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Consider a critical branching Lévy process {X;,# > 0} with branching rate 8 > 0, offspring distribution {py : k >
0} and spatial motion {&;,Px}. For any ¢ > 0, let N; be the collection of particles alive at time ¢, and, for any
u € N¢, let X, () be the position of u at time 7. We study the tail probability of the maximal displacement M :=
Sup; 5.0 SUPye N, Xu(?) under the assumption limp—co n® X377 P = & € (0, 00) for some @ € (1,2), Eo(£1) =0
and 80((5']")r) € (0, o) for some r > 2a/(a — 1). Our main result is a generalization of the main result of Sawyer
and Fleischman (1979) for branching Brownian motions and that of Lalley and Shao (2015) for branching random
walks, both of these results are proved under the assumption ZZO:O K3 Pk < .
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1. Introduction and notation

1.1. Introduction

Consider a system, in which at time n = 0, there is a particle at 0 € R. At time n = 1, this particle dies
and gives birth to a collection of particles whose configuration relative to their parent is given by a copy
of a point process L. At time n = 2, the individuals alive at time 1 repeat their parent’s behavior and the
process goes on. We will use N,, to denote the set of particles alive at time n and for u € N, the position
of u is denoted by Xy, (n). Define random measures X, := X, n, Ox,, (), = 0. Then {X,;,n > 0} is a
Markov process, and called a branching random walk (BRW). We denote the law of the BRW by P.

Now we consider the special case £ =}, iB: 1 9x;, where B is a non-negative integer valued random
variable with P(B = k) = py and X\, X5, ... are iid Z-valued random variables independent of B with
common distribution {uy, k € Z}. We say that this process is critical if

E(B) = kak =1.
k=0

Since the total mass of the branching random walk is a Galton-Waston process, a critical branching
random walk must extinct in finite time, which implies that the following maximal displacement M is
a finite random variable:

M :=sup sup X,(n) (1.1)

neNueN,
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with the convention sup,, N, Xu (n) = —o0 if N, = 0. Lalley and Shao (2015) proved that if

Dkpe<oo. D kme=0, 3 kM py < oo (1.2)
k=0 keZ keZ

for some & > 0, then
6 2
lim x%P (M > x) = ~L.,
X—+00 o

where 7° := Y7 k*uy and o2 := I k*py — 1.

Now we turn to the continuous time and space case: branching Lévy processes in the sense of Kypri-
anou (1999). Let (&;,Px) be a Lévy process with & = x. A branching Lévy process is defined as
follows: initially there is a particle at x € R and it moves according to (&;, Py ). After an exponential
time with parameter 8 > 0, independent of the motion, it dies and produces k offsprings with probabil-
ity px, k > 0. The offsprings move independently according to £ from the place where they are born
and obey the same branching mechanism as their parent. Denote the law by P, and P := Py. In this
paper we focus on the critical case, i.e., we always assume that {py : k > 0} satisfies };" , kpy = 1.
Similarly, we define the maximal position by

M :=sup sup X, (1),
t>0 ueN;
where NV, is the set of particles alive at time ¢ and X,,(¢) is the position of u € N;. When the spatial mo-
tion £ is a standard Brownian motion, Sawyer and Fleischman (1979) proved that under the assumption
ZZO:O k3pk < 009

6
lim x*P(M >x) = — (1.3)
X—+00 loa

with o2 = PIPAN kZpi — 1. Profeta (2024) extended (1.3) to the case when & is a spectrally negative
Lévy process and 3.7 k3pj < co. When the spatial motion is a y-stable process with index y € (0,2),
Zf:o K3 Pk <o and B =1, Lalley and Shao (2016) and Profeta (2022) proved that

lim x??P(M >x) =«,

X—+00

where « is an explicit constant depending on the normalization of £ and on the offspring distribution.
For results where the spatial motion is a general spectrally negative Lévy process, see Profeta (2024).

1.2. Main result

The main aim of this paper is to study the tail probability of M when the offspring distribution {py :
k > 0} is in the domain of attraction of an a-stable distribution with index a € (1,2) and the spatial
motion has lighter tails. Suppose that there exist constants x > 0 and @ € (1,2) such that

lim n® Zpk =K. (1.4)
k=n

n—oo
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We denote x* := max(x,0) and x~ := max (—x,0). Assume that

Eo(£1) =0, n*:=80(éD) € (0,00). (L.5)

Our main result is as follows:

Theorem 1.1. If

&o ((f;r)r) < oo forsomer > _2a/1 , (1.6)
@ —
then
( 1) 2 l1
. 2 a+1l)n @
a— > = .
Jim x@-TP (M 2 x) Br(a— D2 - a) ’ (4.7

where I'(z) := fooo 12~ e~tdt is the Gamma function.

