Extremal process for irreducible multitype branching Brownian
motion*
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Abstract

We first study the convergence of solutions of a system of F-KPP equations related to
irreducible multitype branching Brownian motions with Heaviside-type initial conditions to
traveling wave solutions. Then we apply this convergence result to prove that the extremal
processes of irreducible multitype branching Brownian motions converges weakly to a cluster
point process.
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1 Introduction and notation

1.1 Background

A binary branching Brownian motion (BBM) is a continuous-time Markov process which can be
defined as follows. Initially, there is a particle at the origin and the particle moves according to
a standard Brownian motion. After an exponential time with parameter 1, this particle dies and
splits into 2 particles. The offspring move independently according to standard Brownian motion
from the place they are born and obey the same branching mechanism as their parent. We denote
the law of this branching Brownian motion by P.

The binary branching Brownian motion is related to the F-KPP equation. Let M; be the
right-most position among all the particles alive at time ¢. McKean [22] proved that the function

u(t,z) =P (M <zx), t>0,z€R,

solves the F-KPP equation

1
up = ium—l—uQ—u (1.1)
with the Heaviside initial condition u(0,7) = 1jp «)(). Equation (L.1)) was first studied by Fisher
[13] and Kolmogorov, Petrovskii and Piskounov [16]. Later, Bramson [0, Theorems A, B and
Example 2] studied the asymptotic behaviors of solutions of (|1.1)) for a class of more general initial
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conditions. Let u be a solution of (1.1) and v = 1 —wu. Bramson proved that, under some conditions
on v(0, ),

3
v (t, V2ot — ——logt + x) — 1 —w(z), uniformly in x as t — oo,

22

here w is the unique solution (up to a translation) of

%w’/+\f2w/+w2—w:0
and w is called a traveling wave solution. In the Heaviside case, a probabilistic representation of
the limit w(x) was given by Lalley and Sellke [17]. For different proofs of this result, see [10, [26].
The extremal point process of branching Brownian motion has also been widely studied. Aidékon
et. al [2] and Arguin et. al [4] studied this extremal point process using different methods. Suppose
that the set of the positions of all particles alive at time ¢ is given by {X,(¢) : v € Z(t)}, where
Z(t) is the set of particles alive at time ¢. It is known that

D=3 (\/it — Xu(t)) eV2XuM=2 s

UGZt

is a martingale and has (non-negative) limit D, as t — 0o. As t — 0o, the extremal point process
o
Z Xu(t \3/5 log t)

converges in distribution to a decorated Poisson point process DPPP(C’DOOe_\/i‘”dx,DO), in the
sense of vague topology, where Dy is a point process. More precisely, this limit has the following
description: Given Dy, let P = >, 6, be a Poisson point process with intensity CDOOe_ﬁzdx
and let D) = =>. (SA(k) be iid copies of Dy, then

E 5 N E J (k)
X (t \[tf—logt Pre+Ay
k.n

ueZ(t)

in the sense of vague topology. For the case of branching random walks, see [I}, 14} [18]. For the case
of d-dimensional branching Brownian motions, see [§]. For the case of super-Brownian motions, see
[23, 25].

In this paper, we consider (irreducible) multitype branching Brownian motions. Let S =
{1,...,d} be the set of all types and i — {pk(i) : k = (ki,...,kq)T € N} be the offspring dis-
tribution of type i particles, here N = {0,1,...}. Let a; > 0,7 € S, be the branching rate of type
1 particles. A multitype branching Brownian motion can be defined as follows: Initially, there
is a particle of type 7 at site x and it moves according a standard Brownian motion. After an
exponential time with parameter a;, it dies and splits into k; offspring of type 1, ks offspring of
type 2, ..., kq offspring of type d with probability py(i), where k = (ki, ..., kq)T. The offspring
evolve independently, each moves according to a standard Brownian motion and each type j parti-
cle reproduces with law {pi(j) : k € N?} after an exponential distributed lifetime with parameter
aj. This procedure goes on. We denote the law of this process by P, ;. We use E(, ;) to denote
the expectation with respect to P(; ;). The multitype branching Brownian motion is related to the
following system of F-KPP equations:

w = %um +A(¢Y(u) —u), (1.2)



where

u(t,z) := (u1(t, ), ..., uq(t,2))", A:=diag{ay,...,aq},

d
w(u) = (¢1(u)7 '-'7wd(u))T7 wz(U) = Z pk(i) H ufj
keNd j=1
Let
miji= > pkli)kj <oo, i,j€S,
keNd

be the mean number of type j offspring given birth by a type ¢ particle. Assume that the mean
matrix M = (m; ;)i jes is irreducible, i.e., there exists no permutation matrix S such that S “1MS
is block triangular. We use N;(t) to denote the number of type ¢ particles alive at time ¢. Assume
that m; ;(t) = E) (N;(t)) < co. Then M(t) := (mi;(t)); ;g satisfies (see the paragraph below

24, (2)])

00
A" .
M(t) = Z th, with A= (aivj)i,jes and am- = Qa; (mi,j — 51‘,]’) . (1.3)
n=0

For any u = (u1,---ug)” and v = (v1,---vg)7, define (u,v) := Zgzl u;v;. According to the Perron-
Frobenius theorem, the matrix A admits a unique simple eigenvalue A* > 0, which is larger than
the real part of any other eigenvalue, such that the associated left eigenvector g = (g1, ..., g4)” and
right eigenvector h = (hy, ..., hg)T can be chosen to have all positive coordinates. We normalize g
and h so that (g,h) = (g,1) = 1, where 1 = (1,...,1)T. We assume that po(i) = 0 for all i € S,
here 0 := (0, ...,0)7, so the system survives with probability 1. We further assume that there exists
ap € (0,1] such that

