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Abstract. In this paper we study the potential theory of Dirichlet
forms on the half-space Rd

+ defined by the jump kernel J(x, y) = |x −
y|−d−αB(x, y) and the killing potential κx−α

d , where α ∈ (0, 2) and
B(x, y) can blow up to infinity at the boundary. The jump kernel and the
killing potential depend on several parameters. For all admissible values
of the parameters involved and all d ≥ 1, we prove that the boundary
Harnack principle holds, and establish sharp two-sided estimates on the
Green functions of these processes.
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1. Introduction

In this paper, we study the potential theory of purely discontinuous sym-
metric Markov processes in the upper half-space Rd

+ := {x = (x̃, xd) : xd >

0}, d ≥ 1, with jump kernel of the form J(x, y) = |x − y|−d−αB(x, y),
α ∈ (0, 2), where B(x, y) is degenerate at the boundary of Rd

+. In our recent
papers [21, 22, 23], we have studied the case when B(x, y) decays to zero
at the boundary. In this paper, we study the case when B(x, y) blows up
at the boundary and establish the boundary Harnack principle and sharp
two-sided estimates on the Green functions.

One of our main motivation to study this problem comes from the fol-
lowing natural example of a process with jump kernel blowing up at the
boundary. Let X = (Xt,Px) be an isotropic α-stable process in Rd. Define

At :=
∫ t
0 1(Xs∈Rd

+)ds and let τt := inf{s > 0 : As > t} be its right-continuous

inverse. The process Y = (Yt)t≥0, defined by Yt = Xτt , is a Hunt process on
Rd
+, called the trace process of X on Rd

+ (the name path-censored process
is also used in some literature, see [26]). The part of the process Y until
its first hitting time of the boundary ∂Rd

+ = {(x̃, 0) : x̃ ∈ Rd−1} can be
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described in the following way: Let τ = τRd
+
= inf{t > 0 : Xt /∈ Rd

+} be the

exit time of X from Rd
+, x = Xτ− ∈ Rd

+ the position from which X jumps

out of Rd
+, and z = Xτ be the position where X lands at the exit from Rd

+.

Then z ∈ Rd
− a.s., where Rd

− := {x = (x̃, xd) : xd < 0}. The distribution

of the returning position of X to Rd
+ is given by the Poisson kernel of the

process X in Rd
− (i.e., the density of the distribution of XτRd−

on Rd
+):

PRd
−
(z, y) =

∫
Rd
−

GX
Rd
−
(z, w)j(w, y) dw, y ∈ Rd

+. (1.1)

Here GX
Rd
−
(z, w) is the Green function of the process X killed upon exiting

Rd
−, j(w, y) = A(d, α)|w − y|−d−α is the jump kernel of X and A(d, α) =

2απ−d/2Γ((d+ α)/2)/|Γ(−α/2)|.
This implies that when X jumps out of Rd

+ from the point x, we continue

the process by resurrecting it at y ∈ Rd
+ according to the kernel

q(x, y) :=

∫
Rd
−

j(x, z)PRd
−
(z, y) dz, x ∈ Rd

+. (1.2)

We will call q(x, y) a resurrection kernel. Since the Green function GX
Rd
−
(·, ·)

is symmetric, it follows that q(x, y) = q(y, x) for all x, y ∈ Rd
+. The kernel

q(x, y) introduces additional jumps from x to y. By using Meyer’s construc-
tion (see [27]), one can construct a resurrected process on Rd

+ with jump
kernel J(x, y) = j(x, y) + q(x, y). The resurrected process is equal to the
part of the trace process Y until it first hits ∂Rd

+. It follows from [7, Theorem
6.1] (where q(x, y) is called the interaction kernel) that in case d ≥ 3,

J(x, y) ≍ q(x, y) ≍ |x− y|–d−α

(
|x− y|2

xdyd

)α/2

, xd ∧ yd ≤ |x− y|.

This asymptotic relation shows that the jump kernel J(x, y) blows up with

rate x
−α/2
d when x approaches the boundary ∂Rd

+. Here and throughout
the paper, the notation f ≍ g for non-negative functions f and g means
that there exists a constant c ≥ 1 such that c−1g ≤ f ≤ cg. We also use
a ∧ b := min{a, b} and a ∨ b := max{a, b}.

Another motivation for this paper is the process introduced in [14, 28] to
study non-local Neumann problems. See also [16] and the references therein.
For the process in [14, 28], the resurrection kernel q(x, y) is given by (1.2)
with the Poisson kernel PRd

−
(z, y) replaced by j(z, y)/

∫
Rd
+
j(z, w)dw. The

jump kernel of this process also blows up at the boundary, see Remark
2.6(b).

In Section 2 we substantially generalize these two examples by replacing
the Poisson kernel PRd

−
(z, y) and the kernel j(z, y)/

∫
Rd
+
j(z, w)dw by a very

general return kernel p(z, y). The kernel p(z, y), z ∈ Rd
−, y ∈ Rd

+, is chosen
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so that the corresponding resurrection kernel

q(x, y) =

∫
Rd
−

j(x, z)p(z, y) dy, x, y ∈ Rd
+,

is symmetric. This flexibility in choosing the return kernel allows us to
obtain resurrection kernels with various blow-up rates at the boundary. The
main result in this direction is Theorem 2.4.

Note that the jump kernel J(x, y) = j(x, y) + q(x, y) of the resurrected
process may be written in the form J(x, y) = j(x, y)B(x, y) with B(x, y) :=
1 + q(x, y)/j(x, y). Since the jump kernel j(x, y) is bounded away from the
diagonal, the blow up at the boundary comes from the term B(x, y). The
estimates in Theorem 2.4 contain also the asymptotics of the term B(x, y)
and imply that the resurrected process satisfies (A1)–(A4) below. The
proof of Theorem 2.4 is quite long and technical and is therefore postponed to
Section 11. Let us mention that Sections 2 and 11 are logically independent
from the rest of the paper, and also serve as the motivation for the general
set-up that we now introduce.

Let d ≥ 1, α ∈ (0, 2) and assume that 0 ≤ β1 ≤ β2 < 1 ∧ α. Let Φ be a
positive function on [2,∞) satisfying the following weak scaling condition:
There exist constants C1, C2 > 0 such that

C1(R/r)
β1 ≤ Φ(R)

Φ(r)
≤ C2(R/r)

β2 , 2 ≤ r < R <∞. (1.3)

For notational convenience, we extend the domain of Φ to [0,∞) by letting
Φ(t) ≡ Φ(2) > 0 on [0, 2). Then for any δ > 0, there exist constants

C̃1, C̃2 > 0 depending on δ such that

C̃1(R/r)
β1 ≤ Φ(R)

Φ(r)
≤ C̃2(R/r)

β2 , δ ≤ r < R <∞.

Let β̃2 be the upper Matuszewska index of Φ (see [5, pp. 68-71]):

β̃2 := inf{β > 0 : ∃a ∈ (0,∞) s.t. Φ(R)/Φ(r) ≤ a(R/r)β for 2 ≤ r < R <∞}.

Note that the inequality Φ(R)/Φ(r) ≤ a(R/r)β̃2 may, but need not hold for
any a ∈ (0,∞).

Define

j(x, y) = A(d, α)|x− y|−α−d and J(x, y) = j(x, y)B(x, y).

We will assume that B(x, y) satisfies the following conditions:

(A1) B(x, y) = B(y, x) for all x, y ∈ Rd
+.

(A2) If α ≥ 1, there exists θ > α− 1 such that for every a > 0 there exists
C = C(a) > 0 such that

|B(x, x)−B(x, y)| ≤ C

(
|x− y|
xd ∧ yd

)θ

for all x, y ∈ Rd
+ with xd∧yd ≥ a|x−y|.
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(A3) There exists C ≥ 1 such that

C−1Φ

(
|x− y|2

xdyd

)
≤ B(x, y) ≤ CΦ

(
|x− y|2

xdyd

)
for all x, y ∈ Rd

+. (1.4)

(A4) For all x, y ∈ Rd
+ and a > 0, B(ax, ay) = B(x, y). In case d ≥ 2, for

all x, y ∈ Rd
+ and z̃ ∈ Rd−1, B(x+ (z̃, 0), y + (z̃, 0)) = B(x, y).

Note that (A3) implies that B(x, y) is bounded from below by a positive
constant, and (A4) implies that x 7→ B(x, x) is constant.

For κ ∈ [0,∞) we define the function κ(x) := κx−α
d on Rd

+ and set

Eκ(u, v) :=
1

2

∫
Rd
+

∫
Rd
+

(u(x)−u(y))(v(x)−v(y))J(x, y)dydx+
∫
Rd
+

u(x)v(x)κ(x)dx,

where u, v : Rd
+ → R. Let F0 be the closure of C∞

c (Rd
+) in L2(Rd

+, dx)
under E0

1 := E0 + (·, ·)L2(Rd
+,dx). Then, due to β2 < 1 ∧ α, (E0,F0) is a

regular Dirichlet form on L2(Rd
+, dx) (see Section 3 below). Let

Fκ := F̃0 ∩ L2(Rd
+, κ(x)dx),

where F̃0 is the family of all E0
1 -quasi-continuous functions in F0. Then

(Eκ,Fκ) is also a regular Dirichlet form on L2(Rd
+, dx). As we will ex-

plain in Section 3, under assumptions (A1)-(A4), there exists a symmetric,
scale invariant and horizontally translation invariant Hunt process Y κ =
((Y κ

t )t≥0, (Px)x∈Rd
+
) associated with (Eκ,Fκ). In case κ > 0, the process Y κ

is transient. To show these facts we will use results proved in [25].
We now associate the constant κ from the killing function κ(x) = κx−α

d
with a positive parameter p = pκ which will play a major role in the paper.

Let ed := (0̃, 1). For q ∈ (−1, α− β̃2), set

C(α, q,B)=


∫
Rd−1

∫ 1
0

(sq−1)(1−sα−q−1)
(1−s)1+α

B((1−s)ũ,1),sed)

(|ũ|2+1)(d+α)/2 dsdũ, d ≥ 2∫ 1
0

(sq−1)(1−sα−q−1)
(1−s)1+α B

(
1, s
)
ds, d = 1.

Then C(α, 0,B) = C(α, α − 1,B) = 0 and the function q 7→ C(α, q,B) is

strictly increasing and continuous on [(α − 1)+, α − β̃2). Consequently, for
every 0 ≤ κ < lim

q↑α−β̃2
C(α, q,B) ≤ ∞, there exists a unique pκ ∈ [(α −

1)+, α− β̃2) such that κ = C(α, pκ,B). When Φ(r) = rβ with β ∈ (0, 1∧α),
it holds that limq↑α−β C(α, q,B) = ∞ (see Lemma 4.4), so κ 7→ pκ is an
increasing bijection from [0,∞) onto [(α− 1)+, α− β). In the remainder of
this introduction we will fix κ ∈ [0, lim

q↑α−β̃2
C(α, q,B)), and assume α > 1

if κ = 0 so that p0 = α − 1 > 0. We will show in Section 4 that Y 0 is
transient when α ∈ (1, 2). For notational simplicity, in the remainder of this
introduction, we omit the superscript κ from the notation: For example, we
write Y instead of Y κ, and p instead of pκ in (4.5).
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The role of the parameter p and its connection to C(α, p,B) can be seen
from the following observation. Let

LBf(x) = p.v.

∫
Rd
+

(f(y)− f(x))J(x, y) dy − C(α, p,B)x−α
d f(x), x ∈ Rd

+,

whenever the principal value integral makes sense. If gp(x) = xpd, then

LBgp ≡ 0, see Lemma 4.5. Hence the operator LB annihilates the p-th
power of the distance to the boundary.

The first main result of the paper is the scale invariant boundary Harnack
principle with exact decay rate: If a non-negative harmonic function vanishes
continuously at a part of the boundary ∂Rd

+, then the decay rate is equal to
the p-th power of the distance to the boundary.

For an open subset D of Rd
+, let τD := inf{t > 0 : Yt /∈ D} be the first

exit time of the process Y from D.

Definition 1.1. A non-negative Borel function defined on Rd
+ is said to be

harmonic in an open set V ⊂ Rd
+ with respect to Y if for every bounded open

set D ⊂ D ⊂ V ,

f(x) = Ex [f(YτD) : τD <∞ ] for all x ∈ D.

A non-negative Borel function f defined on Rd
+ is said to be regular harmonic

in an open set V ⊂ Rd
+ if

f(x) = Ex [f(YτV ) : τV <∞ ] for all x ∈ V.

When d ≥ 2, for a, b > 0 and w̃ ∈ Rd−1, we define

Dw̃(a, b) := {x = (x̃, xd) ∈ Rd : |x̃− w̃| < a, 0 < xd < b}. (1.5)

By abusing notation, in case d = 1, we will use Dw̃(a, b) to stand for the
open interval (0, b) = {y ∈ R+ : 0 < y < b}.

Theorem 1.2. Suppose p ∈ (0, α − β̃2) ∩ [(α − 1)+, α − β̃2). Assume that
B satisfies (A1)-(A4). Then there exists C ≥ 1 such that for all r > 0,
w̃ ∈ Rd−1, and any non-negative function f in Rd

+ which is harmonic in
Dw̃(2r, 2r) with respect to Y and vanishes continuously on B((w̃, 0), 2r) ∩
∂Rd

+, we have

f(x)

xpd
≤ C

f(y)

ypd
, x, y ∈ Dw̃(r/2, r/2). (1.6)

The second main result is on sharp two-sided estimates for the Green
function of the process Y . We recall in Section 3 the definition of the Green
function G(x, y), x, y ∈ Rd

+, and comment on its existence.

Theorem 1.3. Suppose that p ∈ (0, α − β̃2) ∩ [(α − 1)+, α − β̃2) and that
B satisfies (A1)-(A4). Then the process Y admits a Green function G :
Rd
+ × Rd

+ → [0,∞] such that G(x, ·) is continuous in Rd
+ \ {x} and regular
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harmonic with respect to Y in Rd
+ \B(x, ϵ) for any ϵ > 0. Moreover, G(x, y)

has the following estimates: for all x, y ∈ Rd
+,

G(x, y)≍



(
xd

|x− y|
∧ 1

)p( yd
|x− y|

∧ 1

)p 1

|x− y|d−α
, α < d;(

x ∧ y
|x− y|

∧ 1

)p

log

(
e+

x ∨ y
|x− y|

)
, α = 1 = d;(

x ∧ y
|x− y|

∧ 1

)p

(x ∨ y ∨ |x− y|)α−1 , α > 1 = d.

(1.7)

Let us emphasize here that in case κ = 0 and α > 1, by using several
cutting-edge techniques developed here as well as in our previous papers
[21, 22, 23], we succeeded to establish that, regardless of the blow-up rate
of the function B, the decay rate of harmonic functions as well as the Green
function is given by p = α − 1. We have shown in [23] that the same
phenomenon also occurs in case when B decays to zero at the boundary.
In view of the fact that this is the same decay rate as for the censored α-
stable process (or, equivalently, the regional fractional Laplacian), this can
be regarded as a stability result even for degenerate non-local operators.

Our strategy for proving the two main results above consists of several
steps.

The first step is to show certain interior potential-theoretic results for
the process Y . This is done in [25] in a more general setting than that of
the current paper. One of the key difficulties is the fact that Y need not
have the Feller property. Despite this obstacle we established a Dynkin-type
formula on relatively compact open subsets D of Rd

+ for functions in C2(D)

defined on Rd
+, see Theorem 3.3. Another important result coming from [25]

is the Harnack inequality, see Theorem 3.5. These and some other results
are described in the preliminary Section 3.

The second step consists of studying the action of the operator LB on
the powers of the distance to the boundary. This allows an extension of
the Dynkin-type formula to not relatively compact open sets D(r, r) for
functions xpd1D(R,R) for 2r < R, see Proposition 5.3. This extension together
with Theorem 3.3 plays a major role throughout this paper.

The third step is to establish certain exit probability estimates, see Lemma
6.3 and Proposition 6.5. The key ingredient in proving these lemmas is
to find suitable test functions (barriers) and to estimate the action of the
operator LB on them. This is done in Lemma 6.1. The proof of this lemma
is quite involved and relies on some rather delicate estimates of certain
integrals due to the general nature of Φ, see Lemma 6.6.

The fourth step is the Carleson estimate, Theorem 7.1, for non-negative
harmonic functions vanishing on a part of the boundary. The proof, although
standard, requires several modifications due to the blow up of the jump
kernel at the boundary.
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The next step consists of showing interior estimates for the Green function
G(x, y), see Propositions 8.1 and 8.4. By interior we mean that the distance
between x and y is small comparable to the distance of these points to the
boundary. Here we distinguish two cases: d > α and d = 1 ≤ α. The proof
of the upper bound of the former case uses the Hardy inequality, while the
proof of the lower bound employs a capacity argument. In the latter case,
we use the capacity estimates of the one-dimensional killed isotropic stable
process and a version of the capacity argument for the process Y .

Next, we obtain the preliminary upper bound of the Green function with
correct boundary decay. We first show, see Theorem 9.1, that the Green
function decays at the boundary. This allows us to use the Carleson estimate
and extend the upper interior estimate of G(x, y) to all points x, y ∈ Rd

+,
cf. Proposition 9.2. In Lemma 9.3 we insert in the upper estimate the
boundary part

(xd∧yd
|x−y| ∧ 1

)p
. The proof depends on delicate estimates of the

jump kernel, and again, on the powerful Lemma 6.6. As an application, in
Proposition 9.4 we give some upper estimates on the Green potentials of
powers of the distance to the boundary. These upper estimates, together
with exit probability estimates, the Harnack inequality and the Carleson
estimate, lead to a rather straightforward proof of Theorem 1.2.

Finally, we use the interior Green function estimates, the boundary Har-
nack principle and scaling to obtain the sharp two-sided Green function
estimates.

We end this introduction with a few comments on the assumptions (A1)-
(A4) and their relation to the assumptions in [21, 22, 23], where the jump
kernel decays at the boundary. Assumption (A1) ensures the symmetry
of the jump kernel and hence the process Y . Assumption (A2) is used
in the analysis of the generator LB, and allows to establish a Dynkin-type
formula. Assumption (A4) is natural in the context of the half-space Rd

+

and, in particular, ensures the scaling property of the process Y . These
three assumptions were also postulated in [21, 22, 23]. The main difference
with those papers is in assumption (A3) which provides the blow-up of
jump kernel at the boundary and is motivated by Section 2. In case when
Φ(t) = tβ, t ≥ 2, for 0 ≤ β < α ∧ 1, (A3) is equivalent to the condition

B(x, y) ≍
(
xd ∧ yd
|x− y|

∧ 1

)−β (xd ∨ yd
|x− y|

∧ 1

)−β

. (1.8)

In [21, 22, 23], the assumptions on B(x, y) included the case when

B(x, y) ≍
(
xd ∧ yd
|x− y|

∧ 1

)β (xd ∨ yd
|x− y|

∧ 1

)β

, (1.9)

with β ≥ 0. In case β > 0, this implies the decay of jump kernel at the
boundary. Thus we can regard (1.8) as an extension of (1.9) from β ∈ [0,∞)
to β ∈ (−(α ∧ 1), 0]. Of course, (A3) is much more general than (1.8).

It is instructive to look at the effect of blow-up and the decay of B deter-
mined by β ∈ (−(α∧1),∞) on the range of possible values of the parameter
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p. By using [21], we see that p ∈ (0, α+β)∩ [(α−1)+, α+β). By increasing
the parameter β from 0 to ∞ (and thus making the decay of B sharper), the
upper boundary of the range of p also increases from α to ∞. On the other
hand, by decreasing the parameter β from 0 to −(1 ∧ α) (and thus making
the blow-up higher), the upper boundary of the range of p decreases from α
to (α− 1)+. Therefore, the larger the blow-up at the boundary, the smaller
the effect of the killing function.

Notation: Throughout this paper, capital C, with or without subscript,
is used only for assumptions or the statements of results, while lower case
c and ci, i = 1, 2, . . . , are used in the proofs. The value of c may change
from one appearance to another, but the value of ci stays fixed in the same
proof. The notation C = C(a, b, . . .) indicates that the constant C depends
on a, b, . . .. We will use “:=” to denote a definition, which is read as “is
defined to be”. We will use notations logb a = (log a)b, a+ := a ∨ 0 and
a− := (−a) ∨ 0. For any x ∈ Rd and r > 0, we use B(x, r) to denote the
open ball of radius r centered at x. For a Borel subset V in Rd, |V | denotes
the Lebesgue measure of V in Rd, we use the superscript instead of the
subscript for the coordinate of processes as Y = (Y 1, . . . , Y d).

2. Resurrection kernel

Let p : Rd
− × Rd

+ → [0,∞) be a function such that, for each z ∈ Rd
−,

p(z, ·) is a probability density on Rd
+, that is,

∫
Rd
+
p(z, y) dy = 1. Recall that

j(x, z) = A(d, α)|x− z|−d−α, α ∈ (0, 2). Let

q(x, y) :=

∫
Rd
−

j(x, z)p(z, y) dz , x, y ∈ Rd
+,

and define a resurrected process on Rd
+ with jump kernel J(x, y) = j(x, y)+

q(x, y). The idea is that when an isotropic α-stable process exits Rd
+ by

jumping to z ∈ Rd
−, it is immediately returned to y ∈ Rd

+ according to the
probability distribution p(z, y)dy. Therefore we call p(z, y) a return kernel.
The kernel q(x, y), which we call a resurrection kernel, introduces additional
jumps from x to y, thus, the jump kernel of the resurrected process should
be J(x, y) = j(x, y) + q(x, y). The process can be constructed via Meyer’s
construction in [27], or, in case of symmetric q(x, y), by using Dirichlet
form theory. Since p(z, ·) is a probability density, an application of Fubini’s
theorem gives that

∫
Rd
+
q(x, y)dy =

∫
Rd
−
j(x, z)dz <∞, x ∈ Rd

+.

We would like the resurrected process to be symmetric, to have the scaling
property and to be invariant with respect to horizontal translation. Since
j(x, z) = A(d, α)|x− z|−d−α, the above properties will follow from the sym-
metry of q, the homogeneity of q:

q(λx, λy) = λ−d−αq(x, y) , λ > 0, x, y ∈ Rd
+, (2.1)
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and the horizontal translation invariance (in case d ≥ 2) of q:

q(x+ (ũ, 0), y + (ũ, 0)) = q(x, y), ũ ∈ Rd−1. (2.2)

This will depend on properties of the probability kernel p(z, y). We now
recall the examples from the introduction.

Example 2.1. (a) For the trace process of an isotopic α-stable process on
Rd
+,

p(z, y) = c
|zd|α/2

y
α/2
d

|z − y|−d = c|zd|α
(
|y − z|2

yd|zd|

)α/2

|y − z|−d−α, (2.3)

is the Poisson kernel for Rd
−. The formula (2.3) can be derived from the

Poisson kernel for balls, see [2, 3]. From (1.1) and (1.2) we see that the
corresponding resurrection kernel q(x, y) is symmetric, and from (2.3) that
it satisfies (2.1) and (2.2).
(b) For the process studied in [14, 28],

p(z, y) =
j(z, y)

µ(z)
, where µ(z) =

∫
Rd
+

j(z, y)dy.

Clearly, the corresponding resurrection kernel q(x, y) is symmetric. Since
µ(z) = c−1|zd|−α, we get that

p(z, y) = c|zd|α|z − y|−d−α.

So q(x, y) satisfies (2.1) and (2.2).