Note that % > 4, so (1.6) requires finiteness of at least the 4th moment of the positive part of &;.
Also, if the Lévy process is spectrally negative, then (1.6) automatically holds by (Sato, 1999, Theorem
25.3) (or see (2.4) below). Therefore, only (1.5) is needed for the spectrally negative case. This is also
discussed in (Profeta, 2024, Theorem 3).

Our argument of proving the above main result is an adaptation of that of Lalley and Shao (2015).
Our assumption (1.4) on the branching mechanism is weaker than the assumption (1.2) in Lalley and
Shao (2015). Under our assumption that the positive part of the spatial motion has finite moments
of order r > 2a/(a — 1), the weaker assumption above on the branching mechanism does not cause
too much trouble. The assumption (1.4) only changes the behavior of f, defined in (2.9) below, from
f(w)=Cv(1+o(1)) to f(v)=Cv® (1 +0(1)) for some constant C > 0.

We end this section by giving a brief sketch of the proof of Theorem 1.1. Define v(x) :=P(M >

),x € R. We first give a Feynman-Kac formula for v(x), see Lemma 2.2 below. Then we prove that
there exists a sequence {xj € [0, c0)} with limg_, X = +00 such that for all y > 0, the following limit
exists:

v (xk + yv(xk)_%)
v(xk)

and ¢ is the unique bounded solution to the following problem:

{ ¢"(»=C(e(y)*., y>0,
$(0)=1,

with C being some positive constant. In Lalley and Shao (2015), ¢(y) is defined as the limit of
v (xtyv () 712)
v (xg)

s

¢(y) = klgr;o

(1.8)

as k — co. The above problem is replaced by

{ ") =% (6())?, y>0,
8(0) =1,

-2
and the explicit solution is given by (‘f%n Y+ 1) , which plays an important role and leads to the limit

behavior (1.3). In our case, the solution to (1.8) is (6y+1)~ T with some constant 6 > 0 (see the proof]

of Corollary 3.1), which leads to the limit behavior(.7. ... |




4

2. Preliminaries

Set & = —¢;. Consider a branching Lévy process {X,.(1),u € Ny, t >0} with spatial motion &, branch-
ing rate 8 > 0 and offspring distribution {py : k > 0}. Then

P (M <x) =P(inf inf X, (¢) > —x) =P, (inf inf X, () > 0], (2.1)

t>0ueN; t>0ueN;

with the convention inf,.c, X,.(1) = +00 when N; = 0. Recall that v(x) = P(M > x). Since under P, the
initial ancestor is located at 0, we have v(x) = P(M > x) =1 for x < 0. Also, v(x) is left-continuous
since v(x) =1 —P(M < x). Define

Ty :=inf{t>0igt SY}'

2.1. Moment for overshoot of Lévy process

For integer-valued random walks, the following result can be found in (Lalley and Shao, 2015, Lemma
10). We now prove that it also holds for some Lévy processes.

Lemma 2.1. Let & be a Lévy process, which satisfies Ey(€1) = 0 and is not spectrally positive. If
Eo((£€7)") < e for some r > 2, then

s

x>0

r=2
) <oo. 2.2)

Proof. By the Lévy-Khintchine formula, E(el?é1) = e =¥ where

2 .
lP(i@):—i‘y9+v—92+‘/ (l—elex+i9xl{|x|€(01]})71’((1)6)
2 #0 ’

X

with 7 being the Lévy measure. _
@) If 7({|x| > 1}) =0, then E((£;)¥) < oo for all s > 0. Since ¢ oscillates and 7 < co Py a.s., we
get

&7,

r=2
sup Ex ( ) <1<oo.
x>0

(i) If #({|x|] > 1}) > 0, let o7, be the n-th time that E has a jump of magnitude larger than 1, and
put o9 =0, then {0, — 07,1, n > 1} are iid exponential random variables with parameter 7 ({|x| > 1}).
Similar to (Doney and Maller, 2002, p.208), for j > 1, define W =&o ;- — &0, and Vj =&o; —&o;—.
Then {W; : j > 1} and {V; : j > 1} are both iid families of random variables and independent of each
other. Let the random walk Z = (Z,,, n > 0) be defined by

n
Zn =&, :Z (W;+V;)+& forn>1,
j=1
and Zy = E(,O =x under #y. Furthermore,

m(dx) !
({le] > 1p (MY

Po(V; €dx) = 2.3)
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and W, 4 al) where £ is a Lévy process with

_ 2

. =(1) .