D pli)kj T <00, Vi, jeES. (1.4)
keNd

Define
p(v) =1 (1 — ).
If u is a solution of ((1.2)) and v := 1 — u, then v satisfies
1 1
vy = ivm—l—A(l—v—w(l—v)) = ivm—i-A(go(v)—v). (1.5)

Using the relationship between (1.2)) and (1.5), by [24, Lemma 5], if v solves (1.5)), then for all
i€ S,t >0,z €R, v;(t,x) has the following probabilistic representation

vilt,2) =1-EBuy | [T 0= vnm0 Xu®) | (1.6)
u€eZ(t)

Here Z(t) is the set of all the particles alive at time ¢ and for u € Z(t), I,,(t) is the type of u and
Xy (t) is the position of w. In addition, we assume that

mi,i:O, Vield.

This assumption is not really necessary. When m;; > 0 for some 7, we only need to modify a; to
a; + mj;.



Define,

Voredl Z hr,(s) VAN (Xl tVRNs) g > g, (1.7)
u€eZ(s)
and
EEOEDY hms( () + VIR ) e VO im0 )
u€Z(s

It is proved in [24] that {Wm(s),s > 0} and {M j5=(s),s > 0} are martingales, called the
additive and derivative martingales of multitype branching Brownian motion, respectively. Note
that the assumption (1.4) implies that Yy e px(i)k;j(log, kj)? < co. By [24, Theorem 3],

Slggo W aw(s) =0, Pa-as. (1.9)
According to [24, Lemma 10, Theorem 5], there is a nonnegative and nondegenerate random variable

M /75=(00) such that
lim M 55=(s) = M 557(00), Pay-as. (1.10)

S§—00

1.2 Main results

Our first main result is on the convergence of v to the traveling wave solution for a class of initial
value conditions. Our second main result is about the characterization of the extremal process of
multitype branching Brownian motion.

For the initial value of v, we assume that there exist N1 < Ny and ig € S such that

vi(0,7) <1 ny)(z), forallie S and v;(0,7) > 1(_oo np) (7). (1.11)

R x4 3
Let m(t) := v2A o logt for ¢t > 0.

Theorem 1.1 Suppose that v solves (1.5)) with initial value satisfying (1.11]), then it holds that for
any i € S and x € R,

ln (1= v (6 m(2) +2)) = Eqo (ex0 {~Colo0)Mygaeloo)e™¥ ),

t—o00

where M j55=(00) is given in (1.10) and Cy(c0) is defined by

Cy(00) := lim / yeV2Ay Zg]vj T,y + V2X*r) | dy € (0, 00). (1.12)

r—00
7=1

Let v;(0,7) = 1(_q 0)(), then by (1.6) we have

vi(t,x) =1- E(z,z) H (1 — 1{X,g(u)<0}) = P(m) (urenZl%) Xt(u) < 0) = IP>(O7i) (Mt > CC) >
ueZ(t)

where M; := max,cz ;) Xu(t) and we used the symmetry of Brownian motion in the last equality.
Using this, we get the following corollary of Theorem



Corollary 1.2 For anyi € S and x € R,
Jim Po ) (Me < m(t) +a) = B, (exp {—CooMm(oo)e_ 2’\*"”“}) ,

where

Cs = lim \/7/ yeV2A\y Zgj (0.) (M >\/2)\*7“+y> dy. (1.13)

r—00

For j € S, define .
M/ = ma Xu(t).
P ezt =i " )

Fix i1 € S. Taking v;, (0,7) = 1(_og 0) (), vj(0,2) = 0 for j # i1, then by (1.6) we have

vi(t, ) =1—E@ H (1 = 1{x, (u)<0y)
WEZ(t), L (t) =i

_ . : — ) i1
=Py <uez(g,l}f(t):il Xi(u) < 0) P4 (Mt > a:) .

Then we get the following corollary of Theorem

Corollary 1.3 Fiz iy € S. Foranyi € S and x € R,

lim P g3 (Mt“ < m(t) + I‘) =E0,) (eXP {—Céél)Mm(oo)e_ ”*x}) )

t—o00

where

C’OO = lim \/7/ yeV2AY Zg] (0,5) (M“>v2)\*7"—|—y) dy € (0,00).

Theorem 1.4 Define

Dii= Y dxu-monm)y 20
ueZ(t)

Under P ;) < }Mt > V2N 4 z) (Dt, My — 2X\* — z) converges in distribution to some (D,Y’) as

t — oo, where Y is an exponential random variable with parameter v/ 2A*, D does not depend on
i1€S and z € R, and D and Y are independent.

Define
D OOt (1))

ueZ(t)

Let CH(R x S) be the set of all functions ¢ : R x S — R, such that for any j € S, ¢(-,7) is a
non-negative continuous function of compact support.



Theorem 1.5 Given M g5=(o0), let P = Y N0p, be a Poisson point process with intensity
CooM jz5w(00)V2A* eV Mede, and let {D®) : k € N} be iid copies of D defined in Theorem . If
D) .— Y oneN 5(A(’“) q““))’ then for any © € S, under P(o;), & converges in distribution to

d
Eoo = 25(pk+A$Lk)7q£Lk)) ast — o0.
For i1 € S, define
E(i) = > OXy (t)—m(t)-

weZ(t):Iy(t)=i1

As a consequence of Theorem we have the following corollary:

Corollary 1.6 & (i1) converges in distribution to

. d
800(11):2 Z 5pk+A%k) ast — 00,

E P,
where py, A%k) and quk) are defined in Theorem .