Motivated by these two examples, we now introduce a very general return
kernel p(z, y). Let γ1, γ2 be two constants such that −∞ < γ1 ≤ γ2 < 1∧α.
Let Ψ be a positive function on [2,∞) satisfying the following weak scaling
condition: There exist constants C1, C2 > 0 such that

C1(R/r)
γ1 ≤ Ψ(R)

Ψ(r)
≤ C2(R/r)

γ2 , 2 ≤ r < R <∞.

For notational convenience, we extend the domain of Ψ to [0,∞) by letting

Ψ(t) ≡ Ψ(2) > 0 on [0, 2). In particular, for any δ > 0, there exist C̃1, C̃2

depending on δ such that

C̃1(R/r)
γ1 ≤ Ψ(R)

Ψ(r)
≤ C̃2(R/r)

γ2 , δ ≤ r < R <∞,

and

C̃1(R/r)
−γ1− ≤ Ψ(R)

Ψ(r)
≤ C̃2(R/r)

γ2+ , δ ≤ r < R <∞. (2.4)

Observe that after the change of variables ũ = udṽ (when d ≥ 2), we see
that

A :=

∫
Rd
+

Ψ((|ũ|2 + (ud + 1)2)/ud)

(|ũ|2 + (ud + 1)2)(d+α)/2
du
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≤ cΨ(2)

∫
Rd−1

∫ ∞

0

ud
−γ2+

(|ũ|2 + (ud + 1)2)(d+α)/2−γ2+
duddũ

≤ c

∫ 1

0

dud
ud

γ2+

∫
Rd−1

dũ

(|ũ|+ 1)d+α−2γ2+
+ c

∫
Rd−1

∫ ∞

1

ud
−γ2+duddũ

(|ũ|2 + u2d)
(d+α)/2−γ2+

≤ c+ c

∫ ∞

1
u
γ2+−α−1

d dud

∫
Rd−1

dṽ

(|ṽ|+ 1)d+α−2γ2+
<∞.

In the second line we used (2.4) and, in the last inequality we used the fact
0 ≤ γ2+ < 1 ∧ α.

Note that for y ∈ Rd
+ and z ∈ Rd

−, |y − z|2/(yd|zd|) ≥ (yd+|zd|)2/(yd|zd|) ≥
2. For y ∈ Rd

+ and z ∈ Rd
−, define

p̃(z, y) := |zd|αΨ
(
|y − z|2

yd|zd|

)
|y − z|−d−α. (2.5)

It is easy to see that (a) p̃(λz, λy) = λ−dp̃(z, y) for all λ > 0, z ∈ Rd
−,

y ∈ Rd
+; (b) p̃(z + (ũ, 0), y + (ũ, 0)) = p̃(z, y) for all ũ ∈ Rd−1, z ∈ Rd

−,

y ∈ Rd
+; (c) There exists c ≥ 1 such that for all r > 0 and y0 ∈ Rd

+ with

B(y0, 2r) ⊂ Rd
+ and y1, y2 ∈ B(y0, r),

c−1p̃(w, y1) ≤ p̃(w, y2) ≤ cp̃(w, y1) for all w ∈ Rd
−. (2.6)

Moreover, by the change of variables u = |zd|−1(ỹ − z̃, yd) we also have the
property: (d)

∫
Rd
+
p̃(z, y)dy = A for all z ∈ Rd

−.

Thus p(z, ·) := A−1p̃(z, ·) is a probability density. When Ψ(t) = tα/2,
t ≥ 2, we recover the return kernel from Example 2.1(a), while Ψ(t) = 1
gives the return kernel in Example 2.1(b).

With the p̃(z, y) defined in (2.5), q(x, y) can be written as

q(x, y) = C
∫
Rd
−

Ψ

(
|y − z|2

yd|zd|

)
|zd|α

|x− z|d+α|y − z|d+α
dz, x, y ∈ Rd

+, (2.7)

where C := A(d, α)A−1. From the properties (a)-(b) above we have (2.1)
and (2.2).

In the next result, we show that the kernel q in (2.7) is symmetric.

Proposition 2.2. The resurrection kernel q is symmetric.

Proof. Assume that d ≥ 2, the proof for d = 1 being much easier. Let
x and y be any two points in Rd

+. If xd = yd, by the change of variables
x̃− z̃ = w̃ − ỹ and wd = zd we see that

q(x, y) = C
∫
Rd−1

∫ 0

−∞
Ψ

(
|ỹ − z̃|2 + |yd − zd|2

yd|zd|

)
|zd|αdz̃ dzd

|x− z|d+α|y − z|d+α

= C
∫
Rd−1

∫ 0

−∞
Ψ

(
|x̃− w̃|2 + |xd − wd|2

xd|wd|

)
|wd|αdw̃ dwd

|y − w|d+α|x− w|d+α
= q(y, x).
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For the remainder of the proof, we assume xd ̸= yd. Without loss of gen-
erality, we assume that x = (x1, 0̂, xd), y = (y1, 0̂, yd), and that the line
connecting x and y intersects the hyperplane zd = 0 at the origin. Then

0 =
ydx1 − xdy1
yd − xd

, x1 =
y1 − x1
yd − xd

xd, y1 =
y1 − x1
yd − xd

yd.

For r > 0, we define Tz = r2z/|z|2. We choose r so that Tx = y and

Ty = x, i.e., r2

|x|2 (x1, 0̂, xd) = (y1, 0̂, yd). Thus

|x|2

r2
=
xd
yd

and
|y|2

r2
=

r2

|x|4
(x21 + x2d) =

r2

|x|2
=
yd
xd
. (2.8)

We now fix this r. We also write Tz as z∗. Then Tx = y and Ty = x.
We have zd = r2z∗d/|z∗|2 and

|x−z| = |Ty−Tz∗| = r2|y − z∗|
|y||z∗|

, |y−z| = |Tx−Tz∗| = r2|x− z∗|
|x||z∗|

. (2.9)

Hence, by (2.8), (2.9) and the fact zd = r2z∗d/|z∗|2,

|y − z|2

yd|zd|
=
r2|x− z∗|2

|x|2yd|z∗d|
=

r2xd
|x|2yd

|x− z∗|2

xd|z∗d|
=

|x− z∗|2

xd|z∗d|
,

and

|x− z|−d−α|zd|α|z − y|−d−α = |y − z∗|−d−α|z∗d|α|z∗ − x|−d−αr−2d|z∗|2d.

Note that |det(JTz)| = r2d/|z|2d. Consequently

q(x, y) = C
∫
Rd
−

|y − z∗|−d−αΨ

(
|x− z∗|2

xd|z∗d|

)
|z∗d|α

|x− z∗|d+α
r−2d|z∗|2ddz

= C
∫
Rd
−

|y − z∗|−d−αΨ

(
|x− z∗|2

xd|z∗d|

)
|z∗d|α

|x− z∗|d+α
dz∗ = q(y, x). 2

Define

Ψ1(u) :=

∫ u

1

Ψ(v)

v
dv, u ≥ 2.

Lemma 2.3. (a) Ψ1 ≍ 1 when γ2 < 0. (b) When γ1 > 0, we have Ψ1 ≍ Ψ.
(c) When γ2 ≥ 0, there exists a constant C > 0 such that

1 ≤ Ψ1(R)

Ψ1(r)
≤ C(R/r)γ2 log(R/r), 2 ≤ r < R <∞.

Proof. Since Ψ1 is an increasing function by definition, clearly, 1 ≤ Ψ1(R)
Ψ1(r)

for 2 ≤ r < R < ∞. When γ2 ≥ 0, for any u ≥ 2 and λ ≥ 1, since
Ψ(w) = Ψ(2) for all w ∈ [0, 1], we have

Ψ1(λu) =

∫ u

1/λ

Ψ(λw)

w
dw ≤ cλγ2

∫ u

1/λ

Ψ(w)

w
dw ≤ cλγ2(Ψ1(u) +

∫ 1

1/λ

1

w
dw)

=cλγ2(Ψ1(u) + log λ)≤cλγ2(Ψ1(u) + (Ψ1(u)/Ψ1(2)) log λ)≤cΨ1(u)λ
γ2 log λ.
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When γ2 < 0, for any u > 2, since Ψ(v) = Ψ(2) for all v ∈ [0, 1], we have

Ψ1(2)≤Ψ1(u)=

∫ u

1

Ψ(v)

v
dv≤cΨ1(2)

∫ u

1

dv

v1−γ2
≤cΨ1(2)

∫ ∞

1

dv

v1−γ2
≤cΨ1(2).

If γ1 > 0 we have that for u ≥ 2,

Ψ(u) ≍ Ψ(u)u−γ2

∫ u

1
v−1+γ2dv ≤ cΨ(u)

∫ u

1
v−1Ψ(v)

Ψ(u)
dv = cΨ1(u)

= cΨ(u)

∫ u

1
v−1Ψ(v)

Ψ(u)
dv ≤ cΨ(u)u−γ1

∫ u

1
v−1+γ1dv ≍ Ψ(u). 2

We now state the main result of this section – sharp two-sided estimates
for the resurrection kernel q(x, y) and the jump kernel J(x, y). Since the
proof of this result is quite technical and long, we postpone it to Section 11.

Theorem 2.4. Let x, y ∈ Rd
+.

(a) For xd ∧ yd > |x− y|, it holds that

q(x, y) ≍ (xd ∧ yd)−d−α ≍ (xd ∨ yd)−d−α (2.10)

and

B(x, y)− 1 ≍
(
|x− y|
xd ∧ yd

)d+α

. (2.11)

(b) For xd ∧ yd ≤ |x− y|, it holds that

q(x, y) ≍ J(x, y) ≍ |x− y|−d−αΨ1

(
|x− y|2

xdyd

)
. (2.12)

In particular, if γ1 > 0, then

q(x, y) ≍ J(x, y) ≍ |x− y|−d−αΨ
( |x− y|2

xdyd

)
for xd ∧ yd ≤ |x− y|, (2.13)

and, if γ2 < 0, then

q(x, y) ≍ J(x, y) ≍ |x− y|−d−α for xd ∧ yd ≤ |x− y|. (2.14)

Recall that we can write J(x, y) = j(x, y)B(x, y) with B(x, y) := 1 +
q(x, y)/j(x, y). We have already shown in (2.1) and (2.2) that the function
B(x, y) satisfies (A4). Note that, by Proposition 2.2, (2.6) and [25, Lemma
7.2], (A1)-(A2) hold. Moreover, combining Theorem 2.4 with Lemma
2.3(c), we now see (A3) holds too. Therefore, the resurrected process with
the resurrection kernel (2.7) satisfies (A1)–(A4).

From Theorem 2.4(b), we also see that if γ1 > 0, then the function Ψ and
the function Φ from (1.3) can be taken to be the same. The next corollary,
which is an immediate consequence of the theorem above, shows that the
functions Ψ and Φ may not be the same in general.
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Corollary 2.5. Let γ ∈ (−∞, 1 ∧ α) and δ ∈ R. Suppose Ψ(t) = tγ logδ t,
t ≥ 2, that is, up to a multiplicative constant,

p(z, y) =
|zd|α−γ

yγd

logδ
(
|y−z|2
yd|zd|

)
|y − z|d+α−2γ

, z ∈ Rd
−, y ∈ Rd

+.

Then for any x, y ∈ Rd
+ with xd ∧ yd > |x− y|, it holds that

q(x, y)≍(xd ∧ yd)−d−α≍(xd ∨ yd)−d−α, B(x, y)− 1 ≍
(
|x− y|
xd ∧ yd

)d+α

and for x, y ∈ Rd
+ with xd ∧ yd ≤ |x− y|, it holds that

q(x, y) ≍ J(x, y)

≍ |x− y|−d−α



(
|x−y|2
xdyd

)γ
logδ

(
|x−y|2
xdyd

)
when γ > 0;

logδ+1
(
|x−y|2
xdyd

)
when δ > −1, γ = 0;

log
(
e+ log

( |x−y|2
xdyd

))
when δ = −1, γ = 0;

1 when δ < −1, γ = 0;

1 when γ < 0.

(2.15)

Remark 2.6. (a) When Ψ(t) = tα/2, t ≥ 2 (so γ = α/2, δ = 0), which
corresponds to the trace process, see Example 2.1(a), we get from (2.15)
that for x, y ∈ Rd

+ with xd ∧ yd ≤ |x− y|,

J(x, y) ≍ q(x, y) ≍ |x− y|−d−α

(
|x− y|2

xdyd

)α/2

= |x− y|−dx
−α/2
d y

−α/2
d .

This generalizes [7, Theorem 6.1] to dimensions 1 and 2.

(b) When Ψ(t) = 1 (so γ = δ = 0), which corresponds to Example 2.1(b),
we get from (2.15) that for x, y ∈ Rd

+ with xd ∧ yd ≤ |x− y|,

J(x, y)≍q(x, y)≍|x−y|−d−α log

(
|x− y|2

xdyd

)
≍|x−y|−d−α log

(
e+

|x− y|
xd ∧ yd

)
.

3. Consequences of main results of [25]

In this section, we recall the main results of [25] and apply them to our
setting. The paper [25] deals with a general proper open set D ⊂ Rd with
weaker assumptions. For readers’ convenience, we restate some results in
[25], that will be needed in this paper, in the present setting.

Let d ≥ 1, α ∈ (0, 2), and J(x, y) = j(x, y)B(x, y), x, y ∈ Rd
+, where

j(x, y) = j(|x − y|) = A(d, α)|x − y|−d−α and B(x, y) satisfies (A1)-(A4).
We recall the assumptions (H1)-(H5) imposed in [25] in case D = Rd

+.
The assumption (H1), respectively (H4), are precisely (A1), respectively
(A2). The other three assumptions are:
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(H2) For any a ∈ (0, 1) there exists C = C(a) ≥ 1 such that for all x, y ∈ Rd
+

satisfying xd ∧ yd ≥ a|x− y|, it holds that C−1 ≤ B(x, y) ≤ C.

(H3) For any a > 0 there exists C = C(a) > 0 such that∫
Rd
+,|y−x|>axd

J(x, y)dy ≤ Cx−α
d , x ∈ Rd

+.

(H5) For any ϵ ∈ (0, 1) there exists C = C(ϵ) ≥ 1 with the following
property: For all x0 ∈ Rd

+ and r > 0 with B(x0, (1 + ϵ)r) ⊂ Rd
+, we have

C−1B(x1, z) ≤ B(x2, z) ≤ CB(x1, z)

for all x1, x2 ∈ B(x0, r), z ∈ Rd
+ \B(x0, (1 + ϵ)r) .

It is shown in [25, Section 7] that (A1)-(A4) imply the assumptions
(H1)-(H5). This allows us to use here all the results proved in [25]. Note
that (H5) immediately implies that for any ϵ ∈ (0, 1) there exists C =
C(ϵ) ≥ 1 with the following property: For all x0 ∈ Rd

+ and r > 0 with

B(x0, (1 + ϵ)r) ⊂ Rd
+, it holds that

C−1J(x1, z) ≤ J(x2, z) ≤ CJ(x1, z) (3.1)

for all x1, x2 ∈ B(x0, r), z ∈ Rd
+ \B(x0, (1 + ϵ)r), see [25, (1.8)].

Recall from Section 1 that for κ(x) = κx−α
d , κ ∈ [0,∞), we introduced

Eκ(u, v) :=
1

2

∫
Rd
+

∫
Rd
+

(u(x)−u(y))(v(x)−v(y))J(x, y)dydx+
∫
Rd
+

u(x)v(x)κ(x)dx,

where u, v : Rd
+ → R. Let F0 be the closure of C∞

c (Rd
+) in L

2(Rd
+, dx) under

E0
1 = E0 + (·, ·)L2(Rd

+,dx) and let Fκ := F̃0 ∩ L2(Rd
+, κ(x)dx), where F̃0 is

the family of all E0
1 -quasi-continuous functions in F0. Then (E0,F0) and

(Eκ,Fκ) are Dirichlet forms on L2(Rd
+, dx). By [25, Proposition 3.3] there

exists a symmetric Hunt process Y κ = ((Y κ
t )t≥0, (Px)x∈Rd

+
) associated with

(Eκ,Fκ) which can start from every point x ∈ Rd. By ζκ we denote the
lifetime of Y κ and define Y κ

t = ∂ for t ≥ ζκ, where ∂ is a cemetery point
added to Rd

+.

If D ⊂ Rd is an open set, let τD := inf{t > 0 : Y κ /∈ D} be the exit

time of Y κ from D. The part process Y κ,D is defined by Y κ,D
t = Y κ

t if
t < τD, and is equal to ∂ otherwise. The Dirichlet form of Y κ,D is (Eκ,Fκ

D),

where Fκ
D = {u ∈ Fκ : u = 0 quasi-everywhere on Rd

+ \ D}. Here quasi-
everywhere means that the equality holds everywhere except on a set of
capacity zero with respect to Y κ.

Let CapY
κ,D

and CapX
D
denote the capacities with respect to the killed

processes Y κ,D, and killed isotropic stable process XD respectively. The
following result is proved in [25, Lemma 3.2]. Set dD := diam(D) and
δD := dist(D, ∂Rd

+).
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Lemma 3.1. [25, Lemma 3.2] For every a > 0, there exists C = C(a) > 0
such that for all relatively compact open subset D of Rd

+ with dD ≤ aδD, and
for any Borel A ⊂ D,

C−1CapY
κ,D

(A) ≤ CapX
D
(A) ≤ CCapY

κ,D
(A). (3.2)

We will also need the following mean exit time estimates.

Proposition 3.2. [25, Proposition 5.3] (a) There exists a constant C > 0
such that for all x0 ∈ Rd

+ and r > 0 with B(x0, r) ⊂ Rd
+, it holds that

ExτB(x0,r) ≥ Crα , x ∈ B(x0, r/3).

(b) For every ε > 0, there exists C = C(ε) > 0 such that for all x0 ∈ Rd
+

and all r > 0 satisfying B(x0, (1 + ε)r) ⊂ Rd
+, it holds that

ExτB(x0,r) ≤ Crα , x ∈ B(x0, r) .

For f : Rd → R and x ∈ Rd
+, set

LB
αf(x) := p.v.

∫
Rd
+

(f(y)− f(x))J(x, y) dy , (3.3)

whenever the principal value integral on the right-hand side makes sense.
Define

LBf(x) := LB
αf(x)− κ(x)f(x) , x ∈ Rd

+ .

By [25, Proposition 4.2(a)], if f ∈ C2
c (Rd), then LBf and LB

αf are well
defined for all x ∈ Rd

+. Moreover, by [25, Proposition 4.2(a)] and using the
same argument as in [21, Section 8.2] (or derive directly from (3.3)), we see
that for u ∈ C2

c (Rd) with u ≡ 0 on Rd
− and any r > 0,

LB
αf(x) =

∫
Rd
+

(u(y)− u(x)−∇u(x)1{|y−x|<r} · (y − x))J(y, x)dy

+

∫
Rd
+

∇u(x)1{|y−x|<r} · (y − x)j(y, x)(B(y, x)− B(x, x))dy

− B(x, x)
∫
Rd
−

∇u(x)1{|y−x|<r} · (y − x)j(y, x)dy. (3.4)

The expression (3.4) was crucially used in the proof of [21, Lemma 5.8(a)].
In this paper we also use (3.4) to estimate the action of the operator LB on
suitable test functions (barriers), see the proof of Lemma 6.1.

The following Dynkin-type formula is one of the main results of [25] and
will be extremely important in this paper.

Theorem 3.3. [25, Theorem 4.7] Suppose that D ⊂ Rd
+ is a relatively

compact open set. For any non-negative function f on Rd
+ with f ∈ C2(D)

and any x ∈ D,

Ex[f(Y
κ
τD

)] = f(x) + Ex

∫ τD

0
LBf(Y κ

s )ds .
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We also need the following Krylov-Safonov type estimate. Let TA be the
first hitting time to A for Y κ.

Lemma 3.4. [25, Lemma 5.4] For every ϵ ∈ (0, 1) there exists C = C(ϵ) > 0
such that for all x ∈ Rd

+ and r > 0 with B(x, (1+3ϵ)r) ⊂ Rd
+, and any Borel

set A ⊂ B(x, r),

Py(TA < τB(x,(1+2ϵ)r)) ≥ C
|A|

|B(x, r)|
, y ∈ B(x, (1 + ϵ)r).

The following scale invariant Harnack inequality is one of the main results
in [25].

Theorem 3.5. [25, Theorem 1.1] (a) There exists a constant C > 0 such
that for any r ∈ (0, 1], B(x0, r) ⊂ Rd

+ and any non-negative function f in

Rd
+ which is harmonic in B(x0, r) with respect to Y κ, we have

f(x) ≤ Cf(y), for all x, y ∈ B(x0, r/2).

(b) For any L > 0, there exists a constant C = C(L) > 0 such that for any
r ∈ (0, 1], all x1, x2 ∈ Rd

+ with |x1−x2| < Lr and B(x1, r)∪B(x2, r)Rd
+ and

any non-negative function f in Rd
+ which is harmonic in B(x1, r)∪B(x2, r)

with respect to Y κ, we have

f(x2) ≤ Cf(x1) .

For a Borel function f : Rd
+ → R, let

Gf(x) := Ex

∫ ζκ

0
f(Y κ

t ) dt, x ∈ Rd
+,

be the Green potential of f . It is shown in [25, Proposition 6.2] that if Y κ

is transient, then there exists a symmetric function G : Rd
+ × Rd

+ → [0,∞]
which is lower semi-continuous in each variable and finite off the diagonal
such that for every non-negative Borel f ,

Gf(x) =

∫
Rd
+

G(x, y)f(y) dy .

Moreover, G(x, ·) is harmonic with respect to Y in Rd
+ \ {x} and regular

harmonic with respect to Y κ in Rd
+ \ B(x, ϵ) for any ϵ > 0. The function

G(·, ·) is called the Green function of Y κ. Transience of the process Y κ is
clear in case κ > 0, see [25, Lemma 6.1]. For the case κ = 0, see Lemma 4.2.

4. Scaling and consequences

In this section we discuss scaling, transience in case α ∈ (1, 2) and κ = 0,
and the role of the constant κ = C(α, p,B).

Let F be the closure of C∞
c (Rd

+) in L2(Rd
+, dx) under the norm E0

1 :=

E0 + (·, ·)L2(Rd
+,dx) . Then (E0,F) is a regular Dirichlet form on L2(Rd

+, dx).

Let ((Y t)t≥0, (Px)Rd
+\N0

) be the Hunt process associated with (E0,F), where



DIRICHLET FORMS WITH JUMP KERNELS BLOWING UP AT THE BOUNDARY 17

N0 is an exceptional set. We write (P t)t≥0 and (P κ
t )t≥0 for the semigroups

of Y and Y κ respectively.
Let (E0,FRd

+
) be the part form of (E0,F) on Rd

+. i.e., the form correspond-

ing to the process Y killed at the exit time τRd
+
:= inf{t > 0 : Y t /∈ Rd

+}.
It follows from [18, Theorem 4.4.3(i)] that (E0,FRd

+
) is a regular Dirichlet

form on L2(Rd
+, dx) and that C∞

c (Rd
+) is its core. Hence FRd

+
= F0, im-

plying that Y killed upon exiting Rd
+ is equal to Y 0. Thus we conclude

that Y 0 is a subprocess of Y , that the exceptional set N0 can be taken to
be a subset of ∂Rd

+, and that the lifetime ζ0 of Y 0 can be identified with

τRd
+
. Suppose that for all x ∈ Rd

+ it holds that Px(τRd
+
= ∞) = 1. Then

(Y 0
t ,Px, x ∈ Rd

+)
d
= (Y t,Px, x ∈ Rd

+), implying that F0 = FRd
+
= F .

For any r > 0, define processes Y
(r)

and Y κ,(r) by Y
(r)
t := rY r−αt and

Y
κ,(r)
t := rY κ

r−αt. We have the following scaling and horizontal translation

invariance properties of Y and Y κ.