&Eo (elg‘fl ):exp{iy@—y—éz—/ (l—e'gx+i9x1{|x6(0’1]})7r(dx)}
2 |x]€(0,1]

and e is an independent exponential random variable with parameter 7 ({|x| > 1}). Therefore, by (2.3)
and (Sato, 1999, Theorem 25.3) with g(x) = max(—x, 1),

~ r
Eo ((-fl_) ) <o = /( N [x["m(dx) <00 = & ((V])") <oo. (2.4)
Using &y (|W7]%) < oo for all s > 0, we infer
~ r \r
&of(&)) <o = &lz)) < 2.5)
By (Doney and Maller, 2002, p.209), for all z > 1 and x > 0,

P

&, | > z) <Py (|Z;O| > z) ,

where 7 := inf{n : Z,, < 0}. Then we get

— r=2 ©0 —~
sup Ex ( &z, ) =(r-2) sup/ 3P ( &z > z) dz
x>0 x>0J0
<224 (r-2) sup/ 3P, (IZ?OI > Z) dz, (2.6)
x>0J2

where in the last inequality we used the fact that (r —2) /02 7"~3dz =272, On the other hand, define
Ty :=min{n>0:Z, <Zp}, Tx=inf{n>Ty_1:Z,<Zg_,}, k=1,
So =2y, Su ::ZTn» n>1,
then S| — So, S2 — 51,83 — Sa, ..., are iid with E(|S; — So|" ') < o0 if 80((Z1‘)r) < oo (see (Doney,
1980, Corollary 1)). Note that for z > 1,

P (|72 2) = ki% (St > 0. 5141 < —2)
=0

[x] [ o
sZ(Zﬂ(ske[€,e+1))soo(|sl|>z+e). 2.7)

€=0 \k=0

Define renewal function U(y) := 337 Po{—Sk <y}, y € R. By renewal theory, we know that U is
subadditive on R, and U(1) < oo if and only if Py {S| =0} < 1, which is the case here. Thus,

ZPX{Ske [€,£+1)}=ZP0{x—€—1<—Sk <x-0}
k=0 k=0

=U(x-6)-Ux—-£-1)<U(1) < oo. (2.8)
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Combining (2.6), (2.7) and (2.8), we get that

~ r=2 ©0 [x]
sup8x(§;0 )§2r_2+(r—2)U(1)sup/ zr—327>0(|s]| >z+40)dz
x>0 x>0J2 =0

§2’_2+(r—2)U(1)/ zH/ Po(1S1] > z+ £ — 1)dedz
2 0

s2“2+(r—2)U(1)/2 Zr_380 (|Sl|1{|51|>z—1})dz
<22+ UME(IS1I(IS1] + 1)) < oo,
which completes the proof of the lemma. O

Remark 2.1. Combining (2.5) and (Chow and Lai, 1979, Theorem 1), we see that

& ((£7)) <0 = 80(|Z?0|r_1)<°° = So(g;or_l)<oo,

Also, (Chow, 1986, Theorem 1) provides necessary and sufficient conditions for Eg( |§7.70 |"=1) < 0. But
here we need the supremum over all starting points x € (0, c0) to be finite, see (2.2). Lemma 2.1 gives
a sufficient condition for (2.2). We will not explore the converse implication here.

2.2. Feynman-Kac representation for v (x)
Define a function f : [0,1] — R by

(o) _ k_ _
Py pimo PRLZVT = 2w) 0y 2.9)

v

and f(0) := f(0+) = 0. Since for any nonnegative integer-valued random variable X with EX =1,
EsX > s for all s € [0,1], we get f£(v) >0 for v € [0, 1]. Also, define

F(v):%(l—Zpk(l—v)k), ve(0,1].
k=0

Note that B(F(v) — 1) = —f(v). Recall that v(x) = P(M > x).

Lemma 2.2. Forany0<y<x,

e ol [ 0B} )

Proof. Put u(x) =1 —v(x). Since the first branching time is an independent exponential random vari-
able of parameter 8, by Fubini’s theorem, we have

u(x) =P, (inf inf X, () >0) ='Awﬂe_ﬁsipk8x (1{;0>S} (u(gs))k)ds

t>0ueN;




Tuil probability of maximal displ 1 critical BLP .

—&, (/0 ?Olge—ﬁs ;pk (u(,;?s))kds) .