Remark 1.7 The asymptotic behavior above for irreducible multi-type branching Brownian motion
is similar to the one obtained in [2, [4] for a single-type branching Brownian motion. Belloum and
Mallein [6] and Belloum [7] considered a 2-type reducible branching Brownian motion and their
results are quite different. In their model, particles of type 1 move as a Brownian motion with
diffusion coefficient o2, reproduce with branching rate 3 + o and offspring distribution {pi(1)}
satisfying p,o)(1) = @%7?(1,1)(1) = CXL—’-B Particles of type 2 evolve as a standard branching
Brownian motion with branching rate 1 and binary branching. In the spacial case when o =1 and
B =1, \* =1, their results show that the corresponding front m(t) is /2t — 2—\1/5 logt, which is quite

different from the irreducible case where the corresponding front for \* =1 is \/2t — % logt.

In the remainder of this paper, for a set E, the notation

f@) Sg(x), zekE

means that there exists some constant C' independent of z € E such that f(z) < Cg(x) holds for
all z € E. Also, the notation f < g,x € E, means f S g,x € Eand g < f,z € E.

2 Many-to-one formula and spine decomposition

Let Ny := (N1(t),..., Ng(t))T and let {F;} be the natural filtration of the multitype branching
Brownian motion. By [5, Proposition 2], under P, ;, e *"(Ny, h) is a mean h; positive martingale

with respect to {F;}. Define I@(m) by
dP,; e NNy, h)

= : (2.1)
d]P)(ac,z) Fi h;

According to [24, p. 224], the multitype branching Brownian motion under @(w‘) has the following
spine decomposition:



(i) Initially there is a marked particle £, called the spine, of type i at site .

(ii) After an exponential time (¢ with parameter a; + \*, this marked particle dies and produces
Ay := Aq(i) offspring of type 1, ..., Ay := Ag4(i) offspring of type d with probability pa (i) :=
%, where A = (Ay,... Ay)”. Randomly choose one of these (A, 1) particle to continue as
the ;pine, with each type j particle being chosen with probability h;/(A, h).

(iii) The (A, 1) offspring particles evolve independently, with the marked (spine) particle re-
peating step (ii) with law @(Xg(Cg)Jg(Cg)) and each unmarked particle of type j, j € S, evolving as a
multitype branching Brownian motion with law P Xe(Ce)d)- The process then goes on.

If we only consider the spine process (X¢(t), I¢(t)), then, under @(z,i)v X¢ is a standard Brownian
motion starting from x, I¢ is an S-valued Markov chain with generator

-~ 5% . —~ x m%h aimi,-h‘ *
6= @ss it Ty = (o3 (S = 0) = R — o X0y
and X¢ is independent of I¢(t). According to [24], (12)], we have
~ hr,
Py (& = u|F) = D1 ue s (2:2)

<Nt7 h>

Using ([2.2)), we give a stronger version of the many-to-one formula in |24, Proposition 1]. For the
case of branching Brownian motions, one can refer to [19, Proposition 4.1] (In [I9], there is also a
change-of-measure for the spinal movement).

Proposition 2.1 For anyt >0 andu € Z(t), let H(u,t) be a non-negative F-measurable random
variable. Then

* g h
E(I,Z) Z _E[(U7 t) = eA tE(gj,i) ( (ft? )h )

ueZ(t) Ie(1)
Proof: By (2.1) and (2.2)),

* N h
_ i
Bz § H(u,t) | = e "By N, D) § H(u,t)
ueZ(t) T uez(t)

N hi, () hi 4 5
= 6)\ tE(x,i) Z <Nt7 h> H(’U,, t) - 6)\ tE(x,i) Z P(x,z) (gt = u|ft) H(ua t)

ueZ(t) M1 o) ueZ(t)

_ At
=€ ]E(:Jc,z) H(gtyt)hlg(t)

Z Lig,=u} :e)\*t/\ ( (&, 1) hi )

u€Z(t) hlg(t)
It is easy to deduce from Ah = \*h and g’ A = \*g” that
Zd:mi,jhj aZ+/\ Zm] ia;g; = (ai + X%)gi, i=1,2,...,d.
Let p; := hjg; and g = (p1, ..., ta)”, then we see that p; solves the equation
wila; + A%) Z“l mm i, J=1,...d,
and (1, ) = 1, which implies that u is an invariant measure for I¢(t) under @(m).

7



3 Non-local Feynman-Kac formula

Throughout this paper, (X;,t > 0;P,) is a standard Brownian motion starting from z. Feynman-
Kac formula plays an important role in the probabilistic treatment of the F-KPP equation ([1.1)).
The classical Feynman-Kac formula says that a solution of the linear equation

1
U = 5 Uae + k(t,x)u

can be given by
ult,z) = B, (efo‘ h(t=s,Xs)dsy (), Xt)) . (3.1)

If w is a solution to equation (1.1]), the (3.1) holds with k(s,y) = (UQT_U)(S, y) = u(s,y) — 1. For our
multitype branching Brownian motion, we will give similar representation for a solution v of ([1.5))
using a non-local Feynman-Kac formula.

First note that ((1.5)) is equivalent to

vi(t,x) = By (v;(0, Xy)) + E, (/0 a; (i (v(t — s, X)) — vi(t — s,Xs))ds> , 1€8.

Let n; = Z?Zl m;; and p;; = myj/n;. Since po(i) = 0 and m;; = 0 by assumption, we have
n; > 1 and p;; = 0 for all i € S. Rewrite A given in (|1.3) as

A =diag{ai(n; —1),a2(n2 — 1),...,a4(nqg — 1)} + A™, (3.2)
where A* := (a; ;) and a] ; = a;n;(pij — d;7). Define
_ 1 d2 1 d2 .