Lemma 4.1. (a) For any κ ≥ 0, r > 0 and x ∈ Rd
+, (Y

(r)
,Px/r) and

(Y κ,(r),Px/r) have the same laws as (Y ,Px) and (Y κ,Px) respectively.

(b) In case d ≥ 2, for any κ ≥ 0, z̃ ∈ Rd−1 and x ∈ Rd
+, (Y +(z̃, 0),Px−(z̃,0))

and (Y κ + (z̃, 0),Px−(z̃,0)) have the same laws as (Y ,Px) and (Y κ,Px) re-
spectively.
(c) If Y κ is transient, then for all x, y ∈ Rd

+, x ̸= y, and all r > 0,

G(x, y) = G
(x
r
,
y

r

)
rα−d . (4.1)

Proof. Part (a) follows in the same way as in [21, Lemma 5.1] and [23,
Lemma 2.1], while part (b) is an immediate consequence of (A4). Part (c)
is a direct consequence of part (a), see the proof in [22, Proposition 2.4]. 2

The following two results address the case when κ = 0.

Lemma 4.2. Suppose α ∈ (1, 2) and κ = 0. Then F0 ̸= F and Px(ζ
0 <

∞) = 1 for all x ∈ Rd
+.

Proof. Take u ∈ C∞
c (Rd

+) such that u ≥ 1 on B(0, 1)∩Rd
+, then u /∈ F0. In

fact, if u ∈ F0, then by Hardy’s inequality for censored α-stable processes
(see [12, 15]),

∞ > E(u, u) ≥ c

∫
Rd
+

∫
Rd
+

(u(x)− u(y))2

|x− y|d+α
dxdy

≥ c

∫
Rd
+

u(x)2

xαd
dx ≥ c

∫
B(0,1)∩Rd

+

|x|−αdx = ∞,

which gives a contradiction.
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The fact that F0 ̸= F implies that there is a point x0 ∈ Rd
+ such that

Px0(ζ
0 < ∞) > 0. Then by the scaling property of Y 0 in Lemma 4.1(a),

we have that Px(ζ
0 < ∞) = Px0(ζ

0 < ∞) > 0 for all x ∈ Rd
+. Now, by

the same argument as in the proof of [4, Proposition 4.2], we have that
Px(ζ

0 <∞) = 1 for all x ∈ Rd
+. 2

Consequently, in case α > 1, the process Y 0 is transient. This is the
reason why in the sequel we consider only α > 1 when there is no killing.
The next result says that Y 0 dies at the boundary ∂Rd

+ at its lifetime.

Corollary 4.3. Suppose α ∈ (1, 2) and κ = 0. (a) For any x ∈ Rd
+,

Px(Y
0
ζ0− ∈ ∂Rd

+) = 1. (b) There exists a constant n0 ≥ 2 such that for any

x ∈ Rd
+, Px

(
τB(x,n0xd) = ζ0

)
> 1/2.

Proof. Using Lemma 4.1(a), we see that

Px

(
τB(x,nxd) = ζ0

)
= P(0̃,1)

(
τB((0̃,1),n) = ζ0

)
, x ∈ Rd

+.

The sequence of events ({τB((0̃,1),n) = ζ0})n≥1 is increasing in n and

∪∞
n=1

{
τB((0̃,1),n) = ζ0

}
=
{
ζ0 <∞

}
. (4.2)

Thus, by Lemma 4.2 we have

lim
n→∞

P(0̃,1)

(
τB((0̃,1),n) = ζ0

)
= P(0̃,1)

(
ζ0 <∞

)
= 1. (4.3)

Moreover, since there is no killing inside Rd
+, it holds that {τB((0̃,1),n) =

ζ0} ⊂ {Y 0
ζ0− ∈ ∂Rd

+} for each n ≥ 1. Thus it follows from (4.2) and (4.3)

that P(0̃,1)(Y
0
ζ0− ∈ ∂Rd

+) = 1. The claim (a) now follows by Lemma 4.1 (a)

and (b).
For (b), note that by (4.3) there exists n0 ≥ 2 such that P(0̃,1)

(
τB((0̃,1),n0)

=

ζ0
)
> 1/2. Therefore,

Px

(
τB(x,n0xd) = ζ0

)
= P(0̃,1)

(
τB((0̃,1),n0)

= ζ0
)
> 1/2, x ∈ Rd

+. 2

Recall the constant C(α, q,B) from the introduction: Let ed := (0̃, 1). For
q ∈ (−1, α),

C(α, q,B)=


∫
Rd−1

∫ 1
0

(sq−1)(1−sα−q−1)
(1−s)1+α

B
(
(1−s)ũ,1),sed

)
(|ũ|2+1)(d+α)/2 dsdũ, d ≥ 2∫ 1

0
(sq−1)(1−sα−q−1)

(1−s)1+α B
(
1, s
)
ds, d = 1.

Lemma 4.4. (a) For any q ∈ (−1+β̃2, α−β̃2), C(α, q,B) ∈ (−∞,∞) is well
defined. Further, C(α, q,B) = 0 if and only if q ∈ {0, α−1}. (b) For any q ∈
[α−β1, α) it holds that C(α, q,B) = ∞. Moreover, limq↑α−β1 C(α, q,B) = ∞.

Proof. We only give the proof for d ≥ 2. The case d = 1 is simpler.
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(a) We first choose β2 such that (1.3) holds and q ∈ (−1 + β2, α− β2). Due
to the sign of (sq − 1)(1− sα−q−1), we see that

C(α, q,B)


∈ (0,∞] q ∈ (β2 − 1, (α− 1) ∧ 0) ∪ ((α− 1)+, α− β2);

= 0 q = 0, α− 1;

∈ [−∞, 0) q ∈ (α− 1, 0) ∪ (0, α− 1).

In the rest of the proof we assume that q ̸= 0 and q ̸= α− 1. By (A3),

B
(
(1− s)ũ, 1), sed

)
≤ c1

0<s<
(|ũ|2+1)1/2

(|ũ|2+1)1/2+1

(
(1− s)2(|ũ|2 + 1)

s

)β2

+c1 (|ũ|2+1)1/2

(|ũ|2+1)1/2+1
<s<1

. (4.4)

Note that for 0 < s < 1/2,

(sq − 1)(1− sα−q−1)

sβ2(1− s)1+α−2β2
≍


s−β2+α−q−1, (α− 1) ∨ 0 < q < α− β2;

−s−β2 , 0 < q < α− 1;

s−β2+q, β2 − 1 < q < (α− 1) ∧ 0;

−s−β2+α−1, α− 1 < q < 0,

and, for 1/2 < s < 1,

(sq − 1)(1− sα−q−1)

sβ2(1− s)1+α−2β2

≍

{
(1− s)1−α+2β2 q ∈ (β2 − 1, (α− 1) ∧ 0) ∪ ((α− 1)+, α− β2);

−(1− s)1−α+2β2 q ∈ (α− 1, 0) ∪ (0, α− 1).

Thus, for q ∈ (−1 + β2, α− β2),∫
Rd−1

1

(|ũ|2 + 1)(d+α)/2

∫ 1

0

|(sq − 1)(1− sα−q−1)|
(1− s)1+α

B
(
(1− s)ũ, 1), sed

)
ds dũ

≤ c

∫
Rd−1

1

(|ũ|2 + 1)(d+α−2β2)/2

∫ (|ũ|2+1)1/2

(|ũ|2+1)1/2+1

0

|(sq − 1)(1− sα−q−1)|
sβ2(1− s)1+α−2β2

ds dũ

+ c

∫
Rd−1

1

(|ũ|2 + 1)(d+α)/2

∫ 1

(|ũ|2+1)1/2

(|ũ|2+1)1/2+1

|(sq − 1)(1− sα−q−1)|
(1− s)1+α

ds dũ <∞,

which implies that

C(α, q,B)


∈ (0,∞) q ∈ (β2 − 1, (α− 1) ∧ 0) ∪ ((α− 1)+, α− β2);

= 0 q = 0, α− 1;

∈ (−∞, 0) q ∈ (α− 1, 0) ∪ (0, α− 1).

(b) By (A3), for (α− 1) ∨ 0 < q < α− β1 and 0 < s < 1/2,

(sq − 1)(1− sα−q−1)

(1− s)1+α
B
(
(1− s)ũ, 1), sed

)
≥ cs−β1+α−q−1(|ũ|2 + 1)β1 .
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Thus,

C(α, q,B) ≥ c

∫
Rd−1

dũ

(|ũ|2 + 1)(d+α−2β1)/2

∫ 1/2

0
s−β1+α−q−1ds,

which implies the claim. 2

As already mentioned in the introduction, the function q 7→ C(α, q,B)
is strictly increasing and continuous on [(α − 1)+, α − β̃2). Consequently,
for every 0 ≤ κ < lim

q↑α−β̃2
C(α, q,B) ≤ ∞, there exists a unique pκ ∈

[(α− 1)+, α− β̃2) such that

κ = C(α, pκ,B). (4.5)

In the rest of this paper, unless explicitly mentioned otherwise, we will fix

κ ∈ [0, lim
q↑α−β2

C(α, q,B)),

and assume α > 1 if κ = 0. Moreover, we omit the superscript κ from the
notation, i.e., write Y D, τD and ζ instead of Y κ,D, τκD and ζκ respectively.
Also, we denote by p the constant pκ in (4.5).

The connection between p and C(α, p,B) is explained in the following
result which is an analog of [4, (5.4)]. For q > 0, let gq(y) := yqd = δRd

+
(y)q.

Lemma 4.5. Let p ∈ (β̃2 − 1, α− β̃2). Then

LB
αgp(x) = C(α, p,B)xp−α

d , x ∈ Rd
+.

Proof. We only give the proof for d ≥ 2. The case d = 1 is simpler.
Recall ed = (0̃, 1). By (A4), we can for simplicity take x = (0̃, xd). Fix

x = (0̃, xd) ∈ Rd
+ and let ε ∈ (0, (xd ∧ 1)/2]. Let

I1(ε) :=

∫
Rd
+,|z̃|2+|zd−1|2>(ε/xd)2

zpd − 1

|(z̃, zd)− ed|d+α
B(ed, (z̃, zd)) dzddz̃.

We see, by the change of variables y = xdz and (A4), that LB
αgp(x) =

xp−α
d limε→0 I1(ε) . Using the change of variables z̃ = |zd − 1|ũ, we get

I1(ε) =

∫
Rd
+,|zd−1|2|ũ|2+|zd−1|2>(ε/xd)2

zpd − 1

|zd − 1|1+α

B
(
ed, (|zd − 1|ũ, zd)

)
(|ũ|2 + 1)(d+α)/2

dzddũ

=

∫
Rd−1

I2(ε, ũ)
dũ

(|ũ|2 + 1)(d+α)/2
,

where

I2(ε, ũ) =

∫ 1−(ε/xd)(|ũ|2+1)−1/2

0

zpd − 1

|zd − 1|1+α
B
(
ed, (|zd − 1|ũ, zd)

)
dzd

+

∫ ∞

1+(ε/xd)(|ũ|2+1)−1/2

zpd − 1

|zd − 1|1+α
B
(
ed, (|zd − 1|ũ, zd)

)
dzd.
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Fix ũ and let ϵ0 = (ε/xd)(|ũ|2 + 1)−1/2. Using the change of variables
s = 1/zd, (A1) and (A4), by the same argument as that in the proof of
[21, Lemma 5.4], we have that I2(ε, ũ) = I21(ε, ũ) + I22(ε, ũ) where

I21(ε, ũ) :=

∫ 1−ϵ0

0

(sp − 1) + (sα−1−p − sα−1)

(1− s)1+α
B
(
((1− s)ũ, 1), sed

)
ds,

I22(ε, ũ) :=

∫ 1
1+ϵ0

1−ϵ0

sα−1−p(1− sp)

(1− s)1+α
B
(
((1− s)ũ, 1), sed

)
ds.

From the proof of Lemma 4.4, we see that I21(ε, ũ) is bounded and

lim
ε→0

I21(ε, ũ) =

∫ 1

0

(sp − 1)(1− sα−p−1)

(1− s)1+α
B
(
((1− s)ũ, 1), sed

)
ds . (4.6)

On the other hand, by (4.4), B
(
(1 − s)ũ, 1), sed

)
is bounded by a positive

constant when (|ũ|2+1)1/2

(|ũ|2+1)1/2+1
< s < 1. Since xd/ε ≥ 2 ≥ 1 + (|ũ|2 + 1)−1/2 for

ε ∈ (0, xd/2], we have that for ε ∈ (0, xd/2],

1− ϵ0 = 1− ε/xd
(|ũ|2 + 1)1/2

≥ 1− 1

(|ũ|2 + 1)1/2 + 1
=

(|ũ|2 + 1)1/2

(|ũ|2 + 1)1/2 + 1
.

Therefore, using the facts that ϵ0 ≤ 1/2 and 1
1+ϵ0

≤ 1− ϵ0+ ϵ20 < 1, we have

|I22(ε, ũ)| ≤ c

∫ 1−ϵ0+ϵ20

1−ϵ0

1− sp

(1− s)1+α
ds ≤ cϵ2−α

0 , ε ∈ (0, (xd ∧ 1)/2],

(cf., [4, p.121]) which implies that limε→0 I22(ε, ũ) = 0. Therefore, I2(ε, ũ)
is bounded on (0, (xd ∧ 1)/2] and limε→0 I2(ε, ũ) = limε→0 I21(ε, ũ). We
conclude that

lim
ε→0

I1(ε)=

∫
Rd−1

∫ 1

0

(sp − 1)(1− sα−p−1)

(1− s)1+α

B
(
(1− s)ũ, 1), sed

)
(|ũ|2 + 1)(d+α)/2

dsdũ=C(α, p,B).

2

An immediate, but important, consequence of this lemma is the fact that

for p ∈ (β̃2 − 1, α− β̃2),

LBgp(x) = LB
αgp(x)− κ(x)xpd = LB

αgp(x)− C(α, p,B)xp−α
d = 0,

for all x ∈ Rd
+. Thus, the operator LB annihilates the function xpd.

5. Dynkin’s formula and some estimates

Recall that Dw̃(a, b) was defined in (1.5). Without loss of generality, we

will mostly deal with the case w̃ = 0̃. We will write D(a, b) for D0̃(a, b) and
U(r) = D0̃(

r
2 ,

r
2). Further we use U for U(1). In case d = 1, U(r) = (0, r/2).

In the rest of the paper (except Subsection 8.2 and Proposition 9.4, that
exclusively deal with the case d = 1), all the proofs, and even the statements
of some lemmas, are given for d ≥ 2 only. The case d = 1 is much simpler.

We first recall an important consequence of the Lévy system formula
that will be used repeatedly in this paper, see e.g. [22, (3.2), (3.3)]: Let
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f : Rd
+ → [0,∞) be a Borel function, and let V,W be two Borel subsets of

Rd
+ with disjoint closures. Then for all x ∈ Rd

+,

Ex[f(YτV ), YτV ∈W ] = Ex

∫ τV

0

∫
W
f(y)J(Ys, y) dy ds . (5.1)

The next lemma will be used several times in this paper.

Lemma 5.1. Let β2 be the constant in (1.3) and let q ∈ [0, α− β2). There
exists C = C(q, β2) > 0 such that for all 0 < r ≤ R <∞ and all y ∈ U(r),∫

Rd
+,zd>R/2

Φ

(
|z|2

ydzd

)
zqddz

|z|d+α
+

∫ R

0

∫
Rd−1,|z̃|>R/2

Φ

(
|z|2

ydzd

)
zqd

|z|d+α
dz̃dzd

≤ CΦ

(
r

yd

)
Rq−α+β2

rβ2
.

Proof. Let y ∈ U(r). By the change of variables z̃ = zdũ and the facts that
α− 2β2 > −1, β2 − α < 0 and q + β2 − α < 0,∫

Rd
+,zd>R/2

Φ

(
|z|2

ydzd

)
zqddz

|z|d+α

= c1

∫ ∞

R/2
zq−1−α
d

∫
Rd−1

Φ

(
(|ũ|2 + 1)zd

yd

)
dũ

(|ũ|2 + 1)(d+α)/2
dzd

≤ c2Φ

(
r

yd

)
r−β2

∫ ∞

R/2
zq−1−α+β2

d

∫
Rd−1

dũ

(|ũ|2 + 1)(d+α−2β2)/2
dzd

= c3Φ

(
r

yd

)
r−β2Rq−α+β2 .

On the other hand, using the fact that q − β2 ≥ −β2 > −1,∫ R

0

∫
Rd−1,|z̃|>R/2

Φ

(
|z|2

ydzd

)
zqd

|z|d+α
dz̃dzd

≍
∫ R

0

∫
Rd−1,|z̃|>R/2

Φ

(
|z̃|2

ydzd

)
zqd

|z̃|d+α
dz̃dzd

≤ c4Φ

(
r

yd

)
r−β2

∫ R

0
zq−β2

d dzd

∫
Rd−1,|z̃|>R

dz̃

|z̃|d+α−2β2

≤ c5Φ

(
r

yd

)
r−β2Rq−β2+1

∫ ∞

R
t−α+2β2−2dt ≤ c6Φ

(
r

yd

)
r−β2Rq−α+β2 .

This completes the proof of the lemma. 2

For q,R > 0, let hq,R(x) = xqd1D(R,R)(x), x ∈ Rd
+.

Lemma 5.2. Suppose that p ∈ (0, α− β̃2)∩ [(α− 1)+, α− β̃2). There exists
C > 0 such that for any R > 0,

0 > LBhp,R(z) ≥ −CRp−αΦ(R/zd), z ∈ U(R).
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Proof. We first choose β2 such that (1.3) holds and p ∈ (0, α− β2) ∩ [(α−
1)+, α − β2). Then, since B(z, y) ≍ Φ

( |y|2
ydzd

)
for y ∈ D(R,R)c ∩ Rd

+ and

z ∈ U(R), using Lemma 5.1, we have that for z ∈ U(R),∫
D(R,R)c∩Rd

+

ypd
|y − z|d+α

B(z, y) dy ≤ c(p)Rp−αΦ(R/zd). (5.2)

Let z ∈ U(R). By Lemma 4.5, LBgp(x) = 0. Thus, by (5.2),

0 > LBhp,R(z) = −
∫
D(R,R)c∩Rd

+

ypd
|y − z|d+α

B(z, y) dy ≥ −c(p)Rp−αΦ(R/zd).

2

Next we extend the Dynkin-type formula in Theorem 3.3 to some not
relatively compact open sets.

Proposition 5.3. Let p ∈ (0, α− β̃2)∩ [(α−1)+, α− β̃2), R ≥ 1 and r ≤ R.
For any x ∈ U(r) it holds that

Ex[hp,R(YτU(r)
)] = hp,R(x) + Ex

∫ τU(r)

0
LBhp,R(Ys) ds . (5.3)

Proof. We first choose β2 such that (1.3) holds and p ∈ (0, α− β2) ∩ [(α−
1)+, α − β2). For k ∈ N let Uk := {w ∈ U(r) : wd > 2−k}. Then Uk is a
relatively open compact subset of Rd

+ and hp,R ∈ C2(Uk). By Theorem 3.3,
for every k ∈ N, it holds that

Ex[hp,R(YτUk
)] = hp,R(x) + Ex

∫ τUk

0
LBhp,R(Ys) ds. (5.4)

Since τUk
→ τU(r), the left-hand side converges to Ex[hq,R(YτU(r)

)] by the

dominated convergence theorem. By Lemma 5.2, LBhp,R(z) ≤ 0 for all
z ∈ U(r). Thus we can use use the monotone convergence theorem in the
right-hand side of (5.4) and obtain (5.3). 2

Lemma 5.4. Let p ∈ (0, α− β̃2)∩ [(α−1)+, α− β̃2). There exists a constant
C > 0 such that for all R > 0 and all x ∈ U(R),

Ex

∫ τU(R)

0
Φ(R/Y d

t ) dt ≤ CRα−pxpd .

Proof. We first choose β2 such that (1.3) holds and p ∈ (0, α− β2) ∩ [(α−
1)+, α − β2). For R > 0, let C(R) := (D(R,R) \ D(3R/4, 3R/4)) ∩ {y ∈
Rd
+ : yd ≥ |ỹ|}. Note that for z ∈ U(R) and y ∈ C(R) we have |z − y| ≤

2|y| ≤ 2
√
2yd, |z| ≤ R/

√
2 ≤ 4|y|/(3

√
2), and therefore (

√
2 − (4/3))yd ≤

(
√
2− (4/3))|y| ≤

√
2(|y| − |z|) ≤

√
2|z − y| ≤ 4yd. Thus,

B(z, y) ≍ Φ

(
|z − y|2

zdyd

)
≥ c1Φ

(
|y|
zd

)
≥ c2Φ

(
R

zd

)(
|y|
R

)β1

.
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Using (5.1) we get for x ∈ U(R) (with constants c3, c4 independent of R),

Ex[hp,R(YτU(R)
)] ≥ Ex[hp,R(YτU(R)

), YτU(R)
∈ C(R)]

≥ c3Ex

∫
C(R)

∫ τU(R)

0
|Yt − y|−d−α

(
|y|
R

)β1

Φ

(
R

Y d
t

)
ypd dy dt

≥ c4R
−β1

∫
C(R)

ypd|y|
−d−α+β1 dy

(
Ex

∫ τU(R)

0
Φ

(
R

Y d
t

)
dt

)
.

Note that,

R−β1

∫
C(R)

ypd|y|
−d−α+β1 dy ≍ Rp−α

∫
C(1)

zpd|z|
−d−α+β1 dz ≍ Rp−α.

Thus, by Proposition 5.3 and Lemma 5.2, for all R > 0,

c5R
p−αEx

∫ τU(R)

0
Φ

(
R

Y d
t

)
dt ≤ Ex[hp,R(YτU(R)

)] (5.5)

= xpd + Ex

∫ τU(R)

0
LBhp,R(Ys) ds ≤ xpd . 2

Corollary 5.5. Let p ∈ (0, α − β̃2) ∩ [(α − 1)+, α − β̃2). Then there exists
C > 0 such that

Ex

∫ τU

0
Φ

(
1

Y d
s

)
ds ≤ CPx (YτU ∈ D(1, 1)) for all x ∈ U.

Proof. This corollary follows from (5.5) and the fact that hp,1 is bounded
by 1 and supported on D(1, 1) so that

Px (YτU ∈ D(1, 1)) ≥ Ex[hp,1(YτU )] ≥ cEx

∫ τU

0
Φ

(
1

Y d
s

)
ds. 2

Corollary 5.6. Let p ∈ (0, α− β̃2)∩ [(α− 1)+, α− β̃2). There exists C > 0
such that, for all r > 0 and x ∈ U(r), it holds that

Px(YτU(r)
/∈ D(r, r)) ≤ C

(xd
r

)p
.

Proof. We first choose β2 such that (1.3) holds and p ∈ (0, α− β2) ∩ [(α−
1)+, α − β2). By scaling in Lemma 4.1 (a), it suffices to prove the claim
for r = 1/2. Let D = D(1, 1). For z ∈ U and w ∈ Rd

+ \ D, it holds that
|z − w| ≍ |w|. Hence, by (5.1),

Px(YτU /∈ D) = Ex

∫ τU

0

∫
Rd
+\D

J(w, Yt)dw dt

≤ c1Ex

∫ τU

0

∫
Rd
+\D

|w|−d−αΦ

(
|w|2

wdY
d
t

)
dw dt.