According to (Dynkin, 2001, Lemma 4.1), we have

J K u@)ds) - &,

Y (u(é;>)"ds),

k=0

u(x) +BEx

which is equivalent to

v(ix)=1-pBE4

/?0 ipk (1 - v(é?s))k B (1 - v('g's)) ds)
0 k=0

70 _ _
=1-&4 (/; f(v(fs))v(‘fs)ds) s
which in turn can be written as

v(x) +Ey

/0 °f<v<5s>)v<53>ds) -1,

Therefore, v is a solution of the equation: v(x) + 8,((/0?O c(&5)v(€)ds) =1 in (0,c0) with ¢(x) :=
f(v(x)) > 0. Successively iterating the equation above, we get

onf- [ (@)

The desired result follows by conditioning on ¥z, and applying the strong Markov property of 'g' O

v(x) =&y

2.3. An invariance principle for Lévy process
The following invariance principle is given in (Skorokhod, 1957, Theorem 2.7)

Lemma 2.3. Suppose that sf~r is a Lévy process with 80(51) =072 =& (512) € (0,00). Then the pro-
cesses
ént
nvn’

converge weakly to a standard Brownian motion {B;,t > 0} in the Jy-topology as n — co.

t € [0, )

3. Proof of the main result

Lemma 3.1. Under the assumption (1.4), the function f defined in (2.9) satisfies that

i L) _pLC=a)

pard 1
v=0+ yeTt a—1
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Proof. Let L be a random variable with distribution equal to the offspring distribution {p; k > 0}. It
follows from (Bingham, Goldie and Teugels, 1989, Theorem 8.1.6) that P(L > x) N ymag s equiv-

alent to E(e*%) — 1 +E(L)s "2 s“%c, which is in turn equivalent to B(e~5L) — ¢—sE(L) ¥2%*
s"—r(j_la) c. Therefore, letting 1 —v = e~%, (1.4) is equivalent to

V) _BT(2-a)

v—0+ (—In(1 —v))@ a-1

i

which completes the proof of the lemma since lim,_,q; Wi\/))" =1. O

For any fixed y > 0, the function

1

% (x+yv(x)_aT_)
v(x)

is bounded between 0 and 1. Therefore, by a diagonalization argument, we can find a subsequence
{xr € [0, 00)} with limg_, xg =+0co such that for all y > 0,y € Q, the following limits exist:

[0,00) 2 x

v (xk +yv(xk)_aT_])

v(xk)

#(y) = khfio (3.1)

Using the fact that v(x) is decreasing, we see that ¢(0) =1 and ¢(y) € [0, 1] for any y € Q N [0, o0).
Moreover, for non-negative rational numbers y; < y, it holds that ¢(y;) > ¢(y2). Therefore, for any
y >0, we can define

#(y):= sup ¢(z)= lim ¢(y). (3.2)
Q,zly

z€Q,z>y z€
Proposition 3.1. The function ¢(y) is a continuous decreasing function in [0, o) and

V(xk +yV(xk)_0771)

v(xk)

¢(y) = kh_)rgo , forally>0. (3.3)

Moreover, for any K > 0, we have uniformly for y € [0, K],

v (xk +yv(xk)’aT_l)
li =1. 34
o (v G4

Proof. Fix two non-negative rational numbers y| < y,. By Lemma 3.1, there exists a constant C; > 0
such that f(v) < C;v®~! forall v € [0, 1]. Set z; (k) = yiv(xk)_%. It follows from Lemma 2.2 that

v (xg +22(k))
v(xg)

- kli—r}go S (k) | EXP {_‘/O;Xkﬂ] " f (v (gg)) ds} M
\ /

d(y1) 2 ¢(y2) = klglgo

v(xg)
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2 limsup &y, 4, (k) (exp {—C1 /TXk+ZI(k) (v (gs))WI ds}) M’ (3.5)
0

k— 00 v(xi)

where in the last inequality, we used the fact that v is decreasing and that E;Xk+Z1 o SXe+z1 (k). Since

ES > xi +21 (k) 2 xy for s € (0,7, 47, (k)) and v is decreasing, by (3.5), we have
$01) 2 () 2 SO0 limsup Exy ) (39 {=C1 (v ()™ Ty v
= 9(yn)limsup o (exp {~C1 (v (1)~ 7y -5y} (3.6)

Seta:=yy,—y; >0,n;:=(v (xk))_(a_l). Since for ¢ > 0,

infsSt é:nks
—_— Y >—-a|,

1/2
i/

Po (n,;l‘?_an;(/z > t) =%y (n;l/zsirtlﬁkgs > —a) =Py (
k

it follows from Lemma 2.3 that

lim Py

a k—o0

g
inf 22£2 5 g
s<t n1/2

. ,1~
lim Py (nk T_anllc/Z > t)
k

k—o0

_ : _ BM
-9, (n inf B, > —a) - (T_an,l > z) , 3.7)
where T£M is the first time that a standard Brownian motion hits . Combining (3.6) and (3.7),
(r-y1)
—-V2C
D) 2 6(y2) 2 $y)Eo (exp {-CreBM 1) = VAT g ). (38)