Let I; be a continuous time Markov chain, independent of X, with generator A*. We use P, ;
to denote the law of (X, I;) and use E(, ;) to denote the corresponding expectation. Then (1.5)) is

equivalent to
vi=Av+A(p(v)—v)— A"V,

which in turn is equivalent to

t
wi(t) = B (o1 (0, X)) + By < [ o Gon (vl = 5. X0) = o (6 5.X0) ds)
0
t d
_ E(m,z) A Z a}‘—sjjvj(t — S, Xs)dS
j=1

t
— B (0n, (0,X) + Eqe < /O ar.(n1, — or,(t — s, Xs>ds)

t d
+ E(a;,z) / als SOIS' (V(t - S? XS)) - nIs Zpley.]vj (t - 87 XS) dS * (34)
0 ,
7=1
We will simplify the formula above using the non-local Feynman-Kac formula introduced below.
. A+A(N=T)
Define a Feynman-Kac semigroup F; by

t
P{4+A(N_]) (z,1) = By (f(Xt,It)exp {/0 ar, (nr, — 1)ds}> ,

8



then (see, for instance, [15, Lemma 2.1]), since m;; = 0 for all , P{4+A(N_I) is the mean semigroup

of a purely non-local branching Markov process with spatial motion (X, I'), branching rate function
B(x,i) = a; and non-local probability distribution F' ((z,i),-), on the space M(R x S) of finite
measures on R x S, defined for all (z,7) € R x S by

F((z,9), {0z % (k101 + ... + kq0q)}) = pi(i), ke N

Put
z(t,x) = (z1(t, ), ..., 2zq(t, )T with z(t, z) := PtA+A(N_I)f(x,i).

Then z solves the linear equation

z; = Az + diag {a1(n1 — 1),a2(ny — 1),...,aq(ng— 1)}z, z€R,i€S.

By (3.3) and (3.2)), we see that z solves the equation

1 d2 1 d2

Zt:dlag{2dx2,...,2dx2}z+AZ. (35)

Let H(s) = s and

J((x, k), d(y,£)) == 6(z — y)arnk (Pre — Ok.0) 1{ppeydydl.

Define
Dy = {t| (X¢—, =) # (X¢, 1)} = {t| - # I} .

It is easy to check that for any non-negative Borel function f on (R x S)? vanishing on the diagonal
and any x € R,7 € S,

E(x»l) Z f((Xs—afs—)a(X&Is))

seDj,s<t
_E,, ( [ . 0 (X .0, ds) ,

and thus (J, H) is a Lévy system for (X, I). Note that the non-linear term of (3.4) is equal to

d
ar, | er, (v(t =5, X)) —ni, Y pr, vt — s, Xy)
j=1

d
- (Z et ) 1) arnr, ) prgo(t — s, Xo).

d
=1 M, 50 (= s, X =1

Applying [11, Lemma A.1], similar to [1I], (4.8)], (3.4 can be written as

t—s, X, t
vt r) =By [ep] 30 1og< or, (v{t =5, X)) ))+ /O ar,(ng, — 1)ds b vy, (0, X))

s€Dy,s<t Zj:l mi, jvi(t — s, X
(3.6)



For any bounded non-negative function f and ¢ > 0, by (|1.6]),

Uz(t, X, 6) = E(I7Z) H e_ef(Xu(t)le(t))
u€eZ(t)

solves equation ([1.2)). By taking derivative with respect to 6 and letting 6 | 0, it is easy to see that

Zi(ta 37) = E(oc,z) Z f(Xu(t)a Iu(t)>
u€eZ(t)
. A+A(N=I) . . .
also solves equation (3.5). Therefore, P; is also the mean-semigroup of the multitype
branching Brownian motion, i.e., for every bounded measurable function f,

B f @, i) = By | D SO(0), Lu(®))
u€Z(t)

It follows from Proposition that for ¢(x,i) = hy,

PN () = X g(a, 1), (3.7)
Using the definition of PtA FAN=D) and (3.7), we can easily see that

t
e Ntexp {/ ar, (ng, — 1) ds} b
0 hr,

is a non-negative martingale of mean 1 under P, ;). Now we define

i

t
. h
= e Mlexp {/ ar, (nr, — 1) ds} I
o (X I5,5<t) 0 hr,

Then by the definition of PtA +A(N_I), we have

h

dP ;.4

— . * hl
PtAJrA(N I)f(xa Z) = 6)\ tE?ac,i) (f(Xtv It)h[) :

Combining this with Proposition we get that

(6D Ply) & ((Xe 1) By

Now (3.6 can be rewritten as

x t—s, Xs 0, X
vi(t,z) = N B! | exp log o1, (v(t =5, X)) vr (0, X4) . (3.8)
(2. > a 2
s€Dj,s<t Zj:l mr,,;Vj (t - XS) It

Define for 0 < r <t < tq,

Ry, ((r,t];v) := exp Z log (Zdws vt — 5, X)) ) (3.9)

s€Dy,r<s<t j=1"s,5Vj (tl L XS)

10



and
R((r,t];v) := Ry ((r, t];v), R(t;v) := R((0,t];v). (3.10)

Now for 0 < r < t, by the Markov property, we get from (3.8) that

vilt,w) = N CTIREL ) <Rt(t - r;v)vlﬂ"(r’t)>

hIt—r
_(==y)?
— ATt ’")h R ( W‘X — >d 3.11
=e ;U = . .
\/27_‘_7 (z z) ) hlt_r t Yy Yy ( )