It follows from Lemma 5.1 (with r = 1/2 and R = 2) that∫
Rd
+\D

|w|−d−αΦ

(
|w|2

wdY
d
t

)
dw ≤ c2Φ

(
1

Y d
t

)
.
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Therefore, by using Lemma 5.4 we get

Px(YτU /∈ D) ≤ c3Ex

∫ τU

0
Φ

(
1

Y d
t

)
dt ≤ c4x

p
d. 2

Proposition 5.7. Let β2 be such that (1.3) holds and let p ∈ (0, α− β2) ∩
[(α − 1)+, α − β2). Then there exists C = C(β2) > 0 such that for all
0 < 4r ≤ R <∞ and w ∈ D(r, r),

Pw

(
Yτ

B(w,r)∩Rd+
∈ Rd

+ \B(w,R)
)
≤ C

rα−β2

Rα−β2

wp
d

rp
.

Proof. Let w̃ = 0̃, 0 < 4r ≤ R <∞, w ∈ D(r, r) and y ∈ B(w, r)∩Rd
+ and

z ∈ A(w,R, 4) ∩ Rd
+. Then |z − y| ≍ |z| ≍ |z − w| > R > yd. Thus,

J(y, z) ≍ 1

|y − z|d+α
Φ

(
|z − y|2

ydzd

)
≍ 1

|z|d+α
Φ

(
|z|2

ydzd

)
.

Thus by using (5.1) in the first inequality below and Lemma 5.1 in the last
inequality, we get

Pw

(
Yτ

B(w,r)∩Rd+
∈ Rd

+ \B(w,R)
)
≤ cEw

∫ τ
B(w,r)∩R+

d

0

∫
Rd
+\B(w,R)

Φ

(
|z|2

Y d
t zd

)
dzdt

|z|d+α

≤ cEw

∫ τ
B(w,r)∩R+

d

0

∫
Rd
+\D(R/2,R/2)

Φ

(
|z|2

Y d
t zd

)
dzdt

|z|d+α

≤ c r−β2R−α+β2Ew

∫ τ
B(w,r)∩R+

d

0
Φ

(
r

Y d
t

)
dt.

Since B(w, r) ∩ R+
d ⊂ D(2r, 2r), applying Lemma 5.4, we get that for all

0 < 4r ≤ R <∞ and w ∈ D(r, r),

Pw

(
Yτ

B(w,r)∩Rd+
∈ Rd

+ \B(w,R)
)
≤ cr−β2R−α+β2Ew

∫ τD(2r,2r)

0
Φ

(
r

Y d
t

)
dt

≤ c
rα−β2

Rα−β2

wp
d

rp
. 2

6. The key technical result and exit probability estimates

6.1. The key lemma and exit probability estimates. The following
lemma is the key technical result of the paper. It will allow us to obtain exit
probability estimates essential for the proof of Theorem 1.2.

Lemma 6.1. Let p ∈ ((α − 1)+, α − β̃2). (a) There exist a C2-function
ψ : Rd → [0,∞) with compact support, and a constant C1 > 0 such that

LBψ(x) ≤ C1Φ(1/xd), x ∈ U,

and the following assertions hold:
(b) The function ϕ(x) := hp,1(x) − ψ(x), x ∈ Rd

+, satisfies the following
properties:

(b1) ϕ(x) = xpd for all x = (0̃, xd) ∈ U with 0 < xd < 1/4;
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(b2) ϕ(x) ≤ 0 for all x ∈ U c ∩ Rd
+;

(b3) There exists C2 > 0 such that LBϕ(x) ≥ −C2Φ(1/xd) for all x ∈ U .

Note that Lemma 6.1 has the stronger assumption p > (α − 1)+, which
requires the killing function to be strictly positive. The proof of this lemma
is long and involved, therefore we postpone it to the end of this section. We
now prove several consequences of Lemma 6.1.

Lemma 6.2. Let p ∈ ((α− 1)+, α− β̃2). For any x = (0̃, xd) with 0 < xd <
1/4, it holds that

Ex

∫ τU

0
Φ(1/Y d

t ) dt ≥ C−1
2 xpd , (6.1)

where C2 is the constant from Lemma 6.1.

Proof. We first choose β2 such that (1.3) holds and p ∈ ((α− 1)+, α− β2).
Recall that ϕ = hp − ψ. For k ∈ N let Uk := {y ∈ U : yd > 2−k}. Then Uk

is a relatively open compact subset of Rd
+ and by Lemma 6.1 ϕ ∈ C2(Uk).

Let x = (0̃, xd) with 0 < xd < 1/4. By Theorem 3.3 (applied separately to
hp,1 and ψ, and then taking the difference), for every k ∈ N with 2−k < xd,
it holds that

Ex[ϕ(YτUk
)] = ϕ(x) + Ex

∫ τUk

0
LBϕ(Ys) ds.

From Lemma 6.1 (b3), we know that LBϕ(z) ≥ −C2Φ(1/zd) for all z ∈ U .
Therefore,

Ex[ϕ(YτUk
)]− ϕ(x) ≥ −C2Ex

∫ τUk

0
Φ(1/Y d

s ) ds. (6.2)

Since τUk
→ τU , by letting k → ∞, and using the monotone convergence

theorem, the right-hand side converges to −C2

∫ τU
0 Φ(1/Y d

s ) ds. Since ψ
and hp,1 are bounded, by the dominated convergence theorem, we have
Ex[ψ(YτUk

)] → Ex[ψ(YτU )] and Ex[hp,1(YτUk
)] → Ex[hp,1(YτU )]. Hence, by

letting k → ∞ in (6.2), and using Lemma 6.1 (b1)–(b2), we get

−xpd ≥ Ex[ϕ(YτU )]− ϕ(x) ≥ −C2

∫ τU

0
Φ(1/Y d

s ) ds.

This proves (6.1). 2

Lemma 6.3. If p ∈ ((α− 1)+, α− β̃2) then there exists C > 0 such that for

x = (0̃, xd) ∈ D(1/8, 1/8),

Px(YτD(1/4,1/4)
∈ D(1/4, 1) \D(1/4, 3/4)) ≥ Cxpd .

Proof. For y ∈ D(1/4, 1/4) and z ∈ D(1/4, 1) \D(1/4, 3/4), it holds that
yd < zd, |z| ≍ |y − z| ≍ zd ≍ 1 and yd < 2|y − z|. Hence, B(y, z) ≍ Φ (1/yd)
and, by using (5.1) and Lemma 4.1(a), we get that for 0 < xd < 1/8,

P(0̃,xd)

(
YτD(1/4,1/4)

∈ D(1/4, 1) \D(1/4, 3/4)
)
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≥ cE(0̃,xd)

∫ τD(1/4,1/4)

0
Φ(1/Y d

t )

∫
D(1/4,1)\D(1/4,3/4)

dz

|z|d+α
dt

≥ cE(0̃,xd)

∫ τD(1/4,1/4)

0
Φ(1/Y d

t ) dt ≍ E(0̃,2xd)

∫ τU

0
Φ(1/Y d

t )dt .

The claim now follows from Lemma 6.2. 2

Note that in the next two results, we allow p = (α− 1)+.

Lemma 6.4. Suppose p ∈ (0, α−β̃2)∩ [(α−1)+, α−β̃2). There exists C > 0
such that for any x ∈ U(2−4),

Px (YτU ∈ D(1, 1)) ≤ CPx (YτU ∈ D(1/2, 1) \D(1/2, 3/4)) .

Proof. We first choose β2 such that (1.3) holds and p ∈ (0, α− β2) ∩ [(α−
1)+, α− β2). Let

H2 := {YτU ∈ D(1, 1)}, H1 := {YτU ∈ D(1/2, 1) \D(1/2, 3/4)}.
We first note that, by Lemma 4.1(b),

Pw(H1) ≥ Pw(YτDw̃(1/4,1/4)
∈ Dw̃(1/4, 1) \Dw̃(1/4, 3/4))

= P(0̃,wd)
(YτD(1/4,1/4)

∈ D(1/4, 1) \D(1/4, 3/4)). (6.3)

When p = α − 1 > 0, we choose a q ∈ (α − 1, α − β2) and let κ∗(x) =
C(α, q,B)x−α

d . Let Y κ∗
be the process associated with Dirichlet form E(u, v)+∫

Rd
+
u(x)v(x)κ∗(x)dx. By Lemma 6.3, we get that, when p = α− 1,

P(0̃,wd)
(Y κ∗

τD(1/4,1/4)
∈ D(1/4, 1) \D(1/4, 3/4)) ≥ cwq∗

d , w ∈ U(1/4).

Thus, by this and (6.3),

Pw(H1) ≥ P(0̃,wd)
(Y κ∗

τD(1/4,1/4)
∈ D(1/4, 1)\D(1/4, 3/4))t ≥ cwq∗

d , w ∈ U(1/4).

When p ∈ ((α− 1)+, α− β2), we just use (6.3) and Lemmas 6.3 directly to
obtain that Pw(H1) ≥ cwp

d, for w ∈ U(1/4).
Therefore, we see that for all p ∈ (0, α − β2) ∩ [(α − 1)+, α − β2), there

exists q ∈ ((α − 1)+, α − β2) with q ≥ p such that Pw(H1) ≥ cwq
d for

w ∈ U(1/4). Using this and Proposition 5.7, the remaining part of the proof
closely follows that of [22, Lemma 6.2] and [23, Lemma 5.5] (Proposition 5.7
is used in the proof). Therefore we omit the rest of the proof. 2

The next comparability result summarizes the exit probability estimates
obtained so far and will play a crucial role in the remainder of this paper.

Proposition 6.5. Let p ∈ (0, α− β̃2) ∩ [(α− 1)+, α− β̃2). For all r > 0,

Px

(
YτU(r)

∈ D(r, r)
)
≍ Px

(
YτU(r)

∈ Rd
+

)
≍
(xd
r

)p
for all x ∈ U(2−4r).

Proof. By scaling in Lemma 4.1(a) it suffices to prove both results for
r = 1. By Proposition 5.3, Lemma 5.2 and the fact that hp,1 is bounded by
1 and supported on D(1, 1), we have that for every x ∈ U(2−4),

Px (YτU ∈ D(1, 1)) ≥ Ex[hp,1(YτU )]
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= xpd + Ex

∫ τU

0
LBhp,1(Ys) ds ≥ xpd − c1Ex

∫ τU

0
Φ

(
1

Y d
s

)
ds.

Thus, by Corollary 5.5,

xpd ≤ c1Ex

∫ τU

0
Φ

(
1

Y d
s

)
ds+Px(YτU ∈ D(1, 1))≤c2Px(YτU ∈ D(1, 1)) . (6.4)

On the other hand, for y ∈ U and z ∈ D(1/2, 1) \ D(1/2, 3/4), it holds
that yd < zd, |z| ≍ |y−z| ≍ zd and yd < 2|y−z|. Hence, B(y, z) ≍ Φ (|z|/yd)
and, by using (5.1) and Lemma 5.4, we get that for every x ∈ U(2−4),

Px (YτU ∈ D(1/2, 1) \D(1/2, 3/4))

≤ c3 Ex

∫ τU

0
Φ(1/Y d

t )

∫
D(1/2,1)\D(1/2,3/4)

dzdt

|z|d+α−β2

≤ c4 Ex

∫ τU

0
Φ(1/Y d

t ) dt ≤ c5x
p
d.

Thus, by Lemma 6.4, Px (YτU ∈ D(1, 1)) ≤ c6x
p
d for every x ∈ U(2−4). Com-

bining this with (6.4) and Corollary 5.6, we get that for every x ∈ U(2−4),

c−1
2 xpd ≤ Px (YτU ∈ D(1, 1)) ≤ Px(YτU ∈ Rd

+)

= Px(YτU ∈ D(1, 1)) + Px(YτU ∈ Rd
+ \D(1, 1)) ≤ c7x

p
d. 2

6.2. Auxilliary lemmas. In this subsection we give two lemmas needed in
the proof of Lemma 6.1. The index β2 below is such that β2 < 1 ∧ α and
(1.3) holds.

The next lemma is one of the key technical results in this paper.

Lemma 6.6. (a) For any k ∈ R, there exists C > 0 such that for 0 < xd ≤
R/2,∫

Dx̃(R,R)∩{|y−x|≥xd/2}
Φ

(
|x− y|2

xdyd

)
dy

|x− y|d+α−k

≤C


Rk−αΦ(R/xd)(1 + 1{k+β1=α} log(R/xd)), k + β1≥α;
[R−β1Φ(R/xd)x

k−α+β1

d ]∧ 1[Rk+β2−αx−β2

d ], k + β1<α<k + β2;

xk−α
d (1 + 1{k+β2=α} log(R/xd)), k + β2≤α .

(6.5)

(b) For any k > α, there exists C > 0 such that for 0 < xd ≤ R/2,∫
Dx̃(R,R)

B(x, y)
|x− y|d+α−k

dy ≤ CRk−α(1 ∨ Φ(R/xd)).

Proof. Without loss of generality, we assume x̃ = 0̃. Let R > 0 and
xd ≤ R/2.
(a) Define

I(k) :=

∫
D(R,R)∩{|x−y|≥xd/2}

Φ

(
|x− y|2

xdyd

)
dy

|x− y|d+α−k
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=

∫
D(R,xd/2)

+

∫
D(R,R)\D(R,3xd/2)

+

∫
(D(R,3xd/2)\D(R,xd/2))∩{|y−x|≥xd/2}

=: I1(k) + I2(k) + I3(k).

(a-i) Clearly, yd < xd for yd ∈ D(R, xd/2). Using the change of variables
yd = xdh and r = xds in the second line below, we get

I1(k) ≍
∫ R

0
rd−2

∫ xd/2

0

1

((xd − yd) + r)d+α−k
Φ
(((xd − yd) + r)2

xdyd

)
dyd dr

= x−α+k
d

∫ R/xd

0
sd−2

∫ 1/2

0

1

[(1− h) + s]d+α−k
Φ
( [(1− h) + s]2

h

)
dh ds,

which is, using 1− h ≍ 1, comparable to

x−α+k
d

∫ R/xd

0

sd−2

(1 + s)d+α−k

∫ 1/2

0
Φ
((1 + s)2

h

)
dhds.

Since
∫ 1/2
0 Φ((1 + s)2/h)dh ≤ cΦ((1 + s)2)

∫ 1/2
0 h−β2dh, we have

I1(k) ≤ cx−α+k
d

∫ R/xd

0

sd−2Φ
(
(1 + s)2

)
(1 + s)d+α−k

ds ≤ cx−α+k
d

(
1 +

∫ R/xd

1

Φ(s2)

s2+α−k
ds
)
.

(6.6)

In order to estimate I3(k), for a > 0 we define Ka := {y ∈ Rd : |ỹ| <
axd/2, |yd − xd| < axd/2}. Then K1/

√
d ⊂ B(x, xd/2) ⊂ K1, hence

I3(k) ≤
∫
(D(R,3xd/2)\D(R,xd/2))\K1

|x− y|−d−α+kΦ
( |x− y|2

x2d

)
dy

+

∫
K1\K1/

√
d

|x− y|−d−α+kΦ
( |x− y|2

x2d

)
dy =: I31(k) + I32(k).

For yd ∈ (D(R, 3xd/2)\D(R, xd/2))\K1, we have yd ≍ xd and xd ≤ 2|x−y|.
Thus, using the change of variables yd = rt + xd in the second line below,
we get

I31(k) = c

∫ R

xd/2
rd−2

∫ 3xd/2

xd/2
(|xd − yd|+ r)−d−α+kΦ

((|xd − yd|+ r)2

x2d

)
dyd dr

= c

∫ R

xd/2
r−α+(k−1)

∫ xd
2r

−xd
2r

(|t|+ 1)−d−α+kΦ
((|t|+ 1)2r2

x2d

)
dt dr,

which is, by the change of variables r = xds, comparable to

xk−α
d

∫ R/xd

1/2
s−α+(k−1)

∫ 1/s

0
Φ
(
(t+ 1)2s2

)
(t+ 1)−d−α+k dt ds. (6.7)

Since
∫ 1/s
0 Φ

(
(t + 1)2s2

)
(t+ 1)−d−α+kdt ≍ Φ(s2)/s for s > 1/2, from (6.7)

we get

I31(k) ≤ cx−α+k
d

(
1 +

∫ R/xd

1

Φ(s2)

s2+α−k
ds
)
. (6.8)
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For y ∈ K1 \K1/
√
d it holds that xd/(2

√
d) ≤ |y−x| ≤

√
dxd. By using that

the volume |K1 \K1/
√
d| ≍ xdd, we get

I32(k) ≍
∫
K1\K1/

√
d

x−d−α+k
d Φ(1) dy ≍ x−α+k

d .

Together with (6.8) this gives

I3(k) ≤ cx−α+k
d

(
2 +

∫ R/xd

1

Φ(s2)

s2+α−k
ds
)
.

Therefore, combining this inequality, (6.6) and the fact that
∫ R/xd

1
Φ(s2)
s2+α−k ds ≥∫ 3/2

1
Φ(s2)
s2+α−k ds ≥ c > 0, we conclude that

I1(k) + I3(k) ≤ cx−α+k
d

∫ R/xd

1

Φ(s2)

s2+α−k
ds. (6.9)

(a-ii) Clearly, yd > xd for yd ∈ D(R,R) \ D(R, 3xd/2). Thus, using the
change of variables yd = xdh and r = xds in the second line below, we get

I2(k) ≤ c

∫ 2R

0
rd−2

∫ R

(3xd/2)
Φ
(((yd − xd) + r)2

xdyd

) dyd dr

((yd − xd) + r)d+α−k

= x−α+k
d

∫ R/xd

3/2

∫ 2R/xd

0

sd−2

[(h− 1) + s]d+α−k
Φ
( [(h− 1) + s]2

h

)
ds dh, (6.10)

which is, by the change of variables s = (h − 1)t and using (h − 1)/h ≍ 1,
equal to

x−α+k
d

∫ R/xd

3/2

∫ 2R
(h−1)xd

0

td−2

(h− 1)1+α−k(1 + t)d+α−k
Φ
((h− 1)2

h
(1 + t)2

)
dt dh

≍ x−α+k
d

∫ R/xd

3/2
h−1−α+k

∫ 2R
(h−1)xd

0

Φ
(
h(1 + t)2

)
(1 + t)d+α−k

td−2dt dh. (6.11)

Then, for 3/2 ≤ h ≤ R/xd, we have 2R
(h−1)xd

≥ 2R
R−xd

≥ 2. In particular,∫ 2R
(h−1)xd

1

Φ(ht2)dt

t2+α−k
≥
∫ 2

1

Φ(ht2)dt

t2+α−k
≍ Φ(h), 3/2 ≤ h ≤ R/xd,

Thus,∫ 2R
(h−1)xd

0

Φ
(
h(1 + t)2

)
(1 + t)d+α−k

td−2dt ≍ Φ(h)+

∫ 2R
(h−1)xd

1

Φ(ht2)dt

t2+α−k
≍
∫ 2R

(h−1)xd

1

Φ(ht2)dt

t2+α−k
.

(6.12)

Combining (6.10)–(6.12), we get

I2(k) ≤ cx−α+k
d

∫ R/xd

3/2

∫ 2R
(h−1)xd

1

Φ(ht2)dt

t2+α−k

dh

h1+α−k
. (6.13)
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Since xd ≤ R/2, we have∫ R/xd

3/2

∫ R
(h−1)xd

1

Φ(ht2)dt

t2+α−k

dh

h1+α−k
≥
∫ 2

3/2

∫ R
xd

1

Φ(ht2)dt

t2+α−k

dh

h1+α−k
≍
∫ R

xd

1

Φ(t2)dt

t2+α−k
.

(6.14)

Combining (6.9),(6.13) and (6.14), we conclude that

I(k) ≤ cx−α+k
d

∫ R/xd

3/2

∫ 2R
(h−1)xd

1

Φ(ht2)dt

t2+α−k

dh

h1+α−k

≤ x−α+k
d

∫ 6R/xd

1

∫ 6R
xdh

1

Φ(ht2)dt

t2+α−k

dh

h1+α−k
=: x−α+k

d II(k, 6R/xd) (6.15)

where, by Fubini’s theorem (for a ≥ 4),

II(k, a):=

∫ a

1

∫ a/h

1

Φ(ht2)dt

t2+α−k

dh

h1+α−k
=

∫ a

1

∫ a/t

1

Φ(ht2)dh

h1+α−k

dt

t2+α−k
(6.16)

≤ c

∫ a

1
Φ(at)

(
t

a

)β1
∫ a/t

1

dh

h−β1+1+α−k

dt

t2+α−k
. (6.17)

When k > α− β1, from (6.17) we have

II(k, a) ≤ c

∫ a

1
Φ(at)

(a
t

)−α+k dt

t2+α−k
= cak−αΦ(a/2)

∫ a

1

Φ(at)

Φ(a/2)

dt

t2

≤ cak−αΦ(a)

∫ a

1

dt

t2−β2
≤ cak−αΦ(a)

∫ ∞

1

dt

t2−β2
≍ ak−αΦ(a). (6.18)

If k = α− β1, from (6.17) we have

II(k, a) ≤ cak−αΦ(a/2)

∫ a

1

Φ(at)

Φ(a/2)
log(a/t)

dt

t2
≤ cak−αΦ(a)

∫ a

1
log(a)

dt

t2−β2

≤ c log(a)ak−αΦ(a)

∫ ∞

1

dt

t2−β2
≍ log(a)ak−αΦ(a). (6.19)

If k < α− β1, using 2 + α− k − β1 − β2 > 1 + α− k − β1 > 1, from (6.17)
we have

II(k, a) ≤ ca−β1Φ(a/2)

∫ a

1

Φ(at)

Φ(a/2)

dt

t2+α−k−β1

∫ ∞

1

dh

h1+α−k−β1

≤ ca−β1Φ(a/2)

∫ ∞

1

dt

t2+α−k−β1−β2
≍ a−β1Φ(a/2). (6.20)

If k > α− β2, from (6.16) we have

II(k, a) ≤ c

∫ a

1
hβ2t2β2

∫ a/t

1

dh

h1+α−k

dt

t2+α−k
≍
∫ a

1
(a/t)k+β2−α dt

t2−k+α−2β2

≍ ak+β2−α

∫ a

1

dt

t2−β2
≤ ak+β2−α

∫ ∞

1

dt

t2−β2
≍ ak+β2−α. (6.21)



32 PANKI KIM RENMING SONG AND ZORAN VONDRAČEK

If k = α− β2, from (6.16) we have

II(k, a) ≤ c

∫ a

1

∫ a/t

1
t2β2hβ2

dh

h1−β2

dt

t1+α
= c

∫ a

1
t2β2

∫ a/t

1

dh

h

dt

t1+α

≤ c log a

∫ ∞

1

dt

t2−β2
≤ c log a. (6.22)

If k < α−β2, using 2+α−k− 2β2 > 1+α−k−β2 > 1, from (6.16) we get

II(k, a) ≤ c

∫ ∞

1

dt

t2+α−k−2β2

∫ ∞

1

dh

h1+α−k−β2
<∞. (6.23)

Therefore, combining (6.15)–(6.23), we conclude that (6.5) holds.

(b) If we further assume that k > α, then for xd ≤ R/2,∫
D(R,R)

B(x, y)
|x− y|d+α−k

dy ≤
∫
{|y−x|<xd/2}

dy

|y − x|d+α−k
+Rk−αΦ(R/xd)

≤cxk−α
d + cRk−αΦ(R/xd) ≤ cRk−α + cRk−αΦ(R/xd) ≍ Rk−α(1 ∨ Φ(R/xd)).