By the definition of ¢ in (3.2), we see that (3.8) holds for all non-negative real numbers y| < y;. This
implies that ¢ is continuous. Besides, for any y > 0, we can fix two non-negative rational numbers
y1 <y < y3. Then by the monotonicity of v,

_a-l1 _a-1
v (Xk +yav(xp)” 2 ) v (xk +yv(xg)” 2 )
< liminf

v(xg) k—oo v(x)

#(y2) = kll_rgo

V(xk +y1V(xk)_%)
< limsup < lim

k—c0 v(xk) k—co v(xg)

v (xk +yv(xk)_aT4)

=¢(1),

which implies (3.3) by letting y; Ty and y; | y.
Finally we prove the uniform convergence. For any € > 0, we can find yo=0<y; <...<y, =K
such that

sup |p(yi) — d(yi-1)] <

€
1<i<m 2
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Now we can find a common N such that for all 0 <i < m, when k > N,

v (xk +yiv(xk)_%1) ¢
) —¢(yi)| < ok

Therefore, foranyi=1,...,mand y € [y;—1,y;], when k > N,

e vV (Xk +yiV(Xk)_%) v (xk +yv(xk)_%)

—_e< . _ ) — —
B) =€ SPin) =€ <P) =5 < s S
a-1

V(Xk +}’i—1v(xk)_T) €
< <5 +d(yi-1) <e+d(yi) <e+4(y). 3.9)

v(xg) 2
Noticing that ¢(0) =1 and ¢(K) > 0 which holds by (3.8) with y; =0, y, = K, by (3.9), we obtain the
desired result (3.4). ]

Given Lemma 2.3 and Proposition 3.1, the following result seems trivial, but we will give a proof.
Recall that ng = v(xz)~(*~D and p = 480(’5‘]2).

Lemma 3.2. Forany 8 >0,y > 0and z >y, it holds that

e _12z _%1 a-1
. n Ty [V {1 Enps +2) v(xp) + X
lim &p|exp| -0 ds
k—co 0 v(xk)
B
=& (exp{—@/ " (¢(nBy +2)) 7! ds}) : (3.10)
0
where T?}I};I” is the first time that a standard Brownian motion hits =y /7.

Proof. For simplicity, we set

(k) . 1= (k) _ Emes
T =g ) s - \/n_k

Step 1: In this step, we prove that for any 7', A > 0,

FOAT e
I}LIEOSO xp _0‘/0 (¢ (fs +Z)) ds 1{Supse[0,T] &M <ay
Tj_gyMil/\T |
~eo|exp{-0 [ 004D 5 L oy | Ga1)

For any integer N > 1, define #; :=Ti/N,1 <i < N. Since ¢ is decreasing, it holds that

JARCICARE IR S CICARE Tt
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t a—1
k
/ (¢( sup gs( )+z)) 1{l< (k)}ds
ti-1 selti—1,ti]

i—

>

e

~
I
—_

Zlﬂ

s€(ti—1,ti]

N a-1
Z( ( sup gk)+z)) 1{ti<;(k)}. (3.12)

1

Note that
{t: <70} = {T_y g > nati} ={ mf g—‘s > y\/_} { 1nf gk 5 —y}

by the definition of 7) and E}f”. Also, observe that the functionals

sup w(s)eR, i=1,...,N,

seltj-1.t)]

weD[0,T] —

are continuous with respect to the J-topology. Therefore, taking two sequences of bounded continuous
functions Z¢(x) T 1(—y 4o0) (x) and je(x) | 1(—co,)(x), by Lemma 2.3 and (3.12), using the Lebesgue

dominated convergence theorem, we get that

N a-1
. T (k)
I 0> ( = b1 _
1msup &o exXp HN (¢ (s [Sllp &+ Z)) {t;<7(k)} {supseo,7) é‘:s(k)<A}

k—o0 i=1 €lti—1,ti]

s€[0,T]

a—1
) hf(mffg Ny bie( sup & >))

&
<limsup &g [ exp —GNZ(d) A

k—o0

a-1
n sup Bs+z)) he(nme) Je(n sup B))

s€[ti1,ti] s€[0,T]

T &
=&g|exp _GNZ(¢

i=1
Then letting £ — +o0, by the monotone convergence theorem, we get

lim sup &y (exp {—9 /
0

k—oo

N a-1
< &o|exp) = N Z;J ( ( sup By +Z)) l{z <oBM 1} I{USUPse[o,ﬂ Bs<A})' (3.13)
= -yn-

0 AT

s€(ti—1,ti]