The above representation (3.11)) of v; will play an important role in this paper.
For any ¢ € S, by Bernoulli’s inequality,

d d
()—1—¢1(1—v—1—2pk Hl—v] J<1—Zpk 1—2/{:1}] Z:m,-,jvj7
i i=1

keNd keNd

Thus, P?x p-a-s., for any 0 <7 <tand t; > t, Ry, ((r,t];v) <0.
The assumption ([1.4)) implies the following estimate on ¢;(v):

Lemma 3.1 It holds uniformly for all i € S that

ﬁi =1-0(|v||*), forallv e [0,1]% (3.12)
D=1 MijV;

Proof: For any v € [0,1]%, let F(r) := @;(rv) for r € [0,1], then there exists 6 € [0, 1] such that
i(v) = F(1) = F(0) = F'(0) = Vei(0v) - v

Let J(i) := {j € S:m;; >0}, then for any j ¢ J(i), pk(i) = 0 for any k € N? with k; > 0.
Therefore, by the trivial inequalities

d d
1-Jzi<> (-2, =z€01],j=1,....d
j=1 j=1

and
1—(1—2)f <kooz k>1,2€(0,1],

we have

d
pi(0v) — Vei(0) - v| < Zve Z kepx (i H 1 — 6v;)k5 7% —my
J=1

=1 keNd

d
= Z Vy Z ]{Jgpk Z kgpk H 1-— 9’U —0je

LeJ(i) keNd keNd Jj=1
d d
< Z Vg Z kEepx(7) | 1 — H(l — 011] | < Z vy Z kepy (i Z (1 —(1- ij)kj)
leJ(i) keNd J=1 Lej(i) keNd Jj=1

11



S Z ve Z kepi (i Zkao e S miNyge 7(;) M, Z TMi,£0¢ Z kepi (i Zkao IN2

teJ(i) keNd be(i KkeNd
=:T() (Vi (0) - v) HVHQO,
where we used (1.4]) at the end of the display above. Thus (3.12)) is valid. O

In the remainder of this paper, when we consider the spine process (X¢, I¢) only under ]@(m),

we sometimes use ((X ), P?x Z.)) to denote the law of the spine process for simplicity.

4 Estimates in the case of Heaviside initial conditions
In this section, we consider two kinds of initial conditions. The first kind is

vi(0,2) = 1(_o0)(7), foralliesS. (4.1)
Fix i/ € S. The second kind of initial condition is

v (0,2) = 1(_oo0y (), ©;(0,2) =0, fori#id (4.2)

Note that if v solves ((1.5)) with initial condition (4.1]), then

vilt @) = Py < min () < o) Py (M: > 7);

and that if v solves (1.5)) with initial condition (4.2)), then

Ui(t, .%') = P(zﬂ-) (ueZ({)I,l}un(t):i’ Xt(u) < O) = P(O,i) (]\JtZ > :C) .

The purpose of this section is to get estimates on solutions v (¢, x) of (1.5 with Heaviside initial
conditions (4.1)) or (4.2), and with z = m(t) + y, that is to say, we want to get some upper and
lower bounds for P ;) (My > m(t) +y) and P, (MZ/ > m(t) + y) with y > 0. See Proposition

below for the upper bound and Proposition [£.3] for the lower bound. Then we use Propositions
andto prove that for any i € .S, (Mt —m(t), t > 1; IP’(O,@-)) is tight, and that, for any 7,7’ € S,

M —m(t), t > 1;]1”(072-)) is tight.

We first prove an estimate on the path of Brownian motion.

Lemma 4.1 Let K >0, « < 1/2 and t > 1. For any function [ satisfying

o (L) VO=SON) _

s<t \ 8¢ (t—s)*

there exists a constant 'y depending only on K and « such that

Y AVH(A VY

PO(BSZ_y+f(3)73St> Bt+y_f(t) € [Z7Z+1]) SFl t3/2

I i

where (B, t > 0;P,) is a standard Brownian motion starting from x.
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Proof: Using (infs<; Bs, Po) 4 (—|Bt|, Po), we can easily get

ANRYA?
Po(Be2 -y s <0 =Po(B <) £ Y i (43)
Next, we prove that, for any K; € R and « € (0,1/2), it holds that
ANRYA?
Po(By > —y+ Kis%, s<t)<? ‘[, y,t > 1. (4.4)
Vit
If K1 > 0, then by (4.3)),
VANRYA
P0<B82_y+K15a7SSt)SPO(BSZ_yvSgt)sy\/g/7 yatzl

If K1 <0, then by [20, Lemma 3.6], when y < /%, it holds that
Po(B. > —y + Kis®, s <1) <Po (B > —y— [Kilj®, j=12, ) S —= < -, ty>1.
When y > /t, we use the trivial upper bound 1.