2

Lemma 6.7. For every α ∈ [1, 2), there exists C = C(α) > 0 such that for
all z ∈ U ,∫

Dz̃(7,7)

|B(y, z)− B(z, z)|
|y − z|d+α−1

dy

≤ C


Φ(1/zd)(1 + 1{1+β1=α}| log zd|) if 1 + β1 ≥ α;

[Φ(1/zd)z
1−α+β1

d ] ∧ z−β2

d if 1 + β1 < α < 1 + β2;

z1−α
d (1 + 1{1+β2=α}| log zd|) if 1 + β2 ≤ α.

Proof. Since B(z, z) ≤ cB(y, z) for all y, z ∈ Rd
+, we have∫

D(7,7)

|B(y, z)− B(z, z)|
|y − z|d+α−1

dy ≤
∫
D(7,7)∩{|y−z|<zd/2}

|B(y, z)− B(z, z)|
|y − z|d+α−1

dy

+ c

∫
D(7,7)∩{|y−z|≥zd/2}

B(y, z)
|y − z|d+α−1

dy =: I + II.

If y ∈ B(z, 2−1zd), then |y − z| ≤ zd/2 ≤ yd and yd ≍ zd, hence by (A2),
we have that

I≤ cz−θ
d

∫
|y−z|<zd/2

|y − z|θ−d−α+1dy=cz−θ
d

∫ zd/2

0
rθ−αdr≤cz1−α

d . (6.24)

Since

z1−α
d ≤ c

{
z−β1

d ≤ cΦ(1/zd) if 1 + β1 ≥ α;

[Φ(1/zd)z
1−α+β1

d ] ∧ z−β2

d if 1 + β1 < α < 1 + β2,
(6.25)

combining (6.24) with by Lemma 6.6(a), we get the lemma. 2
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6.3. Proof of Lemma 6.1. Let ψ be a non-negative Cγ function in Rd
+

with bounded support and bounded derivatives such that

ψ(y) =


|ỹ|γ , y ∈ D(2−2, 2−2);

1, y ∈ D(2, 2) \ U ;

0, y ∈ D(3, 3)c,

where γ ≥ 2 will be chosen later, and ψ(y) ≥ 4−γ for y ∈ U \D(2−2, 2−2).
The function ψ in Rd

+ can be constructed so that, for y = (ỹ, yd) with

yd ∈ (0, 18), ψ(y) depends on ỹ only. We extend ψ to be identically zero in

Rd
−.

Note that (A4) implies that x 7→ B(x, x) is a constant on Rd
+. Without

loss of generality, we assume that B(x, x) ≡ 1 and for simplicity, in the
remainder of this subsection, we neglect the constant A(d, α) in j(x, y).

For z ∈ U and |y − z| > 6, |y| ≥ |y − z| − |z| > 5. Thus by (3.4) (with
r = 6), for α ∈ [1, 2), we have that for z ∈ U ,

LB
αψ(z) =

∫
Rd
+∩{|y−z|<6}

ψ(y)− ψ(z)−∇ψ(z) · (y − z)

|y − z|d+α
B(y, z)dy

− ψ(z)

∫
Rd
+∩{|y−z|>6}

1

|y − z|d+α
B(y, z)dy

+

∫
Rd
+∩{|y−z|<6}

∇ψ(z) · (y − z)

|y − z|d+α
(B(y, z)− 1)dy−

∫
Rd
−∩{|y−z|<6}

∇ψ(z) · (y − z)

|y − z|d+α
dy

≤c1
∫
Rd
+∩{|y−z|<6}

B(y, z)
|y − z|d+α−2

dy+

∫
Rd
+∩{|y−z|<6}

|∇ψ(z) · (y − z)|
|y − z|d+α

|B(y, z)− 1|dy

+

∫
B(z,6)\B(z,zd)

|∇ψ(z) · (y − z)|
|y − z|d+α

dy. (6.26)

(a) When α ∈ (0, 1), LB
αψ(z) is not really a principal value integral and,

since α < 1, by Lemma 6.6(b) with k = 1,

LB
αψ(z) =

∫
Rd
+

ψ(y)− ψ(z)

|y − z|d+α
B(y, z)dy ≤

∫
Rd
+∩{|y−z|<6}

ψ(y)− ψ(z)

|y − z|d+α
B(y, z)dy

≤ c2

∫
Dz̃(7,7)

B(y, z)
|y − z|d+α−1

dy ≤ c3Φ(1/zd).

Thus, the conclusion of (a) follows for α ∈ (0, 1). For the remainder of the
proof of (a), we assume that α ∈ [1, 2).
(a1) α ∈ [1, 2) and z ∈ D(2−2, 2−2): Since z ∈ D(2−2, 2−2), we have that
ψ(z) = ψ(z̃) = |z̃|γ and |∇ψ(z̃) · (ỹ − z̃)| ≤ c4|z̃|γ−1|ỹ − z̃|. We use (6.26)
and get

LB
αψ(z) ≤c1

∫
Dz̃(7,7)

B(y, z)
|y − z|d+α−2

dy +

∫
Dz̃(7,7)

|∇ψ(z̃) · (ỹ − z̃)|
|y − z|d+α

|B(y, z)− 1| dy
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+

∫
B(z,6)\B(z,zd)

|∇ψ(z̃) · (ỹ − z̃)|
|y − z|d+α

dy =: I + II + III.

Since 2 > α, by Lemma 6.6(b) with k = 2 we get that I ≤ c5Φ(1/zd).
Estimating II by Lemma 6.7 and using (6.25), we get that

II + III

≤ c6|z̃|γ−1

∫
Dz̃(7,7)

|B(y, z)− B(z, z)|
|y − z|d+α−1

dy + c6|z̃|γ−1

∫
B(z,6)\B(z,zd)

dy

|y − z|d+α−1

≤ c7|z̃|γ−1


Φ(1/zd)(1 + 1{1+β1=α or α=1}| log zd|) if 1 + β1 ≥ α;

[Φ(1/zd)z
1−α+β1

d ] ∧ z−β2

d if 1 + β1 < α < 1 + β2;

z1−α
d (1 + 1{1+β2=α}| log zd|) if 1 + β2 ≤ α.

Combining the estimates for I, II and III, we get that

LBψ(z) ≤ c8Φ(1/zd)− C(α, p,B)|z̃|γz−α
d

+ c8|z̃|γ−1


Φ(1/zd)| log zd| if 1 + β1 ≥ α;

[Φ(1/zd)z
1−α+β1

d ] ∧ z−β2

d if 1 + β1 < α < 1 + β2;

z1−α
d | log zd| if 1 + β2 ≤ α

(6.27)

= c8Φ(1/zd) − c8|z̃|γ−1

×



Φ(1/zd)
(
C(α,p,B)

c8

|z̃|
Φ(1/zd)z

α
d
− | log zd|

)
if 1 + β1 ≥ α;

([Φ(1/zd)z
1−α+β1

d ] ∧ z−β2

d )

(
C(α,p,B)

c8

|z̃|
[Φ(1/zd)z

1+β1
d ]∧zα−β2

d

− 1

)
if 1 + β1 < α < 1 + β2;

z1−α
d

(
C(α,p,B)

c8

|z̃|
zd

− | log zd|
)

if 1 + β2 ≤ α.

(6.28)

We consider three cases separately:
Case 1 + β2 ≤ α: Let γ = 3 and choose κ̃ ∈ (0, 1) so that t−1/2 −

c8
C(α,p,B) | log t| > 0 for t ∈ (0, κ̃]. When |z̃| ≥ z

1/2
d and zd ≤ κ̃, it follows

from (6.28) and the choice of κ̃ that

LBψ(z) ≤ c8Φ(1/zd) − c8
|z̃|2

zα−1
d

(
C(α, p,B)

c8
z
−1/2
d − | log zd|

)
≤ c8Φ(1/zd).

In case when |z̃| ≤ z
1/2
d and zd ≤ κ̃, using the fact that 2 − α > 0, we

estimate the last term in (6.27) by

|z̃|2z1−α
d | log zd| ≤ z2−α

d | log zd| ≤ c9 ≤ c10Φ(1/zd).

Thus, in this case we can disregard the middle term in (6.27) and obtain
again that LBψ(z) ≤ c11Φ(1/zd). Finally, it follows from (6.27) that for
z ∈ U with zd ≥ κ̃ it holds that LBψ(z) ≤ c12 ≤ c13Φ(1/zd). Therefore
LBψ(z) ≤ c14Φ(1/zd) for all z ∈ D(2−2, 2−2).
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Case 1+β1 < α < 1+β2: Choose a γ ≥ 3 such that 1 > (γ−1)/γ > β2−β1.
Then, using 1 + β1 < α < 1 + β2, we have

γ − 1 >
β2 − β1

1 + β1 − β2
>

α− 1− β1
1 + β1 − β2

> 0.

Let

M :=
(γ − 1)(1 + β1 − β2)

α− 1− β1
> 1.

When |z̃| ≥ c8
C(α,p,B)([Φ(1/zd)z

1+β1

d ] ∧ zα−β2

d )1/M , it follows from (6.28) that

LBψ(z) ≤ c8Φ(1/zd)

− c8|z̃|γ−1([Φ(1/zd)z
1−α+β1

d ] ∧ z−β2

d )
(
([Φ(1/zd)z

1+β1

d ] ∧ zα−β2

d )−(M−1)/M − 1
)

≤ c8Φ(1/zd)− c8|z̃|γ−1([Φ(1/zd)z
1−α+β1

d ] ∧ z−β2

d )
(
z
−(α−β2)(M−1)/M
d − 1

)
≤ c8Φ(1/zd).

In case when |z̃| ≤ c8
C(α,p,B)([Φ(1/zd)z

1+β1

d ] ∧ zα−β2

d )1/M , using Φ(1/zd) ≤
c15z

−β2

d , we estimate the last term in (6.27) by

c8|z̃|γ−1Φ(1/zd)z
1−α+β1

d ≤ c16(Φ(1/zd)z
1+β1

d )
γ−1
M z1−α+β1

d Φ(1/zd)

= c16[Φ(1/zd)z
1+β1

d z−1−β1+β2

d ]
α−1−β1
1+β1−β2 Φ(1/zd)

= c16[Φ(1/zd)z
β2

d ]
α−1−β1
1+β1−β2 Φ(1/zd) ≤ c17Φ(1/zd).

Thus, in this case we can disregard the middle term in (6.27) and obtain
LBψ(z) ≤ c18Φ(1/zd).

Case 1+β1 ≥ α: Let γ = 2 and choose κ̃ ∈ (0, 1) so that t−(α−β2)/2−| log t| >
0 for t ∈ (0, κ̃]. When |z̃| ≥ c8c15

C(α,p,B)z
(α−β2)/2
d and zd ≤ κ̃, it follows from

(6.28) and Φ(1/zd) ≤ c15z
−β2

d and the choice of κ̃ that

LBψ(z) ≤ c8Φ(1/zd) − c8|z̃|Φ(1/zd)

(
C(α, p,B)
c8c15

|z̃|
zα−β2

d

− | log zd|

)
≤ c8Φ(1/zd) − c8|z̃|Φ(1/zd)

(
z
−(α−β2)/2
d − | log zd|

)
≤ c19Φ(1/zd).

In case when |z̃| ≤ c8c15
C(α,p,B)z

(α−β2)/2
d , we estimate the last term in (6.27) by

|z̃|Φ(1/zd)| log zd| ≤ c20[z
(α−β2)/2
d | log zd|]Φ(1/zd) ≤ c21Φ(1/zd).

Thus, in this case we can disregard the middle term in (6.27) and obtain
LBψ(z) ≤ c22Φ(1/zd). Finally, it follows from (6.27) that for z ∈ U with
zd ≥ κ̃ it holds that LBψ(z) ≤ c23 ≤ c24Φ(1/zd). Therefore LBψ(z) ≤
c25Φ(1/zd) for all z ∈ D(2−2, 2−2).



36 PANKI KIM RENMING SONG AND ZORAN VONDRAČEK

(a2) α ∈ [1, 2) and z ∈ U \D(2−2, 2−2): We show that there exist constants
c26 > 0 and κ ∈ (0, 1/4] such that (i) for zd ≤ κ and |z̃| ∈ [1/4, 1/2) it holds
that LBψ(z) ≤ 0; (ii) For zd ∈ [κ, 1/2), it holds that LBψ(z) ≤ c26.

We use (6.26) to get

LB
αψ(z) ≤ c27

∫
Dz̃(7,7)

B(y, z)
|y − z|d+α−2

dy + c27

∫
Dz̃(7,7)

|1− B(y, z)|
|y − z|d+α−1

dy

+ c27

∫
B(z,6)\B(z,zd)

dy

|y − z|d+α−1
.

Combining this with Lemmas 6.6(b) and 6.7, we get that there exists a
positive constant c28 > 0 such that

LB
αψ(z) ≤ c28z

−[(α−1)∨β2]
d | log zd| , z ∈ U .

Thus there exists c26 = c26(κ) such that LBψ(z) ≤ LB
αψ(z) ≤ c26 for all

z ∈ U with zd ≥ κ.
Finally, we assume that |z̃| ∈ (4−1, 1). By the assumption on ψ, we

have that ψ(z) = ψ(z̃, zd) ≥ 4−γ . Since a := 1 ∧ (α − β2) > 0, we have
limzd→0 z

a
d | log zd| = 0 so we can choose κ > 0 so that

zad | log zd| −
C(α, p,B)4−γ

c28
≤ 0

for all zd ∈ (0, κ). Then,

LBψ(z) = LB
αψ(z)− C(α, p,B)z−α

d ψ(z) ≤ LB
αψ(z)− C(α, p,B)4−γz−α

d

≤ c28z
−α
d

(
zad | log zd| −

C(α, p,B)4−γ

c28

)
≤ 0

for all z ∈ U \D(2−2, 2−2) with |z̃| ∈ (4−1, 1) and zd ∈ (0, κ).
(b) Recall that hp,1(x) = xpd1D(1,1)(x). Define ϕ := hp,1−ψ. The function ϕ
is obviously non-positive on U c, hence Lemma 6.1 (b2) holds true. Moreover,

since ψ((0̃, xd)) = 0, we have that ϕ((0̃, xd)) = xpd, for (0̃, xd) ∈ U , which is
Lemma 6.1 (b1). Furthermore Lemma 6.1 (b3) follows from Lemma 5.2 and
Lemma 6.1 (a). In fact, for z ∈ U

LBϕ(z) = LBhp,1(z)− LBψ(z) ≥ −c29Φ(1/zd)− c30Φ(1/zd) = −c31Φ(1/zd).

2

7. Carleson estimates

In this section we deal with the Carleson estimate. The proof is similar
to that of [22, Theorem 1.2] and we provide only the part which requires
some modification.

Theorem 7.1 (Carleson estimate). Suppose p ∈ (0, α− β̃2)∩ [(α− 1)+, α−
β̃2). There exists a constant C > 0 such that for any w ∈ ∂Rd

+, r > 0, and



DIRICHLET FORMS WITH JUMP KERNELS BLOWING UP AT THE BOUNDARY 37

any non-negative function f in Rd
+ that is harmonic in Rd

+ ∩ B(w, r) with

respect to Y and vanishes continuously on ∂Rd
+ ∩B(w, r), we have

f(x) ≤ Cf(x(0)) for all x ∈ Rd
+ ∩B(w, r/2), (7.1)

where x(0) ∈ Rd
+ ∩B(w, r) with x

(0)
d ≥ r/4.

Proof. We first choose β2 such that (1.3) holds and p ∈ (0, α− β2) ∩ [(α−
1)+, α−β2). By Lemma 4.1 (a) and (b), it suffices to deal with the case r = 1

and w̃ = 0̃. Moreover, by Theorem 3.5, we can assume that x(0) = (0̃, 4/5).
If κ = 0, then Corollary 4.3 (b) states that there is n0 ≥ 2 such that for

every x ∈ Rd
+ it holds that Px(τB(x,n0xd) = ζ) ≥ 1/2. If κ = C(α, p,B) > 0,

then

Px(τB(x,n0xd) = ζ) ≥ Px(τB(x,xd/2) = ζ) = Ex

∫ ∞

0
1B(x,xd/2)(Ys)

C(α, p,B)ds
(Y d

s )
α

≥ C(α, p,B)(xd/2)−αExτB(x,xd/2) ≥ cC(α, p,B),

where the last inequality follows from Proposition 3.2 (a). Therefore, there
exists a strictly positive constant δ∗ depending on κ such that for the corre-
sponding process Y (recall that we suppress dependence on κ in the notation)
it holds that

Px(τB(x,n0xd) = ζ) ≥ δ∗, for all x ∈ Rd
+. (7.2)

Let f be a non-negative function on Rd
+ which is harmonic in Rd

+∩B(0, 1)

and vanishes continuously on ∂Rd
+ ∩B(0, 1). By Theorem 3.5 (b), it suffices

to prove (7.1) for x ∈ Rd
+ ∩B(0, 1/(48n0)).

Choose γ ∈ (0, 1/4) such that 0 < γ < (α − β2)/(d + α − 2β2) and

γ < log 12/(log n0 + log 12) (the latter condition is equivalent to n
γ/(1−γ)
0 <

12). Recall that x(0) = (0̃, 4/5) ∈ Rd
+ ∩ B(0, 1) and fix it. For any x ∈

Rd
+ ∩B(0, 1/(24n0)), define

B0(x) = B(x, n0xd) , B1(x) = B(x, xγd) and B3 = B(x(0), 4/15).

Since x ∈ B(0, 1/(24n0)), we have xd < 1/(12n0). By the choice of γ, we

have thatB0(x) ⊂ B1(x). (Indeed, (n0xd)/(x
γ
d) = n0x

1−γ
d < n0/(12n0)

1−γ =

(n
γ/(1−γ)
0 /12)1−γ < 1.)
By (7.2), Px(τB0(x) = ζ) ≥ δ∗ for x ∈ Rd

+ ∩ B(0, 1/(24n0)). By Theorem

3.5 (b) there exists χ > 0 such that f(x) < x−χ
d f(x(0)) for x ∈ Rd

+ ∩
B(0, 1/(24n0)). Since f is harmonic in Rd

+ ∩ B(0, 1), for every x ∈ Rd
+ ∩

B(0, 1/(24n0),

f(x) = Ex

[
f
(
Y (τB0(x))

)
;Y (τB0(x)) ∈ B1(x)

]
+ Ex

[
f
(
Y (τB0(x))

)
;Y (τB0(x)) /∈ B1(x)

]
.
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Using (3.1), (5.1) and Proposition 3.2 with B2 := B(x(0), 2/15), by the same
arguments as in steps 1–2 of the proof of [21, Theorem 1.2], we have that

f(x(0)) ≥ c1

∫
Rd
+\B3

J(x(0), y)f(y) dy (7.3)

and

Ex

[
f
(
Y (τB0(x))

)
;Y (τB0(x)) /∈ B1(x)

]
≤c2xαd

(∫
(Rd

+\B1(x))∩Bc
3

+

∫
(Rd

+\B1(x))∩B3

)
J(x, y)f(y)dy =:c2x

α
d (I1 + I2). (7.4)

Suppose now that |y − x| ≥ xγd and x ∈ Rd
+ ∩B(0, 1/(24n0)). Then

|y − x(0)| ≤ |y − x|+ 2 ≤ |y − x|+ 2x−γ
d |y − x| ≤ 3x−γ

d |y − x|.

Moreover, since (1/xd)
1−2γ ≥ (24n0)

1−2γ > 4, we have that x
(0)
d = 4/5 ≥

x1−2γ
d . Therefore,

J(x, y)≍ 1

|x− y|d+α
Φ

(
|y − x|2

xdyd

)
≤c3

|x− y|−d−α+2β2

|x(0) − y|2β2
(x

(0)
d /xd)

β2Φ

(
|y − x(0)|2

x
(0)
d yd

)

≤ c4
(xγd |y − x(0)|)−d−α+2β2

|x(0) − y|2β2
x−β2

d Φ

(
|y − x(0)|2

x
(0)
d yd

)
≤ c5x

−γ(d+α−2β2)−β2

d J(x(0), y).

Now, using this and (7.3), we get

I1≤c5x−γ(d+α−2β2)−β2

d

∫
(Rd

+\B1(x))∩Bc
3

J(x(0), y)f(y) dy ≤ c6f(x
(0))

x
γ(d+α−2β2)+β2

d

. (7.5)

If y ∈ B3, then yd ≍ 1 and

2 ≥ |x(0)|+|x|+|y−x(0)| ≥ |y−x| ≥ |x(0)|−|x|−|y−x(0)| > 4

5
− 1

48n0
−1

4
>

1

4
.

Thus, for y ∈ B3,

J(x, y) ≤ c7
|x− y|d+α

|x− y|2β2

xβ2

d y
β2

d

≤ c8x
−β2

d .

Moreover, by Theorem 3.5, there exists c9 > 0 such that f(y) ≤ c9f(x
(0))

for all y ∈ B3. Therefore,

I2 ≤ c9f(x
(0))

∫
(D\B1(x))∩B3

J(x, y) dy

≤ c10f(x
(0))

∫
2≥|y−x|>1/4

x−β2

d dy ≤ c11x
−β2

d f(x(0)). (7.6)

Combining (7.4), (7.5) and (7.6) and using α − β2 > γ(d+ α − 2β2) > 0
(by the choice of γ), we obtain

Ex[f(Y (τB0(x)));Y (τB0(x)) /∈ B1(x)]≤c12f(x(0))xα−β2−γ(d+α−2β2)
d . (7.7)
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We choose η > 0 so that ηα−β2−γ(d+α−2β2) ≤ c−1
12 . Then for x ∈ Rd

+ ∩
B(0, 1/(24n0)) with xd < η, we have by (7.7),

Ex

[
f(Y (τB0(x))); Y (τB0(x)) /∈ B1(x)

]
≤ c12 f(x

(0))
(
η−γ(d+α−2β2)−β2+α + η−β2+α

)
≤ f(x(0)) .

The rest of the proof is the same as that of [21, Theorem 1.2]. Therefore we
omit it. 2

8. Interior Green function estimates

The goal of this section is to establish interior two-sided estimates of
the Green function. We will distinguish between two cases: d > α and
d = 1 ≤ α.

8.1. Interior estimate: case d > α. In this subsection we establish the
following interior two-sided estimates of the Green function in case d > α.

Proposition 8.1. Suppose d > α. For any a > 0, there exists C = C(a) ≥ 1
such that for all x, y ∈ Rd

+ satisfying |x− y| ≤ a(xd ∧ yd), it holds that

C−1|x− y|−d+α ≤ G(x, y) ≤ C|x− y|−d+α.

We will first prove the upper bound which is more difficult. The idea of
obtaining the upper bound of the Green function using the Hardy inequality
originated from [22]. The proof will be given through a number of auxiliary
results.

For b > 0, let Rd
b+ := {x ∈ Rd

+ : xd ≥ b}. Define

Q(u, u) :=

∫
Rd
1+

∫
Rd
1+

(u(x)− u(y))2j(x, y) dx dy

and D(Q) = {u ∈ L2(Rd
1+) : Q(u, u) < ∞}. Then (Q,D(Q)) is a regu-

lar Dirichlet form and the corresponding symmetric Hunt process X(1) =

(X
(1)
t )t≥0 is the reflected stable process on Rd

1+, see [4]. Let p(1)(t, x, y) be

the transition density of X(1). Using the estimates of p(1)(t, x, y) (see [11])
we get that for every γ ∈ (0, (d/α− 1) ∧ 2),

h(x, y) :=

∫ ∞

0
tγp(1)(t, x, y) dt ≍

∫ ∞

0
tγ
(
t−d/α ∧ t

|x− y|d+α

)
dt

≍ 1

|x− y|d−(γ+1)α,
x, y ∈ Rd

1+

and

h(x, y) :=

∫ ∞

0
tγ−1p(1)(t, x, y) dt ≍ 1

|x− y|d−γα
, x, y ∈ Rd

1+.