Letting N — +o0 in (3.13), we get

TR AT =) a—1
hmsup80 exp _6/0 (¢ (fs +Z)) ds l{Supse[o,T] gs(k><A}

k—oo
BM

™ -
<& (eXP {_9‘/0' (¢(773s + Z))a ! ds 1{77S‘1P.ve[0,TJ Bg<A} |-
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Using a similar argument, we can get

TR AT _ a—1
iminteo|ewp{-0 [ (0(E ) 05, an

BM T

Ty/n -
exp {_HA (¢p(nBs +2))“ ! ds} Ly SUPse(o0,7] Bs <A}) :

Combining the two displays above, we get the desired conclusion of this step.
Step 2: In this step, we prove that for any 7', A > 0,

) AT © (20 ool
xp _9‘/0 (¢ (éjs +Z)) ds 1{Supse[0,T]g§k)<A}

T?)%”/\T |
~eo|exp{-0 [ 0B+ )T S g min | (3.14)

> &y

lim &
k—o0

where

v (zv()ck)’aT_I +xk)

v(xg)

M (2) =

Note that on set {supc[o,7] gk) < A}, for any s < 7K) AT, it holds that ~§k) +z€(z-y,A+2) C

[0, A + z]. It follows from Proposition 3.1 that, for any & > 0, there exists K such that for any & > K and
(k)
seTV AT,

(1-¢) (¢ (éﬁ’” +z))a71 < (qﬁ(k) (ﬂk) +z))ai1 <(l+¢) (¢ (gk) +z))ail .

Therefore, by (3.11),

() AT © (20 ool
lllirfipao exp _9‘/0 (¢ (fs +Z)) ds I{Supxe[O,T] M <ay

FONT a1
Skh—{%oao exp _0(1_8)‘/0. (¢ (é:é +Z)) ds l{supse[O,TJ ,‘crs(k)<A}
7BM AT
=y/1 _
=& exp{—e(l—s) /0 T (p(nBs +2)” lds}l{nsupse[o,ﬂ BM})- (3.15)

Letting € | 0, we get

TR AT @ () a-1
h,rcn_ilipso exp _0‘/0 (¢ (fs +Z)) ds l{supse[O,T] Ss(k)<A}

TF;,‘;I”/\T |
<& exp _9'/0' (¢(UBS+Z))Q_ ds 1{17suplv€[0,TJBs<A} .
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Using a similar argument, we can get

TR AT - (k) a—1
iinteo e -0 [ (0% (B 42)) s, ey

BM T

Ty/n -
exp {_HA (¢(nBs +2))“ ! ds} Ly SUPse(o0,7] Bs <A}) :

> &

Combining the two displays above, we get the desired conclusion of this step.
Step 3: In this step, we prove (3.10). Noting that

T?}%]]/\T |
tim fim &oexp =0 [ (@B, + )7 A5 L an oy 1<)

T—00 A>oo

=& (exp {—9 /0 I (p(nBy+ )] ds}) :

it suffices to prove that

lim lim sup lim sup

T—00 Ao koo

&, (exp{_g Ji

The proof for (3.16) is standard so we omit the details here. This implies the desired result. L]

&o

TR AT w0 (Z5) a-1
exp —9‘/0 (¢ (‘fs +Z)) ds l{supse[o’ﬂg{fkkm

(o0 (B 42))" ds}) ' =0. (3.16)

F()

Proposition 3.2. The function ¢ defined in (3.1) satisfies the equation

2- i
$(y) =& exp{—ﬂ—"r(_ 2) / : (¢(n3s+y>)“—1ds}), y20.
a 1 0

Proof. Fix a constant p > 0 and set 7 := xj + v(xk)_%+p. For y > 0, by Lemma 2.2, we have

a—1 a—1 a-1
vixg +yv(x) T 2 +v(xp)” 2 P) vz +yv(xg)T 7))

v(xk) v(xg)

T2k _ v «i-’??zk
- 82k+yV(xk)_ e {_*L ! (V (55)) ds} V((xk))
=& a1 | €Xp {—/0?0 f (v (Es +zk)) ds} M . (3.17)

yv(xg) 2 v(xk)




14

We first show that

_ v (g?o +Zk)
lim & et || —————1]|=0. (3.18)
k—oo yv(x)” 2 v(xk)
Indeed, on the event
A= {g’fo +2k Zxk},
by the inequality v(xg) > v (g;o + zk) > v(zx), we have
¢ (Eea) GO TEN
A — — —_ S — S
v(xg) v(xg) v(xk)
and on A€, we have
v (E:I:O + Zk) 2
-1 < .
v(xk) v(xg)
Therefore,
v g? + 2k 2
_ac M 1|l — a1 (A +1- r () (3.19)
yvix) 2 v(xk) v(xg) yvix) 2 v(xg)