Now we prove the desired result. When t < 3, we use the trivial upper-bound 1. When ¢ > 3,
by the Markov property at time ¢/3 and (4.4]),

PO(BSZ_y+f(S)7SSt’ Bt+y_f(t)€ [Z7Z+1])

t t 2t
SPO <BSZ—ZJ—K5@»S§3> -SU.pP:E <B32_y+f<8+3>a8§37 BQt/3+y_f(t)€ [Z,Z—l—l])
zeR

t t 2t
Sy/\\/SUpr<BsZ—y+JC<S+>73§a B2t/3+y—f(t)€[2,2+1]>, y7221.
\/E z€eR 3 3

For any z € R,

t 2t
Pa:<BsZ_y+f(3+3)75§37 B2t/3+y_f(t)€[z7z+1]>
t t 2t
<Py | Bs—Byz>—(2+1)+f 5+§ —f(t),gﬁsﬁga By — Bayys € [h— 1, A

=Py (Boz G4 D)+ f (=) - f(0.5 < 5. Buys < lh- 1,1

t
3’
with h =z +y — 2z — f(t) and B, := By /35 — Bayyz being still a Brownian motion starting from
0. By the Markov property of B at time ¢/3 and (4], we get that

| =+

Po (B2~ 41+ £(t=9) - S5 < 5. Ba € = 1.1])

~ t ~
< P(] <Bs > —(Z—I— 1) — Kso‘,s < ) . SH%PI/ (Bt/3 S [h — 1,h]>
S

1 h oy =2)?/(t/3)
< E+DA Vi - sup e

~ ——dy/
t a'eRJn—1  4/2mt/3

13



(2z)/\\/Z. 1 <z/\ﬁ
Vit Vort/3 Tt '

Therefore, the desired result is valid. O

<

Fix y,t > 0, we define for s € [0, ],

3 t+1
hbY = 1 -, LY .= V2 *s — hiY.
s Wk 0g<t_8+1> Y, fs s
Then ¥ = V2X\t — 2\/gﬁlog(t%—l)—l—y < m(t) +y and fé’y =y>0.

The following result gives the upper bound.

Proposition 4.2 There exists a positive constant Cy such that for any y,t > 1 and i,7 € S,
Py (M > < Po.qy (M; > <C Vi)e V2
©00) (M{ >m(t) +y) <Py (M >m(t) +y) < Co(y A Vie :

Proof: The first inequality is trivial since Mti' < M;. Now we prove the second inequality. Let
[] be the largest integer less than or equal to z. Then

Plos) (Me = m(t) +y) < Py (Mt > ftt’y>

[t]
< ZE(O,l) Z 1{supse[k7(k+1)m5] Xu(s)Zfz’y}1{Xu(s)§f£’y,s§k}
k=0 ueZ((k+1)At)

[¢]
= Z Eo,5) Z 1{Supse[k,(k+1)/\t] Xu(S)Zf,Z’y}1{Xu(8)§f§’y,s§k:} =: Z Dy. (4.5)
k=1 weZ((k+1)At) k=1
Since all components of h are positive, we have by Proposition that

Dy, < eMEUP sup  Xe(s) > fIY, Xe(s) < fHY, s <k | . 4.6
~ ( ; ) § k 5 S
s€lk,(k+1)At]

Note that, under @(Oﬂ»)7 X¢(t) is a standard Brownian motion. Thus,

Fos) ( sup  Xe(s) > f¥, Xe(s) < fo¥,s < k) (4.7)
s€lk,(k+1)At]

i t7y t,y
e EO <PO (Bk 2 fk - xyBS S fs 73 S k> ‘x:Supse[k7(k+1)/\t] Bé_Bk> .

For any A € R, define

dP)

o ABi— 1A% 4
P, =e 2N (4.8)

o(Bs,s<t)

then under P, B; is a Brownian motion with drift A. Using this change of measure, we get that

t, ‘) _ V2N (V2N BNtk
Py (Bk > fky —x,Bs < foY, s < k:) =E; (e k 1{Bk2f]§’y—x,BS§f§’y,s§k})
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< ¢ VIV (K -e) e kp, (Bk + VIR > fY — 2 B+ VoM s < f1Y s < k)

eV (i $+Vﬁm@3<x+hﬂB:>mys<@

IN

V(=) N hp (B > gt s <k, By, — hivH € [l,x—l-l])
=i e V(=) AR Y (1 2 4 1)) (4.9)

Let

3 t+1
f(s) := 2mlog(t_s+1).

Note that, since log(1 + ) < z'/4 2 > 0, we have for all s < k and all 1 < k < t,

() 1S (k) = f(s)]

< Log (14— P N P S L S
sl/4 (k —s)l/4 ~ s1/4 & t—s+1 (k — s)1/4 & t—k+1
<log(1+s) 10g(1+k:—5)<1‘

S (k—s)i/A ™

Therefore, applying Lemma to the function f above with o = 1/4, y replaced by y + 1 and
z=1,.,[z] + 1, we get

[2]+1
FY(,z+1 ZF*J (2,2 +1])
[x1+1
y AV
5( kg/Q Z AE] S 1372 (x+1)? y>Lz>0, 1<k<[t]. (4.10)

Plugging this upper bound into (4.9), we get that

z)+x kY AVE

(@ +1)% (4.11)

Py (Bk > fi¥ — 2, By < fi¥ s < k) < VIR (f1V—

Note that 0 < sup,ep (k+1)ag Bs — Be < Supgei k1) Bs — By which is equal in law to W :=
Sup,epo,1] Bs under Po. Combining this with (4.7) and (4.11), we get that for all y > 1,1 <k < Vi,

@(O,i) ( sup Xs(s) > f;é’y, Xé(S) < fﬁ’y,s < k)
el (k+1)A)

_ DY UN A y/\\/> * _ w f0Y 3 y/\\/i
< VIR ( - ) 0<emW(W+1)z> VIR LU k( o ) (4.12)

Combining (4.5)), (4.6) and (4.12f), we finally get that

[t]
* _ ¢t * (TA \/i
Bo.) (M > mit) +y) £ - N FHDem VAT ’“( e )
k=1

[t] 3/2
_JaE t+1 1
=< WA Ve QMZ(t—kH) wr byl
k=1
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Note that for all ¢t > 1,

[t]

‘1 3/2 4 [t] 149 3/2 4
Z(t—ZJrl) k3/252<[t]“+ )
k=1 k=1

—k+1 k3/2
([t]/2]+1

3\ 1 s\
2 kzl <[t]—k+1> k3/2§2<[t]—[[t]/2]> z::

k=1 W
3\ = 1 -
<2(i72m) 2 L st

S
k=1 =1 k

IN

Therefore, for all y > 1,t > 1 and i € S,

Py (My > m(t) +y) S (y AVEe VY,

which is the desired result.
Next, we are going to get a lower bound for P ;y (M; > m(t) +y). For i’ € S, let
ABY () = # {u € Z(t): L(t) =1 and Vs < t, Xu(s) < f1¥, Xu(t) > fo — 4} .