Thus,

q(x) :=
h(x, ed)

h(x, ed)
≍ 1

|x− ed|α
.
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It now follows from the Hardy inequality in [8, Theorem 2 and Corollary 3]
that there exists c1 > 0 such that

Q(u, u) ≥ c1

∫
Rd
1+

u(x)2
dx

|x− ed|α
for all u ∈ L2(Rd

1+). (8.1)

Using (8.1), we now follow the argument leading to [22, Corollary 4.4] line
by line to get the following result.

Proposition 8.2. Suppose d > α. There exists C > 0 such that for every
non-negative Borel function f satisfying

∫
Rd
+
f(x)Gf(x) dx < ∞ and every

zb = (0̃, b) with b ≥ 0, it holds that∫
Rd
1+

|Gf(x+ zb)|2

|x− ed|α
dx ≤ C

∫
Rd
+

f(x)Gf(x) dx.

Proposition 8.3. Suppose d > α. There exists C > 0 such that for any
x ∈ Rd

+ with xd > 6, it holds that
∫
B(x,4)(G1B(x,4)(y))

2 dy ≤ C.

Proof. Without loss of generality we assume that x = (0̃, xd). Set B =
B(x, 4) and let u = G1B. It follows from (8.1) that for any v ∈ C∞

c (Rd
+),∫

B
|v(y)|dy ≤ |B|1/2

(∫
B
v2(y)dy

)1/2

≤ c(xd)

(∫
Rd
1+

v2(y)
dy

|y − ed|α

)1/2

≤ c(xd)(Q(v, v))1/2.

Thus 1B(y)dy is of finite 0-order energy integral and u ∈ Fe, where Fe is the
extended Dirichlet space. By the definition of Fe, there exists a Q-Cauchy
sequence {un} ⊂ F with un → u almost everywhere. Thus by (8.1) and
Fatou’s lemma,∫

B
u2(y)dy ≤ c(xd) lim inf

n→∞

∫
B
u2n(y)dy ≤ lim inf

n→∞

∫
Rd
1+

u2n(y)
dy

|y − ed|α

≤ c(xd) lim inf
n→∞

Q(un, un) = c(xd)Q(u, u) <∞.

Let z = (0̃, xd − 6) and B̃ = B((0̃, 6), 4) ⊂ Rd
2+. By using the change of

variables w = x − z and the fact that |w − ed| ≍ 1 for w ∈ B̃ in the first
line, and then Proposition 8.2 and the Cauchy inequality in the third line
below, we have

∥u∥2L2(B) =

∫
B̃
|u(w + z)|2 dw ≤ c1

∫
Rd
1+

|G1B(w + z)|2 dw

|w − ed|α

≤ c2

∫
Rd
+

1B(y)G1B(y) dy ≤ c2|B|1/2∥u∥L2(B).

Since ∥u∥L2(B) <∞, we have that ∥u∥L2(B) ≤ c2|B|1/2. This completes the
proof. 2
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Proof of Proposition 8.1. Upper bound. By (4.1) and Theorem 3.5, it
suffices to deal with x, y ∈ Rd

+ with |x− y| = 1 and xd ∧ yd > 10.

We fix now two points x(0) and y(0) in Rd
+ such that |x(0) − y(0)| = 1,

x
(0)
d ∧ y

(0)
d ≥ 10 and x̃(0) = 0̃. Let E = B(x(0), 1/4), F = B(y(0), 1/4)

and D = B(x(0), 4). Let f = G1E and u = G1D. Since z 7→ G(y(0), z) is

harmonic in B(x(0), 1/2) with respect to Y and f is harmonic in B(y(0), 1/2)

with respect to Y , by applying Theorem 3.5 to f and z 7→ G(y(0), z), we get

f(y(0)) =

∫
E
G(y(0), z)dz ≥ c1|E|G(y(0), x(0)),

∫
F
f(y)2dy ≥ c2|F |f(y(0))2.

Thus, using the symmetry of G and Proposition 8.3, we obtain

G(x(0), y(0)) ≤ 1

c1|E|
f(y(0)) ≤ 1

c1|E|

(
1

c2|F |

∫
F
f(y)2dy

)1/2

≤ c3

|E|3/2
∥u∥L2(D),

for c3 = c−1
1 c

−1/2
2 > 0.

We have shown that there is a c4 > 0 such that G(z, w) ≤ c4 for all
z, w ∈ Rd

+ with |z −w| = 1 and zd ∧wd ≥ 10. By Theorem 3.5, there exists

c5 = c5(a) > 0 such that G(z, w) ≤ c5 for all z, w ∈ Rd
+ with |z−w| = 1 and

zd ∧ wd > a−1.
Now let x, y ∈ Rd

+ satisfy |x− y| ≤ a(xd ∧ yd) and set

x(0) =
x

|x− y|
, y(0) =

y

|x− y|
.

Then |x(0) − y(0)| = 1 and x
(0)
d ∧ y(0)d > a−1 so that G(x(0), y(0)) ≤ c5. By

scaling in Lemma 4.1(c),

G(x, y) = G(x(0), y(0))|x− y|α−d ≤ c5
|x− y|d−α

. 2

We continue now by providing a proof of the lower bound and will use
a well-known capacity argument to show that there exists c > 0 such that
G(x, y) ≥ c for all x, y ∈ Rd

+ satisfying |x − y| = 1 and xd ∧ yd ≥ 10. For
such x and y, let D = B(x, 5), V = B(x, 3) and Wy = B(y, 1/2). Recall

that, for any W ⊂ Rd
+, TW = inf{t > 0 : Yt ∈ W}. By Lemma 3.4 (with

ϵ = 1/2 and r = 5/2), there exists a constant c1 > 0 such that

Px(TWy < τD) ≥ c1
|Wy|
|D|

= c2 > 0 . (8.2)

Recall that Y D is the process Y killed upon exiting D and denote by GD(·, ·)
the Green function of Y D. Let µ be the capacitary measure of Wy with
respect to Y D (i.e., with respect to the corresponding Dirichlet form). Then

µ is concentrated onWy, µ(D) = CapY
D
(Wy) and Px(TWy < τD) = GDµ(x).

By (8.2) and applying Theorem 3.5 to the function G(x, ·), we get

c2 ≤ Px(TWy < τD) = GDµ(x) =

∫
D
GD(x, z)µ(dz) ≤

∫
D
G(x, z)µ(dz)
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≤ c3G(x, y)µ(D) = c3G(x, y)Cap
Y D

(Wy) . (8.3)

Recall that X denotes the isotropic α-stable process in Rd and that XD is

the part of the process X in D. By Lemma 3.1 and monotonicity of CapX
D
,

CapY
D
(Wy) ≤ c4Cap

XD
(Wy) ≤ c4Cap

XD
(V ) .

The last term, CapX
D
(V ), is just a number, say c5, depending only on the

radii of V and D. Hence, CapY
D
(Wy) ≤ c4c5. Inserting in (8.3), we get that

G(x, y) ≥ c2c
−1
3 c−1

4 c−1
5 .

Proof of Proposition 8.1. Lower bound. We have shown above that
there is a c6 > 0 such that G(z, w) ≥ c6 for all z, w ∈ Rd

+ with |z − w| = 1
and zd ∧wd ≥ 10. The rest of the proof is completed by the same argument
as that used for the upper bound. 2

8.2. Interior estimates: case d = 1 ≤ α. In this subsection we establish
the following interior two-sided estimates of the Green function in case d =
1 ≤ α.

Proposition 8.4. Suppose d = 1 ≤ α. For any a > 0, there exists a
constant C = C(a) ≥ 1 such that for all x, y ∈ Rd

+ satisfying |x − y| ≤
a(xd ∧ yd), it holds that

C−1 (x ∨ y ∨ |x− y|)α−1 ≤G(x, y) ≤ C (x ∨ y ∨ |x− y|)α−1 , α > 1;

C−1 log

(
e+

x ∨ y
|x− y|

)
≤G(x, y) ≤ C log

(
e+

x ∨ y
|x− y|

)
, α = 1.

Again, we prove this result through a number of lemmas. The first one
deals with the isotropic stable process killed upon exiting an interval. This
result might be known. Since we could not pinpoint a reference, we give a
full proof.

Lemma 8.5. Suppose d = 1 ≤ α. There exists C > 1 such that for any
x0 ∈ R and r ∈ (0, 3/4),

C−1(1+1α=1 log
−1(1/r)) ≤ CapX

B(x0,1)
(B(x0, r)) ≤ C(1+1α=1 log

−1(1/r)).

Proof. Without loss of generality, we assume that x0 = 0. Recall that
GX

B(0,1)(x, y) is the Green function of the isotropic α-stable process X killed

upon exiting B(0, 1). It is known that, see e.g. [9, Corollary 3],

GX
B(0,1)(x, y) ≍

log
(
1 + (1−|x|)(1−|y|)

|x−y|2

)
, α = 1;

[(1− |x|)(α−1)/2(1− |y|)(α−1)/2] ∧ (1−|x|)α/2(1−|y|)α/2

|x−y| , α > 1.

(8.4)

Let P denote the family of all probability measures on B(0, r). It follows
from [17, p.159] that

CapX
B(0,1)

(B(0, r)) =
(
inf
µ∈P

sup
x∈supp(µ)

GX
B(0,1)µ(x)

)−1
. (8.5)
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Let mr be the normalized Lebesgue measure on B(0, r). By (8.5),

CapX
B(0,1)

(B(0, r)) ≥
(

sup
x∈B(0,r)

GX
B(0,1)mr(x)

)−1
. (8.6)

Further, using (8.4) in the second line below, we have that for α = 1,

sup
x∈B(0,r)

GX
B(0,1)mr(x) = sup

x∈B(0,r)

∫
B(0,r)

GX
B(0,1)(x, y)mr(dy)

≤ c sup
x∈B(0,r)

∫
B(0,r)

log
(
1 + |x− y|−2

)
mr(dy)

≤ c

r

∫
B(x,2r)

log
(
1 + |x− y|−2

)
dy ≤ c

r

∫
B(0,2r)

log
2

|y|
dy ≤ c log

1

r
,

for some constant c > 0. Similarly, for α > 1,

sup
x∈B(0,r)

GX
B(0,1)mr(x) ≤ c sup

x∈B(0,r)

∫
B(0,r)

mr(dy) = c.

This together with (8.6) yields the desired lower bound.

For the upper bound we use that for any probability measure µ on B(0, r)
it holds that

CapX
B(0,1)

(B(0, r)) ≤
(

inf
x∈B(0,r)

GX
B(0,1)µ(x)

)−1
,

see [6, Lemma 5.54] (and note that there is a typo in the display – the inf
on the left-hand side should be taken over x ∈ K). Take µ = δr. Then in

case α > 1, for x ∈ B(0, r),

GX
B(0,1)µ(x) = GX

B(0,1)(x, r) ≥ c

(
(1− r)α−1 ∧ (1− r)α

2r

)
= c(1− r)α−1

(
1 ∧ 1− r

2r

)
≥ c(1/4)α−1

(
1 ∧ 1

8r

)
≥ c.

Hence, CapX
B(0,1)

(B(0, r)) ≤ c.

In case α = 1, for x ∈ B(0, r),

GX
B(0,1)µ(x) = GX

B(0,1)(x, r) ≍ log

(
1 +

(1− |x|)(1− r)

(x− r)2

)
≥ log

(
1 +

(1− r)2

(2r)2

)
≥ log

(
1 +

1

43r2

)
≥ c log(1/r).

Hence, CapX
B(0,1)

(B(0, r)) ≤ c/ log(1/r). 2

Let Bn = (1− 2−1(1 + 2−n), 1 + 2−1(1 + 2−n)), n = 1, 2.

Lemma 8.6. Suppose d = 1 ≤ α. There exists C ≥ 1 such that for every
x ∈ B2,

C−1(1 + 1α=1 log (1/|x− 1|)) ≤ GB1(x, 1) ≤ C(1 + 1α=1 log (1/|x− 1|)).
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Proof. Fix x ∈ B2 and let r := 2−1|x − 1|. Since B(1, r) is a compact

subset of B1, there exists a capacitary measure µr for B(1, r) with respect
to Y B1 such that

CapY
B1
(B(1, r)) = µr(B(1, r))

and GB1µr(x) = Px(T
Y B1

B(1,r)
< ∞) = Px(TB(1,r)

< τB1) for x ∈ B1 (see, for

example, [1, Section VI.4] for details). Then by Theorem 3.5 and using (3.2)
we have ∫

B(1,r)
GB1(x, y)µr(dy) ≍ GB1(x, 1)Cap

Y B1
(B(1, r))

≍ GB1(x, 1)Cap
XB1

(B(1, r)). (8.7)

Moreover, c ≤ Px(TB(1,r)
< τB1) ≤ 1, where the left-hand side inequality

follows from Lemma 3.4 (with ϵ = 1/10 and the r there equal to 5/8).
Therefore,

c ≤
∫
B(1,r)

GB1(x, y)µr(dy) ≤ 1 . (8.8)

Combining (8.7)-(8.8) and applying Lemma 8.5, we conclude that

GB1(x, 1) ≍
1

CapX
B1
(
B(1, r)

) ≍

{
log (1/r) ≍ log (1/|x− 1|) if α = 1;

1 if α > 1.

2

Lemma 8.7. Suppose d = 1 ≤ α. There exists C > 0 such that for all
x, y ∈ (0, 4/7) satisfying |x− y| ≤ 5

8(x ∧ y),

G(0,1)(x, y) ≥ C

{
log
(
e+ x∨y

|x−y|

)
if α = 1;

(x ∨ y ∨ |x− y|)α−1 if α > 1.
(8.9)

Proof. Note that by Lemma (4.1)(a), if x < 4/7,

G(0,1)(x, y) ≥ G( 1
4
x, 7

4
x)(x, y) = xα−1GB1(1, y/x).

Thus, by Lemma 8.6, for x, y ∈ (0, 4/7) with |x− y| ≤ 5
8(x ∧ y) we have

G(0,1)(x, y) ≥ xα−1GB1(1, y/x) ≥ cxα−1(1 + 1α=1 log(x/|y − x|)),
so (8.9) follows from this and the fact that x ≍ x ∨ y ∨ |x− y|. 2

Proof of Proposition 8.4. Note that, if |x − y| ≤ a(x ∧ y), then x ≍ y.
Without loss of generality, we assume x ≤ y. We first consider the case
|x− y| ≤ 5

8x. By (4.1),

G(x, y) = xα−1G(x/x, y/x) = xα−1G(1, y/x).

Thus, it suffices to show that for z ∈ B2,

G(1, z) ≍ 1 + 1α=1 log(1/|z − 1|). (8.10)
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By the strong Markov property, we have

G(1, z) = GB1(1, z) + E1

[
G
(
XτB1

, z
)]
. (8.11)

Since G(1, z) ≥ GB1(1, z), the lower bound in (8.10) follows from Lemma
8.6.

For the upper bounds in the proposition, define h(v, w) := Ev

[
G
(
XτB1

, w
)]
.

By Lemma 8.6, to prove (8.10) we only need to show that

sup
z∈B2

h(1, z) <∞. (8.12)

For each fixed v ∈ B1, the function w 7→ h(v, w) is harmonic in B1 with
respect to Y and for each fixed w ∈ B1, v 7→ h(v, w) is harmonic in B1 with
respect to the process Y . So it follows from Theorem 3.5 and the fact that
h(v, w) ≤ G(v, w) (see (8.11))

sup
z∈B2

h(1, z) ≤ c min
v,w∈B2

h(v, w) ≤ c min
v,w∈B2

G(v, w) ≤ cG(1, 1/2) <∞.

We have shown that (8.12) and so (8.10) hold. Thus, we have proved the
proposition for |x − y| ≤ 5

8x. In particular, we have that G(x, y) ≍ 1 for
1
4x < |x − y| ≤ 5

8x. Using this and Theorem 3.5, we have G(x, y) ≍ 1 for
1
4x < |x− y| ≤ ax. The proof is complete. 2

9. Preliminary upper bounds of Green function and Green
potential

The following result allows us to apply Theorem 7.1 to get Proposition
9.2 below, which is a key for obtaining the upper bound of Green function.

In this section, we always assume p ∈ (0, α− β̃2) ∩ [(α− 1)+, α− β̃2).

Theorem 9.1. For any y ∈ Rd
+ and w ∈ ∂Rd

+, it holds that limRd
+∋x→wG(x, y) =

0.

Proof. By Lemma 4.1(b) it suffices to show lim|x|→0G(x, y) = 0. We fix

y ∈ Rd
+ and consider x ∈ Rd

+ with |x| < 2−10yd. Let B1 = B(y, yd/2),

B1 = B(y, yd/2) and B2 = B(y, yd/4). For z ∈ B1, we have that |z −
x| ≥ yd/2 − xd ≥ (7/16)yd. Thus, by the regular harmonicity of G(·, y) in
Rd
+ \B(x, (7/16)yd),

G(x, y) = Ex[G(YTB1
, y), YTB1

∈ B1 \B2] + Ex[G(YTB1
, y), YTB1

∈ B2]

=: I1 + I2, (9.1)

where, for any V ⊂ Rd
+, TV := inf{t > 0 : Yt ∈ V }. For z ∈ B1, zd > yd/2

and so |z − y| < yd/2 ≤ zd ∧ yd. Thus, by Proposition 8.1,

G(z, y) ≤ c1|z − y|−d+α, z ∈ B1. (9.2)
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Using (9.2), we have

I1 ≤ sup
z∈B1\B2

G(z, y)Px(YTB1
∈ B1 \B2) ≤

c2

yd−α
d

Px(YTB1
∈ B1 \B2).

Further, it is easy to check that J(w, z) ≍ J(w, y) for all w ∈ Rd
+ \ B1 and

z ∈ B2. Moreover, by (9.2),∫
B2

G(y, z) dz ≤ c1

∫
B(y,yd/4)

|z − y|−d+αdz = c3

∫ yd/4

0
sα−1ds ≤ c4y

α
d .

Therefore, by (5.1),

I2 = Ex

∫ TB1

0

∫
B2

J(Yt, z)G(z, y) dz dt ≤ c5Ex

∫ TB1

0
J(Yt, y)y

α
d dt

≤ c6y
α
d Ex

∫ TB1

0

(
1

|B2|

∫
B2

J(Yt, z) dz

)
dt =

c7

yd−α
d

Px(YTB1
∈ B2).

Inserting the estimates for I1 and I2 into (9.1) and using Proposition 6.5 we
get that

G(x, y) ≤ c8

yd−α
d

Px(YTB1
∈ Rd

+) ≤
c8

yd−α
d

Px(YτU(yd/4)
∈ Rd

+) ≤
c9

yd−α−p
d

xpd,

which implies the claim. 2

Using Theorem 9.1, we can combine Propositions 8.1 and 8.4 with Theo-
rem 7.1 to get the following result.

Proposition 9.2. There exists a constant C > 0 such that for all x, y ∈ Rd
+,

G(x, y) ≤ C


|x− y|−d+α if d > α;

log
(
e+ x∨y

|x−y|

)
if d = 1 = α;

(x ∨ y ∨ |x− y|)α−1 if d = 1 < α.

(9.3)

Proof. When xd ∧ yd ≥ |x − y|/8, (9.3) is proved in Propositions 8.1 and
8.4. In particular, for all x, y such that |x − y| = 1 and 2 ≥ xd ∧ yd ≥ 1/8,
it holds that G(x, y) ≤ c1 for some c1 > 0.

By (4.1), we only need to show that for x, y ∈ Rd
+ with |x − y| = 1 and

xd ∧ yd ≤ 1/8,

G(x, y) ≤ c2


1 if d > α;

log (e+ (x ∨ y)) if d = 1 = α;

(x ∨ y ∨ 1)α−1 if d = 1 < α

≍ c3. (9.4)

Suppose that x, y ∈ Rd
+ with |x−y| = 1, xd ≤ yd and xd < 1/8 < yd. Since

z → G(z, y) is harmonic in B((x̃, 0), 1/4) with respect to Y and vanishes on
the boundary of Rd

+ by Theorem 9.1, we can use Theorem 7.1 and see that
there exists c4 > 0 such that

G(x, y) ≤ c4G(x+ (0̃, 1/8), y) ≤ c4c1. (9.5)
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Suppose that x, y ∈ Rd
+ with |x − y| = 1, xd ≤ yd and yd ≤ 1/8 (d ≥ 2).

Then, since z → G(z, y) is harmonic in B((x̃, 0), 1/4) with respect to Y and
vanishes on the boundary of Rd

+, by (9.5) and Theorem 7.1, we see that

G(x, y) ≤ c4G(x+ (0̃, 1/8), y) ≤ c24c1. This finishes the proof of (9.4). 2

Lemma 9.3. There exists C > 0 such that for x, y ∈ Rd
+,

G(x, y) ≤ C

(
xd ∧ yd
|x− y|

∧ 1

)p

×


1

|x−y|d−α if d > α;

log
(
e+ x∨y

|x−y|
)

if d = 1 = α;

(x ∨ y ∨ |x− y|)α−1 if d = 1 < α.

Proof. We first choose β2 such that (1.3) holds and p ∈ (0, α− β2) ∩ [(α−
1)+, α− β2). Suppose x, y ∈ Rd

+ satisfy xd ≤ 2−12 and |x− y| = 1. Without

loss of generality we assume that x̃ = 0̃. Let r = 2−8. For z ∈ U(r) and
w ∈ Rd

+ \ D(r, r), we have |w − z| ≍ |w|. Moreover, by Proposition 9.2,

G(w, y) ≤ c1 for w ∈ Rd
+ \ B(y, r). Thus, by using Lemma 5.1 with q = 0

and (1.4),∫
Rd
+\D(r,r)

G(w, y)
B(z, w)

|z − w|d+α
dw

≤c2
∫
Rd
+∩B(y,r)

G(w, y)Φ

(
|w|2

zdwd

)
dw

|w|d+α
+ c2

∫
Rd
+\(D(r,r)∪B(y,r))

Φ

(
|w|2

zdwd

)
dw

|w|d+α

≤c3Φ
(

1

zd

)∫
Rd
+∩B(y,r)

G(w, y)

wβ2

d |w|d+α−2β2

dw + c3Φ

(
1

zd

)
=: c3Φ

(
1

zd

)
(I + 1).

(9.6)

(i) We first estimate I for d > α: Since x ∈ U(r) and |y − x| = 1, we see
that |w| ≍ 1 for w ∈ B(y, r). If r < yd/2, then wd ≍ yd for w ∈ B(y, r), and
hence by Proposition 9.2,

I ≤ c4

∫
B(y,r)

G(w, y)dw ≤ c5

∫
B(y,r)

dw

|y − w|d−α
≤ c6.

If r ≥ yd/2, then B(y, r) ∩ Rd
+ ⊂ Dỹ(3r, 3r) and thus by Proposition 9.2,

I ≤ c7

∫
B(y,yd/2)

w−β2

d dw

|y − w|d−α

+ c7y
β2

d

∫
Dỹ(3r,3r)∩{|y−w|≥yd/2}

(
|y − w|2

ydwd

)β2 dw

|y − w|d−α+2β2
=: c7(I1 + I2).

Clearly,

I1 ≍ y−β2

d

∫
B(y,yd/2)

dw

|y − w|d−α
≤ c8y

α−β2

d ≤ c9.

