yd \I/(u)?u —|—c/ w \Il(v)i)
1

1 v

2yq

2 1 1
> c/yd () 2 +c/””‘“’d T c/”yd vy (11.24)
1 1

u 2 v u
Yd

We now conclude from Lemma [11.5|and ((11.24]) that (11.19) holds. O

Proposition 11.7. There exists a constant C' > 0 such that for all x,y € R‘i
with |z —y| = /2,
(za Aya)™ " =< (2q Vya) %, xg Aya > 1/4;
gz, y) <Cq 1

TqYd du (11.25)
N ‘I’(U)7, g Nyg < 1/4.

Proof. Suppose that z,y € R‘i and |z —y| = v/2. Without loss of generality
we assume that £ =0, yq > 24 and y = (|y|e1, yaq)-

Case 1, |g] < 1/2: Suppose that || < 1/2. Then by ({I1.23), V2 = |z —y| >
Ya — x4 > VT/2 and yq — x4 — [y] > (VT —1)/2 > 1/2, and so,

2= lyler] +wa = [2] = [yl + ya = [2| + (Ya — za — []) + za = [2] +1/2 + z4
and

Z—|yle1| +ya+2a > 12| +1/2+xq+ 24 > 2] +1/2+ 2g.  (11.26)
Thus, using and the change of variables u = z /x4,

1
le/ / ((1Z] + 1+ 24)*/(yaza)) d3dzy
0 Rd—1

!zl +xa) (2] 4 1 4 wa) e
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)
- x(;d—Za—l A Zg‘h(xd’ xi/(ydzd))dzd.
Since a > o, by (2.4),

o a 1 1 2 d a—72 1
/ 24 (—)dzd < c\IJ( ) " / zy Tdzg < c\I'(—
0 Zd 0

)ngrl.
Zq Zq

Thus, by Lemmam (11.16]) and the fact that x4 < y4 if 24 > 1/4, Thus,

I < ﬁ 0" 2V (2)dzq = d1+a yuT (L) du = 31+a7 zq > 1/4;

C

F ek g (L) deg < cu (L), ra < 1/4
(11.27)

On the other hand, by (11.21)) and (11.26)), we have I < =. Since /7/2 <
yq < 7/4 for x4 < 1/4 (because |y| < 1/2), by Lemma for z4 < 1/4,

1 1 1

; d wa 1 | [Fava d 1
I = / g ) > [ ) < \IJ()/ T S g(=) > en
1 v 1 v TalYd 1w Tq

2yq 2z gyq 2z gyq

1 1 2 _1
/ \I/@)d”g/ \p@)d”mx/ \I/(v)dvgf gy &
- v 2 v 1 v 1 v

Thus from these and ((11.27)), we see that ((11.25) holds true for |y| < 1/2.
Case 2, |y| > 1/2: Suppose that |y| > 1/2. Then

V2 =z -yl >y =1/2. (11.28)

Since W(t)t~(@+2)/2 is almost decreasing and 4 < 34, by the argument in
(11.22)) we have

((1Z = [gler] + xa)*/(Yaza)) -
= dzdzg =: ¢Jy (11.29
1_0/0 /Rd ! Z|+$d YT ([F — [f[er| + wq)tre TN ( )

meef [, ST D) gy,
- ri-1 (|Z] + za)4t2(|Z — [ylen| + za)dte T

By the change of variables u = Z/xz4 in Ji, the change of variables u = Zz/z4

in Jo, we get

5o o gl alua)
D= et [ ool az)dza, T [ ST
y d

Ld

Since x4 =< yq for xq4 > 1/4, by (2.4), (11.15) and (11.16]), we have that

for x4 > 1/4,

> W(zd/ya) % U(za/a) o [ du e
/ Sd+a+l dzq X/ d+atl dzqg = 24 a/ ‘I’(U)W <z,
Td d Tq d 1
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and
Tq 33‘2 Tq 1
/ 2§ (4 )dzdx/ \I’( )dzd/\mgﬂ/ U(1/u)du < x5t
0 ~dYd 0 ~d 0
Thus by Lemma for x4 > 1/4, we get