Since limy_; oo I/P\’(Oyi) (Ie(t) = 1') = girhy > 0 for all i, € S, we have inf; ;g inf;~; @(OJ) (Ie(t) =) >
0. Therefore, for t > 1, by Proposition and the independence of I and X¢, we get that

* 4N h
YY) — oA )
E o) (A"() = " B,y ( e X< s, Xg(t)tht’y—4}1{I§(t)i'}>

> NPy (BS <Y s<t B> fiY— 4) . (4.13)
We first show that for all 4/t —3 >y > 1,t > 1,

NP, (Bs <y+ ;m(t), s<t, By>y+m(t)— 1) > ye V2N,

(4.14)
Let ¢, := m(t)/t. Taking A = ¢; in (4.8)), we get that for all ¢,y > 1,

NPy (BS <yt im(t), s<t, By>y-+mlt)— 1)

= MR (e_thtJrqt?t/z; Bs <y+aqs, s<t, Bi>y+qt— 1)

> Nl tat)tit2p (B> —y s<t, B <-—y+1)

2 67\/2)\*2’%3/21)0 (BS > —y s <t Bt < —y+ 1) — e*\/ﬁytl’)/?EQy (ijt < 1) R
t

where (R, Q) is a Bessel-3 process starting from y, and in the last equation we use the following
well-known change-of-measure

d@y _ By +vy
dPo o (Bs,s<t)

1{Bs+y20, s<t}»
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here (B; +y, Q) is equal in law to (R, Qy). The density of R; under Q, is given by
T o~ (a—y)?/(2) ( _ fzxy/t)

e 1—e lz~0n-

yv 21t {z>0}

and that 0 < 2zy/t < 8V/t/t < 8 and (z — y)?/(2t) <

Note that 1 —e ™ 2 2,0 < x < 8,
1<y <4vt—3 <4ytandt>1. Thus,

(4vt)?2/(2t) S1forall0 <z <1
1

VI <y R < 1> _ e VIy3/2 / L ey _ —2ay/tyg

: o (mshi=1) =y = (1 20t

1
* 1 2zy
> e*\/Q’\ yt3/2/ dz

1
>er2)‘*y/ zdr > ye VY 1<y <4Vt—3, t>1.
0

~

Thus (4.14)) is true.

Since, for fixed t,

id (v _ 3 A _ 3.
tm(t)—i—y (f: —1—3)—2\/W <10g<t_8+1 tlogt =: G(s),

we see that

3 1 logt t
) = <t s+l t ) S T et

Since G(0) =0, G'(0) < 0 and G'(t) > 0, t > e, we have for t > e and s < t,

G(s) < G(t) = -3 5 log <1 + 1) <0.

a 2/ 2%
Thus s
{Bosy+3m@), s<t}c{B < fiv+3 s<i}. (4.15)
On the other hand, since
+m(t)—1—( t’y+3—4) —LIO <1+1> >0
Y ! 2N t) =7
we have that
(Bizy+mt) -1} {Bi> fV+3-4}. (4.16)

Combining (4.15)) and (4.16[), and noting that f;’y +3= f;’y+3, we get that

Po (B <y+omlt), s<t, Bizy+m(t)—1) <Po(B, < i s <t, B> [ —4)
(4.17)
By (4.13), ; and (4.17)),

Eo.0) (A1) 2 (y — 3)e VIV > VIV il e s t>1, 4<y<4vVi (4.18)

Now we state our result for the lower bound.

17



Proposition 4.3 Let 5y :=4 + \/W log2. There exists a positive constant Ko such that for any

t>(Bo/3)%y e [1,V1] and i,i € S,
Pog) (Mr 2 m(t) +9) 2 Boy (M 2 m(t) +y) = Kaye V.

Proof: The first inequality is trivial, so we only need to prove the second inequality. It is easy to
see that for all t > 1,y > 1,

P, (Mtzl >m(t) +y— 50) > P (A(i) > 1).
If we can prove that for all t > 1,y € [4,4+/t] and 7,7’ € S,
Py (A™(i') 2 1) Z ye V2V, (4.19)

then for any ¢ > (8p/3)? (which is equivalent to 3v/t > ) and 1 < y < v/t, we have 4 < y + By <
4+/t, and thus

P, (Mti, > m(t) + Z/) = Plo,) <Mti/ >m(t) +y+ B0 — 50) > P, (At’ywo( ) > 1)

2 (y+ Bo) e” VA W) > yem VY,
which completes the proof. To prove (4.19)), we use the trivial inequality E (|Y|'T*0)E(14)% >
E(|Y]14)"7 to get that for all t > 1,4 <y < 4/t and i, € S,

1/ap

(B, (AW(@1)))

(.Aty( ) > 1)
E0,5) ((Aty(i/))lmo)

If we can prove that for all y,t > 1 and 4,7’ € S,
Eo. (A1) < (y AvVEe VY, (4.20)

then using (4.18)), we get (4.19). Now we prove (4.20)).