To estimate I2 we use Lemma 6.6(a) with k = 2α−2β2 by taking Φ(t) = tβ2

and β1 = β2 there. Since k + β2 > α, by Lemma 6.6(a), we get I2 ≤
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c10y
β2

d y
−β2

d = c10. Combining the estimates for I1 and I2, we get that
I ≤ c11.
(ii) We now estimate I for d = 1 ≤ α: Since 1 < y < 1+2−9, we have w ≍ 1
for w ∈ (y − r, y + r). Thus, by Proposition 9.2,

I ≤
∫ y+r

y−r
wβ2−1−αG(w, y)dw ≤ c12

∫ y+r

y−r
wβ2−1−αwα−1 log(e+

1{α=1}

|w − y|
)dw

= c12

∫ y+r

y−r
w−2+β2 log(e+

1{α=1}

|w − y|
)dw ≤ c13 <∞.

(iii) By using (5.1), (9.6) and the estimates for I in (i) and (ii) in the first
inequality below, and Lemma 5.4 in the second, we get that

Ex[G(YτU(r)
, y);YτU(r)

/∈ D(r, r)] ≤ c14Ex

∫ τU(r)

0
Φ

(
r

Y d
t

)
dt ≤ c15x

p
d. (9.7)

Let x0 := (0̃, r). By Theorem 7.1, Propositions 9.2 and 6.5, and scaling
in Lemma 4.1(a), we have

Ex[G(YτU(r)
, y);YτU(r)

∈ D(r, r)] ≤ c16G(x0, y)Px(YτU(r)
∈ D(r, r)) ≤ c17x

p
d.

(9.8)

Combining (9.7) and (9.8), we get that for x, y ∈ Rd
+ satisfying xd ≤ 2−12,

x̂ = 0̃ and |x− y| = 1,

G(x, y) = Ex

[
G(YτU(r)

, y);YτU(r)
/∈ D(r, r)

]
+ Ex

[
G(YτU(r)

, y);YτU(r)
∈ D(r, r)

]
≤ c18x

p
d.

Combining this with Proposition 9.2, (4.1) and symmetry, we immediately
get the desired conclusion. 2

As an application of Lemma 9.3, we get the following upper bound on
Green potentials.

Proposition 9.4. (a) Suppose d > α. There exists C > 0 such that for
any w̃ ∈ Rd−1, R > 0, any Borel set D satisfying Dw̃(R/2, R/2) ⊂ D ⊂
Dw̃(R,R), and any x = (w̃, xd) with 0 < xd ≤ R/10,

Ex

∫ τD

0
(Y d

t )
γ dt =

∫
D
GD(x, y)y

γ
d dy ≤ C


Rα+γ−pxpd, γ > p− α;

xpd log(R/xd), γ = p− α;

xα+γ
d , −p− 1 < γ < p− α.

(b) Suppose d = 1 ≤ α. Let γ > p − α. There exists C > 0 such that
for any R > 0, any Borel set D satisfying (0, R/2) ⊂ D ⊂ (0, R), and any
0 < x ≤ R/10,

Ex

∫ τD

0
(Y d

t )
γ dt =

∫
D
GD(x, y)y

γ
d dy ≤ CRα+γ−pxpd.
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Proof. (a) Using Lemma 9.3, the proof is same as that of the upper bound
of [22, Proposition 6.10].
(b) Note that, by scaling in Lemma 4.1(a), it suffices to show the lemma for
R = 1. We first consider the case d = 1 < α. By Lemma 9.3,

G(x, y) ≤ cxα−110<y<x/2 + xα−1c1x/2≤y<2x + cxpyα−p−11y≥2x.

Thus, using γ > p− α and the fact that D ⊂ (0, 1), we have∫
D
GD(x, y)y

γ dy ≤
∫ 1

0
G(x, y)yγdy

≤ cxα−1

∫ x/2

0
yγdy + cxγ+α−1

∫ 2x

x/2
dy + cxp

∫ 1

2x
yγ+α−1−pdy

≤ cxα+γ + cxα+γ + cxp
∫ 1

0
yγ+α−1−pdy ≤ cxp.

We now consider the case d = 1 = α. By Lemma 9.3,

G(x, y) ≤ c10<y<x/2 + c log

(
e+

x

|x− y|

)
1x/2≤y<2x + c(x/y)p1y≥2x.

Thus, using γ > p− 1 we have∫
D
GD(x, y)y

γ dy ≤
∫ 1

0
G(x, y)yγdy

≤ c

∫ x/2

0
yγdy + cxγ

∫ 2x

x/2
log

(
e+

x

|x− y|

)
dy + cxp

∫ 1

2x
yγ−pdy

≤ cx1+γ + cx1+γ

∫ 1

0
log

(
e+

1

t

)
dt+ cxp

∫ 1

0
yγ−pdy ≤ cxp. 2

10. The proof of boundary Harnack principle and full Green
function estimates

Proof of Theorem 1.2. By scaling in Lemma 4.1(a), it suffices to deal
with the case r = 1. Moreover, by Theorem 3.5 (b), it suffices to prove (1.6)
for x, y ∈ Dw̃(2

−8, 2−8). Since f is harmonic in Dw̃(2, 2) and vanishes con-
tinuously on B(w̃, 2)∩∂Rd

+, it is regular harmonic in Dw̃(7/4, 7/4) and van-

ishes continuously on B(w̃, 7/4) ∩ ∂Rd
+ (see [20, Lemma 5.1] and its proof).

Throughout the remainder of this proof, we assume that x ∈ Dw̃(2
−8, 2−8).

Without loss of generality we take w̃ = 0̃.
Define x0 = (x̃, 2−4). By Theorem 3.5, Lemma 6.4 and Proposition 6.5,

we have for x ∈ U ,

f(x) = Ex[f(YτU )] ≥ Ex[f(YτU );YτU ∈ D(1/2, 1) \D(1/2, 3/4)]

≥ c1f(x0)Px(YτU ∈ D(1/2, 1) \D(1/2, 3/4)) ≥ c2f(x0)x
p
d. (10.1)

Set w0 = (0̃, 2−7). Then, by (5.1),

f(w0) ≥ Ew0 [f(YτU );YτU /∈ D(1, 1)]
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≥ Ew0

∫ τB(w0,2
−10)

0

∫
Rd
+\D(1,1)

J(Yt, y)f(y)dydt

≥ c3Ew0τB(w0,2−10)

∫
Rd
+\D(1,1)

J(w0, y)f(y)dy

= c4

∫
Rd
+\D(1,1)

J(w0, y)f(y)dy, (10.2)

where in the last line we used Proposition 3.2 (a).
Note that |z − y| ≍ |w0 − y| ≍ |y| ≥ yd ∨ 1 ≥ zd for any z ∈ U and

y ∈ Rd
+ \D(1, 1). Thus for z ∈ U and y ∈ Rd

+ \D(1, 1),

J(z, y) ≤ c5
1

|y|d+α
Φ(

|y|2

zdyd
) ≤ c6z

−β2

d Φ(
|y|2

yd
)

1

|y|d+α
≍ z−β2

d J(w0, y). (10.3)

Combining (10.3) with (10.2) and using (5.1) in the equality below and
Proposition 9.4 in the last inequality, we now have

Ex [f(YτU );YτU /∈ D(1, 1)] = Ex

∫ τU

0

∫
Rd
+\D(1,1)

J(Yt, y)f(y)dydt

≤ c7Ex

∫ τU

0
(Y d

t )
−β2dt

∫
Rd
+\D(1,1)

J(w0, y)f(y)dy

≤ c8f(w0)Ex

∫ τU

0
(Y d

t )
−β2dt ≤ c9f(w0)x

p
d. (10.4)

On the other hand, by Theorem 3.5 and Theorem 7.1 in the first inequal-
ity, and Proposition 6.5 in the second, we have

Ex [f(YτU );YτU ∈ D(1, 1)] ≤ c10f(x0)Px (YτU ∈ D(1, 1)) ≤ c11f(x0)x
p
d. (10.5)

Combining (10.4) and (10.5), and using Theorem 3.5, we get

f(x) = Ex [f(YτU );YτU ∈ D(1, 1)] + Ex [f(YτU );YτU /∈ D(1, 1)]

≤ c11f(x0)x
p
d + c9f(w0)x

p
d ≤ c12f(x0)x

p
d.

This with (10.1) implies that f(x) ≍ f(x0)x
p
d. For any y ∈ D(2−8, 2−8), we

have the same estimate with f(y0) instead of f(x0), where y0 = (ỹ, 2−4). By
the Harnack inequality, we have f(x0) ≍ f(y0). Thus,

f(x)

f(y)
≍
xpd
ypd
. 2

Remark 10.1. Using (10.3), one can follow the proofs [23, Propositions 5.7
and 5.8] and show that any non-negative function which is regular harmonic
near a portion of boundary vanishes continuously on that portion of bound-
ary, cf. [4, Remark 6.2] and [10, Lemma 3.2]. Thus, the boundary Harnack
principle also holds for regular harmonic functions. We omit the details.
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Proof of Theorem 1.3. We first prove (1.7). Without loss of generality,

we assume that xd ≤ yd and x̃ = 0̃. By (4.1), we can assume |x−y| = 1 and
just need to show that

G(x, y) ≍


(xd ∧ 1)p (yd ∧ 1)p if d > α ,

(x ∧ 1)p log (e+ y) if α = 1 = d ,

(x ∧ 1)p (y ∨ 1)α−1 if α > 1 = d .

(10.6)

By (4.1), Theorem 3.5, and Propositions 8.1 and 8.4, we only need to show
(10.6) for xd ≤ 2−3 and |x− y| = 1. In this case (10.6) reads

G(x, y) ≍

{
xpdy

p
d if d ≥ 2 ,

xp if d = 1 .
(10.7)

Thanks to Theorem 9.1, (10.7) is a direct consequence of Theorems 1.2 and
3.5, see the proof of [23, Theorem 1.2].

From (1.7) it follows that supz∈Rd
+\B(x,r)G(x, z) < ∞ for all x ∈ Rd

+ and

r > 0. The continuity of y 7→ G(x, y) on Rd
+ \ {x} is a consequence of this

observation and [25, Proposition 6.3]. 2

Using Propositions 8.1 and 9.2 and Lemma 6.3, the proof of the following
lower bound is the same as that of [22, Theorem 5.1], hence we omit it.

Theorem 10.2. Suppose d > α, p ∈ (0, α − β̃2) ∩ [(α − 1)+, α − β̃2). For
any ε ∈ (0, 1/4), there exists a constant C > 0 such that for all w ∈ ∂Rd

+,

R > 0 and x, y ∈ B(w, (1− ε)R) ∩ Rd
+,

GB(w,R)∩Rd
+
(x, y) ≥ C

(
xd

|x− y|
∧ 1

)p( yd
|x− y|

∧ 1

)p 1

|x− y|d−α
.

We now consider the lower bound in case d = 1 ≤ α.

Theorem 10.3. Let d = 1. Suppose p ∈ (0, α−β̃2)∩[(α−1)+, α−β̃2). Then
there exists a constant c > 0 such that for all R > 0 and all x, y ∈ (0, R/2),

G(0,R)(x, y) ≥ c


(

x∧y
|x−y| ∧ 1

)p
log
(
e+ x∨y

|x−y|

)
if α = 1 ,(

x∧y
|x−y| ∧ 1

)p
(x ∨ y ∨ |x− y|)α−1 if α > 1 .

Proof. By Lemma 4.1(a), without loss of generality, we assume R = 1 and
x ≤ y < 1/2. When |x− y| ≤ 5

8x, the theorem follows from (8.9).

Suppose |x− y| = y − x > 5
8x. Then y − x ≤ y = y − x+ x < 13

5 (y − x).

Thus, we just need to show that G(0,1)(x, y) ≥ cyα−1(x/y)p.
Since y < 1/2, by Lemma 4.1(a), we have

G(0,1)(x, y) ≥ G(0,2y)(x, y) = yα−1G(0,2)(1, x/y).

Since x/y < 8/(13), using Theorem 1.2, we get

G(0,1)(x, y) ≥ yα−1G(0,2)(1, x/y) ≥ cG(0,2)(1, 1/2)y
α−1(x/y)p = cyα−1(x/y)p .

We have proved the theorem. 2
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As an application of Theorems 10.2 and 10.3 we now get the full estimates
of the following Green potentials.

Proposition 10.4. Suppose d > α, p ∈ (0, α − β̃2) ∩ [(α − 1)+, α − β̃2).
Then for any w̃ ∈ Rd−1, any Borel set D satisfying Dw̃(R/2, R/2) ⊂ D ⊂
Dw̃(R,R) and any x = (w̃, xd) with 0 < xd ≤ R/10,

Ex

∫ τD

0
(Y d

t )
γdt =

∫
D
GD(x, y)y

γ
d dy ≍


Rα+γ−pxpd, γ > p− α;

xpd log(R/xd), γ = p− α, d > α;

xα+γ
d , p− 1 < γ < p− α, d > α

where the comparison constant is independent of w̃ ∈ Rd−1, D, R and x.

Proof. The upper bounds are given in Proposition 9.4. Moreover, using
Theorem 10.2, the proof for the lower bound for d > α is same as that of
the lower bound of [22, Proposition 6.10].

Suppose d = 1 ≤ α and γ > p− α. By Lemma 4.1(a), it suffices to show
the lemma for R = 1. By Theorem 10.3,

G(0,1/2)(x, y)y
γ ≥ cxpyγ+α−1−p if 1/4 > y ≥ 2x.

Thus, using γ > p − α and the fact that D ⊃ (0, 1/2), we have that for
0 < x < 1/10,∫

D
GD(x, y)y

γ dy ≥
∫ 1/4

2x
G(0,1/2)(x, y)y

γdy

≥ cxp
∫ 1/4

2x
yγ+α−1−pdy ≥ cxp

∫ 1/4

1/5
yγ+α−1−pdy = cxp. 2

11. Proof of Theorem 2.4

In this section we give a proof of Theorem 2.4 for d ≥ 2. The case d = 1
has already been treated in [25]. Let ẽ1 = (1, 0, . . . , 0) be the unit vector in
the x1 direction in Rd−1. For a, b > 0, define

h(a, b) :=

∫
Rd−1

Ψ
(
(|ũ|+ 1 + (1/a))2b

)
(|ũ|+ 1)d+α(|ũ|+ 1 + (1/a))d+α

dũ,

Υ(a, b, l) :=

∫
Rd−1

Ψ
(
(|ũ− (1/a)ẽ1|+ 1)2b

)
(|ũ|+ 1/l)d+α(|ũ− (1/a)ẽ1|+ 1)d+α

dũ,

and f(a, b) := Υ(a, b, b), g(a, b) := Υ(a, b, 1).

Lemma 11.1. For any M > 0,

h(a, b) ≍

{
ad+αΨ(b/a2) if a < M, b > 0;

Ψ(b) if a ≥M, b > 0

with comparison constants depending on M .
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Proof. Using (2.4), we have that for a ≥M,

h(a, b) ≍
∫
Rd−1

Ψ
(
(|ũ|+ 1)2b

)
(|ũ|+ 1)2d+2α

dũ ≍ Ψ(b)

∫ ∞

0

Ψ
(
(v + 1)2b

)
Ψ(b)(v + 1)2d+2α

vd−2dv

≤ cΨ(b)

∫ ∞

0

vd−2

(v + 1)2d+2α−2γ2+
dv ≍ Ψ(b).

Similarly, using the lower bound in (2.4),

h(a, b) ≥ cΨ(b)

∫ 2

0

vd−2

(v + 1)2d+2α+2γ1−
dv ≍ Ψ(b)

∫ 2

0
vd−2dv ≍ Ψ(b).

For a < M ,

h(a, b) ≥
∫
|ũ|<1/a

Ψ
(
(|ũ|+ 1 + (1/a))2b

)
(|ũ|+ 1)d+α(|ũ|+ 1 + (1/a))d+α

dũ

≍ ad+α

∫
|ũ|<1/a

Ψ(b/a2)

(|ũ|+ 1)d+α
dũ

≥ ad+αΨ(b/a2)

∫
|ũ|<1/M

dũ

(|ũ|+ 1)d+α
≍ ad+αΨ(b/a2).

For the upper bound, we use (2.4) and get that for a < 1/M ,

h(a, b) ≍ ad+α

∫
|ũ|<1/a

Ψ(b/a2)

(|ũ|+ 1)d+α
dũ+

∫
|ũ|≥1/a

Ψ
(
|ũ|2b

)
|ũ|2d+2α

dũ

≤ ad+αΨ(b/a2)

∫
Rd−1

dũ

(|ũ|+ 1)d+α
+ cΨ(b/a2)

∫ ∞

1/a

Ψ
(
bv2
)

Ψ(b/a2)vd+2+2α
dv

≤ cad+αΨ(b/a2) + cΨ(b/a2)

∫ ∞

1/a

a2γ2+

vd+2+2α−2γ2+
dv ≤ cad+αΨ(b/a2).

2

Lemma 11.2. There exists a constant C > 0 such that g(a, b) ≤ CΨ(b) for
all a, b > 0.

Proof. Since d+ α− 2γ2+ > 0, (|ũ− (1/a)ẽ1|+ 1)d+α−2γ2+ ≥ 1. Thus,

g(a, b) ≤ cΨ(b)

∫
Rd−1

(|ũ|+ 1)−d−αdũ

(|ũ− (1/a)ẽ1|+ 1)d+α−2γ2+

≤ cΨ(b)

∫
Rd−1

dũ

(|ũ|+ 1)d+α
< cΨ(b). 2

By the change of variables 1/a − u1 = v1 and û = v̂, and using that
|ṽ| = |(v1, v̂)| = |(−v1, v̂)|, we see that for all a, b, l > 0,∫

Rd−1,u1<
1
2a

Ψ
(
(|ũ− (1/a)ẽ1|+ 1)2b

)
(|ũ|+ 1/l)d+α(|ũ− (1/a)ẽ1|+ 1)d+α

dũ
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=

∫
Rd−1,v1>

1
2a

Ψ
(
(|ṽ|+ 1)2b

)
(|ṽ|+ 1)d+α(|ṽ − (1/a)ẽ1|+ 1/l)d+α

dṽ. (11.1)

Thus, for all a, b, l > 0,

Υ(a, b, l) ≤
∫
Rd−1,u1>

1
2a

Ψ
(
(|ũ− (1/a)ẽ1|+ 1)2b

)
|ũ|d+α(|ũ− (1/a)ẽ1|+ 1)d+α

dũ

+

∫
Rd−1, 3

2a
≤u1

Ψ
(
(|ũ|+ 1)2b

)
(|ũ|+ 1)d+α|ũ− (1/a)ẽ1|d+α

dũ

+

∫
Rd−1, 3

2a
>u1>

1
2a

Ψ
(
(|ũ|+ 1)2b

)
dũ

(|ũ|+ 1)d+α(|ũ− (1/a)ẽ1|+ 1/l)d+α

=: I + II + III(l). (11.2)

We use the above notations I, II and III(l) in the next two lemmas.

Lemma 11.3. For any M > 0, we have that for all a ∈ (0,M ] and b > 0,
g(a, b) ≍ ad+αΨ(b/a2), with comparison constants depending on M .

Proof. For 3
2a ≤ |ũ|, we have

1

3
|ũ| = |ũ| − 2

3
|ũ| ≤ |ũ− 1

a
ẽ1|+

1

a
− 2

3
|ũ| ≤ |ũ− 1

a
e1|. (11.3)

Thus, since Ψ(t)t−(d+α)/2 is almost decreasing because γ2+− (d+α)/2 < 0,

using the upper bound in (2.4), we have that for 3
2a ≤ |ũ|,

Ψ
(
(|ũ− (1/a)ẽ1|+ 1)2b

)
(|ũ− (1/a)ẽ1|+ 1)d+α

=
Ψ
(
(|ũ− (1/a)ẽ1|+ 1)2b

)
b(d+α)/2

[(|ũ− (1/a)ẽ1|+ 1)2b](d+α)/2

≤ c
Ψ
(
(|ũ|+ 1)2b

)
b(d+α)/2

[(|ũ|+ 1)2b](d+α)/2
≤ c

Ψ
(
(|ũ|+ 1)2b

)
(|ũ|+ 1)d+α

= cΨ(b)
Ψ
(
(|ũ|+ 1)2b

)
Ψ(b)(|ũ|+ 1)d+α

≤ c
Ψ(b)

|ũ|d+α−2γ2+
. (11.4)

Moreover,

Ψ
(
(|ũ− (1/a)ẽ1|+ 1)2b

)
(|ũ− (1/a)ẽ1|+ 1)d+α

≤ c
Ψ(b)

(|ũ− (1/a)ẽ1|+ 1)d+α−2γ2+
. (11.5)

Using (11.3)–(11.5), for a ≤M with ũ = (u1, û) for d ≥ 3 (the case d = 2 is
simpler),

I ≤
∫
Rd−1, 3

2a
>u1>

1
2a

Ψ
(
(|ũ− (1/a)ẽ1|+ 1)2b

)
ud+α
1 (|ũ− (1/a)ẽ1|+ 1)d+α

dũ

+ c

∫
Rd−1, 3

2a
≤u1

Ψ
(
(|ũ− (1/a)ẽ1|+ 1)2b

)
(u1 + |û|)d+α(|ũ− (1/a)ẽ1|+ 1)d+α

du1dû

≤ cad+αΨ(b)

∫
Rd−1

dũ

(|ũ− (1/a)ẽ1|+ 1)d+α−2γ2+
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+ cΨ(b)

∫
Rd−1, 3

2a
≤u1

du1dû

(u1 + |û|)2d+2α−2γ2+

≤ cad+αΨ(b)

∫
Rd−1

dṽ

(|ṽ|+ 1)d+α−2γ2+

+ cΨ(b)

∫ ∞

3
2a

du1

u
d+2+2α−2γ2+
1

∫
Rd−2

dŵ

(1 + |ŵ|)2d+2α−2γ2+

≤ cΨ(b)(ad+α + ad+α+(1+α−2γ2+)) ≤ cad+αΨ(b) (11.6)

where in the last inequality we have used the facts 1 + α − 2γ2+ > 0 and
a ≤M .

For 3/(2a) > u1 > 1/(2a), we have b/(4a2) ≤ (|ũ| + 1)2b. Thus, using

the fact that Ψ(t)t−(d+α)/2 is almost decreasing, we have for 3/(2a) > u1 >
1/(2a),

Ψ
(
(|ũ|+ 1)2b

)
(|ũ|+ 1)d+α

=
Ψ
(
(|ũ|+ 1)2b

)
b(d+α)/2

[(|ũ|+ 1)2b](d+α)/2
≤ c

Ψ(b/a2)b(d+α)/2

[b/(4a2)](d+α)/2
= cad+αΨ(b/a2).

(11.7)

Using the upper bound in (2.4), we have

Ψ
(
(|ũ|+ 1)2b

)
(|ũ|+ 1)d+α

= Ψ(b)
Ψ
(
(|ũ|+ 1)2b

)
Ψ(b)(|ũ|+ 1)d+α

≤ c
Ψ(b)

(|ũ|+ 1)d+α−2γ2+
≤ c

Ψ(b)

|ũ|d+α−2γ2+
.

(11.8)

Using (11.3) and (11.7)–(11.8), we get

III(1) ≤ cad+αΨ(b/a2)

∫
Rd−1

dṽ

(|ṽ|+ 1)d+α
≤ cad+αΨ(b/a2)

and, by the change of variables w̃ = (u1, û) = (u1, u1ŵ) for d ≥ 3,

II ≤ cΨ(b)

∫
Rd−1, 3

2a
≤u1

dũ

|ũ|2d+2α−2γ2+

≤ cΨ(b)

∫ ∞

3
2a

du1

u
d+2+2α−2γ2+
1

∫
Rd−2

dŵ

(1 + |ŵ|)2d+2α−2γ2+

≤ cΨ(b)ad+α+(1+α−2γ2+). (11.9)

Therefore using (11.1), (11.6) and the fact a ≤M , we have

g(a, b) ≤ c
(
ad+αΨ(b) + ad+αΨ(b/a2)

)
≍ ad+αΨ(b/a2), a ∈ (0,M ].