—~ c Zd Lo
q(z,y) < c(J1+ Jo) < d+2a+1/0 av(
d

da
/—\l'd

2

X zgy dzg
dzq + U(—)———
Zdyd) “ /zd (yd) ngO‘H

For the remainder of the proof, we assume x4 < 1/4. Clearly,

Yd _
I = / / ((1z = [9ler] + ya)?/ (yaza)) B
]Rd 1

2\ + za) (|2 — |glen] + ya)d+e

z—lyle1| + 2 Z
T (E= 101 + 20 ) oy
Ya Rd-1 Z| + za) 4T (|Z — |ylen] + zq)tH

By the change of variables u = z/z4 in Jo and the change of variables
U= 5/ Yd in Jg,

o y Yd
g\Zd/\Y|, 2d/ Yd 1 "
J2 = / ( /c|l+’a+1/ )dzd and J; = d+2a+1/ 29 [(ya/19l,ya/za)dza-
Yd Zd yd g

Since xg < 1/4, we get

s 1/“ () dzg < ey (— )”*/md T g < ()
x 2 2q < cx — )z z 2g X U(—).
¢ o 0 “zayd 4= M ! ZTdYd
Thus, by Lemma and the fact |y| =< 1 by (11.28]) (and recalling

U(t) =¥(2) >0on |0,2)),

Td 1 1
Jﬁx‘“/ 2900 (——)dzg < ¥ (—). 11.30
1 d 0 d (Zdyd) (:Udyd) ( )
Note that, by (|11.15]),
> —d—a—1 v 1 & _d_a_1+ 1
v \I'(—)dv < c\Il(—) v 2+ dy =< \11(—)
2 2

Yd Yd Yd
Thus, by Lemmas and with the fact |g] < 1,

1 2 1 1 Zq¥d du
Jggc\ll()—f—c/ U(— )dzdgc\ll()—l—c/ U(u)—.
Ya Ya ZdYd Yd i U
(11.31)

For J;, we use Lemma with the fact |y| < 1 (so that (zg4/]y]) <
(ya/lyl) < c for zq < ya),

Y Y,
Jggc/dzglxp( Yz + cy;® 1/dquf(yd)dzd
T Zq

4 Ydzd 2d
Yd

1
T3yq du T du
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1 Yd 1 Yd
<o [uw e [T = [Tuofe [ ew
1 u 1 u 1 u 1 u

Since

1 Yd_ 1 1
/ v \I!(u)du—l—/4 T (u )@ <2/ ‘I!(u)du+2/ v \I/(u)d—“,
% u : u i u 1 U

we obtain we obtain

IS

=

1

; d
Js <c+ c/ e \I/(u);u. (11.32)
1

Using zqyq < (V2 +1/4)/4 < 7/16, we get

[ (v

X‘I’(l)/lw du+‘1’(1)/;d o mw( ety s

Tdyd U Yd u Tayd Yd

2 z4vq

Therefore, we conclude from (11.30)—(11.33|) that

1

1 1 Tqyq du
x,y) <c(Jy+ Jo+ J Sc—i—c\I/—i—c\I/—i—c/ U(u)—
q(z,y) < c(J1+ J2 + J3) (:L’dyd) (yd) 1 ()u
1
x/”y“‘ q/(v)dl. O
1 v

Recall that J(x,y) = j(z,y) + q(z,y) and B(z,y) = J(z,y)/j(z,y) =
L+ q(2,y)/i(2,y), so that B(x,y) —1 = q(w y)/i(z,y).

Proof of Theorem Using (2.1)), (2.10)—(2.12) follow from Propositions
11.6| and The assertions ([2.13])- |-) follow from and Lemma
2.3((a ]

)-(b). The proof is now complete.
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