By Markov’s inequality, for any r > 2, we have

1
_8 a— AC SS a—
v(xg) yvix)” 7 (4% yv(xx)” 7 (

&, H) o)1

Since r > 2a/(a@—1), we can find a sufficiently small p > 0 such that (“T‘l - p) (r—=2) > 1. Therefore,
by Lemma 2.1, we have

a1 (A9) =0. 3.20
Paared () yvia) T (4% (3-20)
Since limg o v(zx)/v(xx) = 1 by Proposition 3.1, we immediately get (3.18) by combining (3.19) and
(3.20).
Letting k — oo, the left-hand side of (3.17) converges to ¢(y) according to Proposition 3.1. For
the right-hand side of (3.17), combining (3.18) and the trivial inequality [E(e~X!Y) — E(e~1Xl)| <
E(|Y - 1]), we get that

o) = kh—rgo ((;y\)(xix»)_‘1771 (exp {_/0?0 ! (V (é?:v * Zk)) ds}) ’ (3.21)
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Using Lemma 3.1 and the fact that sup_z v (fs +zk) <v(zx) — 0, we get that for any & > 0, there
exists N such that for all k > N and s € (0, 7p),

B—Kl;(i;a) (1-¢) (v (g; + X +8v()ck)7%))a_1 <f (V (gv +Zk))
ﬁKF(Z a)

~ a-1
(1+g)( (§s+xk)) .
Plugging this into (3.21), we get that

¢(y) <

. BkT(2 - a) T _aziyyal
lknl‘lg.}fSyv(Xk)_anl (exp {_T(l - 8)/0 (v (g—‘s +xp +ev(xg) )) ds}) .

Note that for ny = v(xk)‘(“‘l),

Syv(xk)“%l (exp {_%(1 -&) ‘/0‘7'0 (v (é?s + X +sv(xk)‘%4))a_l ds})
=& (exp {—%(1 -g) /O?—y‘m (v (a n (y+g)v(xk)—“7’1 +xk))a—1 ds})

=&y (exp{—%(l —&)

/Onkl'fyﬂ (v ((n];l/zgnks +y +8) v(xk)*% +Xk) /v(xk))a—l ds}) .

By Lemma 3.2,

. ,8KF(2 a) aziy) !
kh—{rgo Syv(Xk)_% (exp{ ~7) ‘/ fé )) ds})
exp{ ,BKF(Z (l) )/ (¢(,73S+y+g))"‘lds}).

Therefore, we conclude that

6(») < & (exp{—ﬁkr(z“’) (1-¢) /0 S BBy 4y + )] ds}).

=&y

a-1

Let € | 0, we obtain that

¢(y)<80(exp{ B2 o) / ' ($(nBy + ) ‘ds})
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Similarly, we also have

() 2 & (eXP {—% /0 S (@B, +y) ! ds}) _

Combining the two displays above, we arrive at the desired result. O

Corollary 3.1. It holds that

$(y) = (Oy+1)"aT,

where

(ﬁkr(z —a)(a- 1))‘/2
0= .
n?(a+1)

Proof. Combining Proposition 3.2 with the scaling property of Brownian motion, we get that, for any

y >0,

BT(2—a) [T
(@=1n* Jo

By the strong Markov property, for any n > 0 and y € (0, n),

¢(y) =&y (eXP {— (¢(Bs)) ! ds}) .

¢(.V):8y (a— ]))72

exp {—ﬁ—mz — D) [T gyt ds} p (Bfgg% )) ,

where T(%AZ) :=inf{s > 0: By ¢ (0,n)}. By (Chung and Zhao, 1995, Proposition 9.10), ¢ is solution
of 1¢”(y) = B{jj—f;ﬂ“; (¢()? in (0,n) with boundary condition ¢(0) = lim,_04 ¢(y) = 1. By the

arbitrariness of n, ¢ is a bounded solution of the following problem:
’” re-
o7 () =B (00, v >0,
¢(0)=1.
By (Chung and Zhao, 1995, Proposition 9.19), the bounded solution to the above problem is unique. It
is easy to check that ¢(y) = (0y + 1)_ﬁ solves the above equation. Then the result follows. O

Proof of Theorem 1.1 By Corollary 3.1, the limit ¢ is independent of {x; }, which implies that for all
y >0,

v (x +yv(x)_%)

_2 .
(Oy+1)"@7 = lim_ e (3.22)
Set w(x) =x2/(@=Dy(x). Then w is left-continuous and that (3.22) is equivalent to
a-1
wlx(1l+yw(x)" 2 Oy + 1)2/(a=1)
fim ( ( )) Gy+1) 1. (3.23)

l+yw(x)” =

X—+c0 w(x) ( a—l)z/(a’_l) -
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Put A :=liminfy_,, w(x), and B :=limsup,_, ., w(x). Then 0 < A < B < co.