We now show the lower bound: Note that, using the fact a ≤M , we have
that for 3/(2a) > u1 > 1/(2a) and |û| < 1/(2a),

|ũ|+ 1 ≤ ((3/2)2 + (1/2)2)1/2a−1 + 1 ≤ (
√
10 + 2M)/(2a). (11.10)
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Using (2.4), (11.1), (11.10) and the change of variable (v1, v̂) = (u1 −
(1/a), û), we have

g(a, b) ≥
∫
Rd−1, 3

2a
>u1>

1
2a

,|û|< 1
2a

Ψ
(
(|ũ|+ 1)2b

)
(|ũ|+ 1)d+α(|ũ− (1/a)ẽ1|+ 1)d+α

dũ

≥cad+αΨ(b/a2)

∫
Rd−1, 3

2a
>u1>

1
2a

,|û|< 1
2a

dũ

(|ũ− (1/a)ẽ1|+ 1)d+α

≥cad+αΨ(b/a2)

∫
Rd−1,|v1|< 1

M
,|v̂|< 1

2M

dṽ

(|ṽ|+ 1)d+α
= cad+αΨ(b/a2).

Therefore using (11.1), we get g(a, b) ≥ cad+αΨ(b/a2) for all a ∈ (0,M ]. 2

Lemma 11.4. For any M > 0, there exists C = C(M) > 0 such that

f(a, b)≤Cad+αΨ(b)+Cad+αbα+1Ψ
( b
a2
)
, b > 0 and a∈(0,M(1 ∧ b)]. (11.11)

Proof. By (11.6) and (11.9), we see that

I + II ≤ cad+αΨ(b). (11.12)

Since a ≤M , for 3
2a > u1 >

1
2a , we have |û|+1/a ≍ |û|+u1+1 ≍ |ũ|+1.

Using this, by the change of variables v1 = u1 − 1/a and v̂ = û, and then
v1 = t/a,

III(b) ≍
∫ 1

2a

0

∫
Rd−2

Ψ
(
(|v̂|+ 1/a)2b

)
(|v̂|+ 1/a)d+α(|v̂|+ v1 + 1/b)d+α

dv̂dv1

= a−1

∫ 1/2

0

∫
Rd−2

Ψ
(
(|v̂|+ 1/a)2b

)
(|v̂|+ 1/a)d+α(|v̂|+ (ab + t)/a)d+α

dv̂dt. (11.13)

Using the change of variable v̂ = [(ab + t)/a]ŵ, (11.13) is equal to

aα+1

∫ 1/2

0
(
a

b
+ t)−2−αad+α

∫
Rd−2

Ψ
(
((ab + t)|ŵ|+ 1)2 b

a2

)
((ab + t)|ŵ|+ 1)d+α(|ŵ|+ 1)d+α

dŵdt

= cad+2α+1

∫ a
b
+1/2

a
b

t−2−α

∫ ∞

0

Ψ
(
(ts+ 1)2 b

a2

)
sd−3

(ts+ 1)d+α(s+ 1)d+α
dsdt. (11.14)

Using the upper bound in (2.4), for a/b ≤ t ≤ a/b+ 1/2 ≤M + 1/2,∫ ∞

0

Ψ
(
(ts+ 1)2 b

a2

)
sd−3

(ts+ 1)d+α(s+ 1)d+α
ds ≤ cΨ

( b
a2
) ∫ ∞

0

(s+ 1)−d−αsd−3ds

(ts+ 1)d+α−γ2+

≤ cΨ
( b
a2
) ∫ ∞

0

sd−3ds

(s+ 1)d+α
.

Therefore (11.14) is less than or equal to

cad+2α+1Ψ
( b
a2
)∫ a

b
+1/2

a
b

t−2−αdt ≍ ad+2α+1(
a

b
)−α−1Ψ

( b
a2
)
≍ ad+αbα+1Ψ

( b
a2
)
.

Therefore using this, (11.2) and (11.12), we obtain (11.11). 2
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Note that for all a > 0 and p ∈ [(1 ∧ α) + 1,∞),

0 <

∫ ∞

a
v−pΨ(v)dv ≤ cΨ(a)a−γ2

∫ ∞

a
v−p+γ2dv ≤ c(a, p) <∞ (11.15)

and ∫ 1/a

0
up−2Ψ(1/u)du =

∫ ∞

a
v−pΨ(v)dv ≍ 1, (11.16)

with comparison constants depending on a.
For all x, y ∈ Rd

+, let

Ξ(x, y) :=

∫ ∞

xd

zαd

∫
Rd−1

Ψ
(
(|z̃|+ 1 + zd)

2/(ydzd)
)

(|z̃|+ zd)d+α(|z̃|+ 1 + zd)d+α
dz̃dzd. (11.17)

Lemma 11.5. For all x, y ∈ Rd
+ with |x− y| =

√
2 and yd ≥ xd, we have

Ξ(x, y) ≍


x−d−α
d for xd > 1/4;∫ 1
xdyd
1

2yd

Ψ(v)dvv for xd ≤ 1/4.

Proof. By the change of variables ũ = z̃/zd , we get

Ξ =

∫ ∞

xd

zαd

∫
Rd−1

z
−2(d+α)
d zd−1

d

Ψ
(
(|ũ|+ 1 + (1/zd))

2(zd/yd)
)

(|ũ|+ 1)d+α(|ũ|+ 1 + (1/zd))d+α
dũdzd

=

∫ ∞

xd

z−d−α−1
d

∫
Rd−1

Ψ
(
(|ũ|+ 1 + (1/zd))

2(zd/yd)
)

(|ũ|+ 1)d+α(|ũ|+ 1 + (1/zd))d+α
dũdzd.

Case 1: xd ≥ 1/4. In this case, yd ≍ xd ≥ 1/4 so using (2.4), we have that
for zd ≥ xd ≥ 1/4,∫

Rd−1

Ψ
(
(|ũ|+ 1 + (1/zd))

2(zd/yd)
)

(|ũ|+ 1)d+α(|ũ|+ 1 + (1/zd))d+α
dũ = h(zd, zd/yd) ≍ h(zd, zd/xd).

Thus, by Lemma 11.1 and (11.15), for xd ≥ 1/4 (so xd ≍ yd),

Ξ ≍
∫ ∞

xd

z−d−α−1
d Ψ

( zd
xd

)
dzd ≍ x−d−α

d

∫ ∞

1

Ψ(v)dv

vd+α+1
≍ x−d−α

d .

Case 2: xd < 1/4. In this case, by Lemma 11.1,

Ξ =

∫ ∞

xd

z−d−α−1
d h(zd, zd/yd)dzd ≍

∫ ∞

2
z−d−α−1
d Ψ

(zd
yd

)
dzd +

∫ 2

xd

z−1
d Ψ

( 1

zdyd

)
dzd.

Note that

1 ≍ c

∫ ∞

2
z
−d−α−1−γ1−
d dzd ≤

∫ ∞

2
z−d−α−1
d

Ψ
(
zd
yd

)
Ψ
(

1
yd

)dzd ≤ c

∫ ∞

2
z
−d−α+γ2+
d dzd ≍ 1,

and ∫ 1
xdyd

1
2yd

Ψ(v)
dv

v
≥
∫ 4

yd

1
2yd

Ψ(v)
dv

v
≍ Ψ

( 1
yd

) ∫ 4
yd

1
2yd

v−1dv ≍ Ψ
( 1
yd

)
.
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Thus, Ξ ≍ Ψ
(

1
yd

)
+
∫ 2
xd
z−1
d Ψ

(
1

zdyd

)
dzd ≍

∫ 1
xdyd
1

2yd

Ψ(v)dvv . 2

Suppose that x, y ∈ Rd
+, x̃ = 0̃, |x− y| =

√
2, yd ≥ xd and y = (|ỹ|ẽ1, yd).

Let

I1 = I1(x, y) :=

∫ xd

0
zαd

∫
Rd−1

Ψ
(
(|z̃ − |ỹ|ẽ1|+ yd)

2/(ydzd)
)

(|z̃|+ xd)d+α(|z̃ − |ỹ|ẽ1|+ yd)d+α
dz̃dzd

and

I2 = I2(x, y) :=

∫ ∞

xd

zαd

∫
Rd−1

Ψ
(
(|z̃ − |ỹ|ẽ1|+ yd + zd)

2/(ydzd)
)

(|z̃|+ zd)d+α(|z̃ − |ỹ|ẽ1|+ yd + zd)d+α
dz̃dzd.

Since xd ≍ xd + zd and yd ≍ yd + zd if zd ≤ xd and zd ≍ xd + zd if zd ≥ xd,
we see that

q(x, y) ≍ I1(x, y) + I2(x, y). (11.18)

Proposition 11.6. For all x, y ∈ Rd
+ with |x− y| =

√
2, we have

q(x, y) ≥ c

(xd ∧ yd)−d−α ≍ (xd ∨ yd)−d−α for xd ∧ yd > 1/4;∫ 1
xdyd
1 Ψ(u)duu for xd ∧ yd ≤ 1/4.

(11.19)

Proof. Suppose that x, y ∈ Rd
+, x̃ = 0̃, |x− y| =

√
2 and yd ≥ xd. Without

loss of generality we assume that y = (|ỹ|ẽ1, yd). Since

|z̃ − |ỹ|ẽ1|+ yd ≤ |z̃|+ |ỹ|+ yd − xd + xd ≤ |z̃|+ 2
√
2 + xd, (11.20)

we have that, for zd ≥ xd,

|z̃ − |ỹ|ẽ1|+ yd + zd ≤ |z̃|+ 2
√
2 + 2zd. (11.21)

Since t→ t−(d+α)/2Ψ
(
t) is almost decreasing, using (11.21) we have that

for zd ≥ xd,

Ψ
(
(|z̃ − |ỹ|ẽ1|+ yd + zd)

2/(ydzd)
)

(|z̃ − |ỹ|ẽ1|+ yd + zd)d+α

=
1

(ydzd)(d+α)/2

Ψ
(
(|z̃ − |ỹ|ẽ1|+ yd + zd)

2/(ydzd)
)

[(|z̃ − |ỹ|ẽ1|+ yd + zd)2/(ydzd)](d+α)/2

≥ c

(ydzd)(d+α)/2

Ψ
(
(|z̃|+ 1 + zd)

2/(ydzd)
)

[(|z̃|+ 1 + zd)2/(ydzd)](d+α)/2
= c

Ψ
(
(|z̃|+ 1 + zd)

2/(ydzd)
)

(|z̃|+ 1 + zd)d+α
.

(11.22)

Thus, I2 ≥ cΞ, where Ξ = Ξ(x, y) is the function defined in (11.17).
If |ỹ| ≤ 1/2 and xd < 1/4, then

yd − xd =
√

2− |ỹ|2 ≥
√

2− 1/4 =
√
7/2. (11.23)
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Thus
√
7/2 ≤ yd. Applying Lemma 11.5, we get that for |ỹ| ≤ 1/2 and

xd < 1/4,

I2 ≥ cΞ ≥
∫ 1

xdyd

1
2yd

Ψ(v)
dv

v
≥ c

∫ 1
xdyd

1√
7

Ψ(v)
dv

v
≥ c

∫ 1
xdyd

1
Ψ(v)

dv

v
.

Since xd ≤ yd, by the change of variables ũ = z̃/zd, we get

I2 ≥ c

∫ ∞

yd

zαd

∫
Rd−1

Ψ
(
(|z̃ − |ỹ|ẽ1|+ zd)

2/(ydzd)
)

(|z̃|+ zd)d+α(|z̃ − |ỹ|ẽ1|+ zd)d+α
dz̃dzd

≥ c

∫ 2

yd

z−d−α−1
d g(zd/|ỹ|, zd/yd)dzd =: cI3.

If |ỹ| ≥ 1/2, then
√
2 = |x− y| ≥ |ỹ| ≥ 1/2. Thus, by Lemma 11.3, we get

that for |ỹ| ≥ 1/2 and xd < 1/4,

I2 ≥ cI3 ≥ c

∫ 2

yd

z−d−α−1
d zd+α

d Ψ
(zd
yd

)
dzd =

∫ 2

yd

z−1
d Ψ

(zd
yd

)
dzd ≍

∫ 2
yd

1
Ψ(u)

du

u
.

Thus, combining this with Lemma 11.5 for |ỹ| ≥ 1/2 and xd < 1/4,

I2 ≥ c(I3 + Ξ) ≥ c

∫ 2
yd

1
Ψ(u)

du

u
+ c

∫ 1
xdyd

1
2yd

Ψ(v)
dv

v

≥ c

∫ 2
yd

1
Ψ(u)

du

u
+ c

∫ 1
xdyd

2
yd

Ψ(v)
dv

v
= c

∫ 1
xdyd

1
Ψ(u)

du

u
. (11.24)

We now conclude from Lemma 11.5 and (11.24) that (11.19) holds. 2

Proposition 11.7. There exists a constant C > 0 such that for all x, y ∈ Rd
+

with |x− y| =
√
2,

q(x, y) ≤ C

{
(xd ∧ yd)−d−α ≍ (xd ∨ yd)−d−α, xd ∧ yd > 1/4;∫ 1

xdyd
1 Ψ(u)duu , xd ∧ yd ≤ 1/4.

(11.25)

Proof. Suppose that x, y ∈ Rd
+ and |x−y| =

√
2. Without loss of generality

we assume that x̃ = 0̃, yd ≥ xd and y = (|ỹ|ẽ1, yd).
Case 1, |ỹ| ≤ 1/2: Suppose that |ỹ| ≤ 1/2. Then by (11.23),

√
2 = |x− y| ≥

yd − xd ≥
√
7/2 and yd − xd − |ỹ| ≥ (

√
7− 1)/2 > 1/2, and so,

|z̃ − |ỹ|ẽ1|+ yd ≥ |z̃| − |ỹ|+ yd = |z̃|+ (yd − xd − |ỹ|) + xd ≥ |z̃|+ 1/2 + xd

and

|z̃ − |ỹ|ẽ1|+ yd + zd ≥ |z̃|+ 1/2 + xd + zd ≥ |z̃|+ 1/2 + zd. (11.26)

Thus, using (11.20) and the change of variables ũ = z̃/xd,

I1 ≍
∫ xd

0
zαd

∫
Rd−1

Ψ
(
(|z̃|+ 1 + xd)

2/(ydzd)
)

(|z̃|+ xd)d+α(|z̃|+ 1 + xd)d+α
dz̃dzd
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≍ x−d−2α−1
d

∫ xd

0
zαd h(xd, x

2
d/(ydzd))dzd.

Since α > γ2+, by (2.4),∫ xd

0
zαdΨ

( 1
zd

)
dzd ≤ cΨ

( 1

xd

)
x
γ2+
d

∫ xd

0
z
α−γ2+
d dzd ≤ cΨ

( 1

xd

)
xα+1
d .

Thus, by Lemma 11.1, (11.16) and the fact that xd ≍ yd if xd > 1/4, Thus,

I1 ≤ c

{
1

xd+2α+1
d

∫ xd

0 zαdΨ
(
xd
zd

)
dzd = 1

xd+α
d

∫ 1
0 u

αΨ
(
1
u

)
du ≍ 1

xd+α
d

, xd > 1/4;

x1+α
d

∫ xd

0 zαdΨ
(

1
zd

)
dzd ≤ cΨ

(
1
xd

)
, xd ≤ 1/4.

(11.27)

On the other hand, by (11.21) and (11.26), we have I2 ≍ Ξ. Since
√
7/2 ≤

yd < 7/4 for xd < 1/4 (because |ỹ| ≤ 1/2), by Lemma 11.5 for xd ≤ 1/4,

I2 ≍
∫ 1

xdyd

1
2yd

Ψ(v)
dv

v
≥
∫ 1

xdyd

1
2xdyd

Ψ(v)
dv

v
≍ Ψ

( 1

xdyd

) ∫ 1
xdyd

1
2xdyd

dv

v
≍ Ψ

( 1

xd

)
≥ cI1

and ∫ 1

1
2yd

Ψ(v)
dv

v
≤
∫ 1

2
7

Ψ(v)
dv

v
≍ 1 ≍

∫ 2

1
Ψ(v)

dv

v
≤
∫ 1

xdyd

1
Ψ(v)

dv

v
.

Thus from these and (11.27), we see that (11.25) holds true for |ỹ| ≤ 1/2.
Case 2, |ỹ| ≥ 1/2: Suppose that |ỹ| ≥ 1/2. Then

√
2 = |x− y| ≥ |ỹ| ≥ 1/2. (11.28)

Since Ψ(t)t−(d+α)/2 is almost decreasing and xd ≤ yd, by the argument in
(11.22) we have

I1 ≤ c

∫ xd

0
zαd

∫
Rd−1

Ψ
(
(|z̃ − |ỹ|ẽ1|+ xd)

2/(ydzd)
)

(|z̃|+ xd)d+α(|z̃ − |ỹ|ẽ1|+ xd)d+α
dz̃dzd =: cJ1 (11.29)

and

I2 ≤ c

∫ ∞

xd

zαd

∫
Rd−1

Ψ
(
(|z̃ − |ỹ|ẽ1|+ zd)

2/(ydzd)
)

(|z̃|+ zd)d+α(|z̃ − |ỹ|ẽ1|+ zd)d+α
dz̃dzd =: cĴ2.

By the change of variables ũ = z̃/xd in J1, the change of variables ũ = z̃/zd
in Ĵ2, we get

J1 =
1

xd+2α+1
d

∫ xd

0
zαd g(xd/|ỹ|, x2d/(ydzd))dzd, Ĵ2 =

∫ ∞

xd

g(zd/|ỹ|, zd/yd)
zd+α+1
d

dzd.

Since xd ≍ yd for xd > 1/4, by (2.4), (11.15) and (11.16), we have that
for xd > 1/4,∫ ∞

xd

Ψ(zd/yd)

zd+α+1
d

dzd ≍
∫ ∞

xd

Ψ(zd/xd)

zd+α+1
d

dzd = x−d−α
d

∫ ∞

1
Ψ(u)

du

ud+α+1
≍ x−d−α

d
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and∫ xd

0
zαdΨ

( x2d
zdyd

)
dzd ≍

∫ xd

0
zαdΨ

(xd
zd

)
dzd ≍ xα+1

d

∫ 1

0
uαΨ(1/u)du ≍ xα+1

d .

Thus by Lemma 11.2, for xd > 1/4, we get

q(x, y) ≤ c(J1 + Ĵ2) ≤
c

xd+2α+1
d

∫ xd

0
zαdΨ

( x2d
zdyd

)
dzd +

∫ ∞

xd

Ψ
(zd
yd

) dzd

zd+α+1
d

≍ x−d−α
d .

For the remainder of the proof, we assume xd ≤ 1/4. Clearly,

I2 ≍
∫ yd

xd

zαd

∫
Rd−1

Ψ
(
(|z̃ − |ỹ|ẽ1|+ yd)

2/(ydzd)
)

(|z̃|+ zd)d+α(|z̃ − |ỹ|ẽ1|+ yd)d+α
dz̃dzd

+

∫ ∞

yd

zαd

∫
Rd−1

Ψ
(
(|z̃ − |ỹ|ẽ1|+ zd)

2/(ydzd)
)

(|z̃|+ zd)d+α(|z̃ − |ỹ|ẽ1|+ zd)d+α
dz̃dzd =: J3 + J2.

By the change of variables ũ = z̃/zd in J2 and the change of variables
ũ = z̃/yd in J3,

J2 =

∫ ∞

yd

g(zd/|ỹ|, zd/yd)
zd+α+1
d

dzd and J3 =
1

yd+2α+1
d

∫ yd

xd

zαd f(yd/|ỹ|, yd/zd)dzd.

Since xd ≤ 1/4, we get

x−α−1
d

∫ xd

0
zαdΨ

( 1

zdyd

)
dzd ≤ cx−α−1

d Ψ(
1

xdyd
)x

γ2+
d

∫ xd

0
z
α−γ2+
d dzd ≍ Ψ(

1

xdyd
).

Thus, by Lemma 11.3 and the fact |ỹ| ≍ 1 by (11.28) (and recalling
Ψ(t) ≡ Ψ(2) > 0 on [0, 2)),

J1 ≍ x−α−1
d

∫ xd

0
zαdΨ

( 1

zdyd

)
dzd ≤ cΨ(

1

xdyd
). (11.30)

Note that, by (11.15),∫ ∞

2
v−d−α−1Ψ

( v
yd

)
dv ≤ cΨ

( 1
yd

) ∫ ∞

2
v−d−α−1+γ2+dv ≍ Ψ

( 1
yd

)
.

Thus, by Lemmas 11.2 and 11.3 with the fact |ỹ| ≍ 1,

J2 ≤ cΨ
( 1
yd

)
+ c

∫ 2

yd

z−1
d Ψ

( 1

zdyd

)
dzd ≤ cΨ

( 1
yd

)
+ c

∫ 1
xdyd

1
2yd

Ψ(u)
du

u
.

(11.31)

For J3, we use Lemma 11.4 with the fact |ỹ| ≍ 1 (so that (zd/|ỹ|) ≤
(yd/|ỹ|) ≤ c for zd ≤ yd),

J3 ≤ c

∫ yd

xd

z−1
d Ψ

( 1

ydzd

)
dzd + cy−α−1

d

∫ yd

xd

zαdΨ
(yd
zd

)
dzd

= c

∫ 1
xdyd

1

y2
d

Ψ(u)
du

u
+ c

∫ yd
xd

1
Ψ(u)

du

u2+α
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≤ c

∫ 1
xdyd

1
4

Ψ(u)
du

u
+ c

∫ yd
xd

1
Ψ(u)

du

u
≍
∫ 1

xdyd

1
4

Ψ(u)
du

u
+

∫ yd
4xd

1
4

Ψ(u)
du

u
.

Since∫ 1
xdyd

1
4

Ψ(u)
du

u
+

∫ yd
4xd

1
4

Ψ(u)
du

u
≤ 2

∫ 1

1
4

Ψ(u)
du

u
+ 2

∫ 1
xdyd

1
Ψ(u)

du

u
,

we obtain we obtain

J3 ≤ c+ c

∫ 1
xdyd

1
Ψ(u)

du

u
. (11.32)

Using xdyd ≤ (
√
2 + 1/4)/4 < 7/16, we get∫ 1

xdyd

1
Ψ(u)

du

u
≥ 1

3

(∫ 1
xdyd

1
2

1
xdyd

+

∫ 4
yd

2
yd

+

∫ 2

1

)
Ψ(u)

du

u

≍Ψ
( 1

xdyd

)∫ 1
xdyd

1
2

1
xdyd

du

u
+Ψ

( 1
yd

)∫ 4
yd

2
yd

du

u
+1≍Ψ

( 1

xdyd

)
+Ψ

( 1
yd

)
+1. (11.33)

Therefore, we conclude from (11.30)–(11.33) that

q(x, y) ≤ c(J1 + J2 + J3) ≤ c+ cΨ(
1

xdyd
) + cΨ

( 1
yd

)
+ c

∫ 1
xdyd

1
Ψ(u)

du

u

≍
∫ 1

xdyd

1
Ψ(v)

dv

v
. 2

Recall that J(x, y) = j(x, y) + q(x, y) and B(x, y) = J(x, y)/j(x, y) =
1 + q(x, y)/j(x, y), so that B(x, y)− 1 = q(x, y)/j(x, y).

Proof of Theorem 2.4: Using (2.1), (2.10)–(2.12) follow from Propositions
11.6 and 11.7. The assertions (2.13)-(2.14) follow from (2.12) and Lemma
2.3(a)-(b). The proof is now complete. 2
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