Step 1: In this step, we prove B > 0 and A < co. Assume that B = 0. In this case, for k € N, define
by = sup{x : w(x) > k~'}, then by — +oco and w(by) — 0. Taking x = by and y = 1 in (3.23), we
obtain that

— (bk (1 " W(b")_%)) (a1

um a1 \2/(a-1)
k—+ w(bk) (1+W(bk)_Tl) a

1.

Noticing that, by the definition of by, w (bk (1 + w(bk)_%)) < k™1 Also, for any & > 0, there ex-

ists 6 > 0 such that w(by — d¢) > k~!. Since w is left-continuous and that we can choose &, with
lim,_,0:+ 6 =0, we see that w(by) > k~!. Therefore,

_esl
w (bk (1+w(bk) 2 )) (0 +1)% (=D . 0+ 1)@= K—sco

o) (1w (1ewoo-t)

)

which is a contradiction. The proof of A < o is similar.
Step 2: In this step, we prove A < #~2/(@=1) < B. By the definition of B, there exists c; — +co such
that w(cy) — B. Taking x = ¢ and y =1 in (3.23), we get that

a-1
w(ck (1+w(ck) 2 )) (0 +1)% (@D
lim . =1.
—+00 a=1\2 -1
k—+ B (1+B_Tl) [(a=1)

(3.24)

Since lim supy,_,,, w (ck (1 + w(ck)%)) < B, (3.24) implies that

| < (6 + 1)@= ~2/(a-1)
a-1\2/(a-1) ’
(1+B‘ 2 )

— B=>0

The proof of A < #~2/(@~1) is similar.

Step 3: In this step we show that A = B, which leads to the conclusion of the theorem. Other-
wise, we can assume B > 6~2/(@=1) without loss of generality. Let A; and B; be two fixed constants
such that ~2/(@=1) < A, < B; < B. Since w is left-continuous and liminfy Lo w(x) < A} < By <
limsup,_,., w(x), the following sequences are well-defined:

ap:=inf{x>0:w(x) <A}, dj:=inf{x>a;:w(x)> B},
ar =inf{x >dp_1:wx) <A}, dp:=inf{x>ay:w(x)> B},

ay :=sup{x € [ay,dr) :w(x) < Ar}.

Note that ay T co and d T co. Besides, using the left-continuity of w, we see that for every k,w(a;) <
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and any & > 0 with (1 +&)A| < By, there exists N such that

w (az (1 +yw(a2)_a771)) . 0y + 1)2/(0—1)

(l +yw(a’;{)*aT_])2/(a_l) )

sup ll<e, k>N. (3.25)

ye[0,K] w(ay)

Since Ay > g~2/(a=1) —y Al_(a_l)/2 < 0, by (3.25), we see that when k > N, for all y € [0, K],

w112/ (=1
(1+yw(a2)‘Tl) fla=l)

6y + )2/ (@1

w(az (1+yw(a2)_aT_])) <(l+¢) w(ay)

2/(a-1) a1 \HlemD
a-1 -
(W(GZ) 2 +y) (Alz +y)
=(l1+e¢) @y + D2(aD <(l+¢) @y s D@D
e\ 2/(a-D)
(1+yA] 2 )
=(l+g) (9y+])2/("_]) A < (1+&)A| < By, (3.26)
which implies that for any k > N,
* * —L71 *
{ak (1 +yw(a,)” 2 ) 1y € [O,K]} C [ag.dk) (3.27)

by the definition of dg. On the other hand, for any K > ¢ > 0, set

Ca-l 2/(a-1)
(l+yA1 2 )

Cs:= su <1.
0 ye[ér,)K] (Oy +1)2/(a=1)

Taking & sufficiently small such that (1 +&)Cs < 1, by (3.26), when k£ > N, we have

sup w(cf;c (1+yw(a2)_n74)) <(1+&)CsA; < Ay. (3.28)
ye[6.K]

Therefore, by the left-continuity of w and the definitions of ak,dk,az, for any k > N, there exists
my > k such that

* wy—a-lL *
{ak (1 +yw(a,)” 2 ) 1y €|d, K]} C lamy,ap, ] (3.29)
Moreover, for y = K,

_a-1
ay (1 +Kw(ay)™ 2 ) > Ay 2 age1 > di,

hict ficts (3.27). Thi letes f ¢ of the 0
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