Step 1 For u € Z(t), define
T(u) = {Xu(s) <Y s <t Xy (t) > f1Y — 4}.

We first estimate Eg ;) ((A"Y(i'))!T*) from above. Define A™Y := Zgzl A (5). Tt follows from
Proposition [2.1] that

E (o) ((A"(i)'7°0) < By (A)'H20) =By | D (AY) Ly

u€Z(t)
At Y\ A* ,
= hie™ "B (Mty) & (t)1T<£)> S By (A7) 1xg) - (4.21)
¢
In the following substeps (i) and (i), we estimate E 0.0y ((A"Y)** 1)) from above.
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Substep (i) Let G; := 0 (X¢(s),1e(s),s <t). Let 7, be the k-th time that I¢(s—) # I¢(s)
and let A (I¢(mp—)) = (A1 (Le(Te— )) o Ag (Ig(Tg—)))T Let K; :=sup{k: 1 <t}. By the trivial

inequality <Z§:1 a:j>a0 < Zj 1 737, on the event Y (§),
R K d "
]E(O,i) ((At,y)ao ‘gt N (A (15(7'6_)) ,E < Kt S Z Z ( Ig Ty— 5]}&(’&?)) (4.22)
(=1 j=1
X {E(Xg(TZ)J) <# {u € Z(t — Tg) Vs <t—rm1p, Xy ( ) < f5+7—€,Xu(t — TZ) > f;%y . 4}> }ao .

Let z = X¢(1y) <fT L2 :fﬁéy—zEOandr:t—Tg, then

Eq..) (# {ue Z(r): Vs <1, Xu(s) < f2U, Xy(r) > ff’y—4})
<eN TP()(B <f+7_[ z,s <, BTth’y—él—z)

BA*TE\/W G_WBT—’—)‘*Tl
a 0 {Bs<fs+7- —z,8<r, Brzftt’yfﬁlfz}

< V(S Azt p (Bs >h s<r B. <4+ h;}Z’) . (4.23)

Recall that h%Y =

ZW log (thgL) —y. It follows from Lemma that for r > 1,

/

/ , , ) 1

PO (Bszhgrz,SST, Br§4+h:rz> SPQ (BSZhg’Z—l—l,SST’ BT§3+h:’Z+1> 5 (Z ;/_2 )
r

For r < 1, we use the trivial bound 1. Plugging these into (4.23]), together with (4.22)), we conclude
that on the event Y (§),

E ((A)™ G (A (Ie(re=)) £ < K)) S 1+ ZZ  (Te(=))) (4.24)

=1 j=1

ty o0
VIV (£ —2— X (rg) 42000 (t—p) [ (fri — Xe(Te) +1)
x e~ 0V2A"(f £(7e)) +200" (t=70) ( ‘ TEEALE Lim>1y + lpgm<y |-

Note that the distribution of the number of offspring A(j) of a spine particle of type j is given by

Pi(j)(k, h)

= W = ﬁk(ﬂ)

Thus, given Gy, the law of A (I¢(7,—)) is equal to @(O,i) (“Alg(n) (Ie(1e—)) > 1, Ie(T0—), Ig(Tg)) since
there must be at least one particle of type I¢(77) among the A (I¢(7,—)) offspring. So for any k € N%,

~

P, <A (Ie(m—)) = k‘gt) — @(O’i) (A (Ie(1e—)) = K, Ap (ry) (Le(0—)) = 1’[5(75_)’15(74»

By (Argrn Uelmem)) 2 1Ie(re=), Ie())
_ 1
2Nty (21 Pelle(Te—

))ﬁk(fs(Te*))1{1%(7)21}
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Define
S:=1(j)€SxS: Y Pilh)>0

keNd ki, >1

There exists a constant ¢; € (0, 1] such that for all (j1,72) € S, ZkeNd:kj221 Px(71) > c1. Note that
2 kendiky (21 Pe(le(Te=)) > 0. Therefore, (I¢(e—), I¢(mr)) € S and

d
G, ! 5 Y Aok

(¢ (T
ZkENde (7.)>1pk 5 [ j 1 keNd:k; (TZ)>1

d
1
<= D Bille(m) -k < SHPZ > Bl
j=1 keNd teS 21 kene

d
pk(O){kh) o o
= sup fk: < sup P () ko kSO
Z (1+)\ /aé)hé 4,7, qeskgd ( ) R

L 1tao ankliteo
4 0% < (4.25)

< sup Pk (€) + S L
0,5,4€9 k%d 1+ o 1+«

where in the last inequality we used the assumption (1.4). By (4.24) and (4.25)), on the event Y(¢),

K
Eo.i) ((Aty)ao }gt) <1+ zt: o0V (fY =2 X¢ (1) ) +200 X" (t—7¢)
/=1

(5 — Xe(m) + 1) ao
’ ( e Meen tlensy |

Substep (ii) Note that 7 is measurable with respect to o(l¢(s) : s > 0), which means that
7¢ is independent of X¢. For the Brownian motion B, define

Ti={B, < fi¥, s<t,B, > [{V 4}
Then

Bl () pg|me: €2 1) SPo (By < 1%, s <1, By > [V~ 4)

K, ty a0
_ * t,y * (4 - B + 1
i ZEO (6 aoV2N*(£{"Y =B, ) +200\* (t—7¢) <W1{tﬁ21} + 1{t7,5§1}> 1T>

=11+ zt: La(?). (4.26)

For L;, note that the argument leading to (4.11)) also works when k is not an integer. Letting

k=tand v =4 in (4.11)), we get

*( £t» * 1 t * *
Ly < e VA (A7=4)+A tW x 25 < e My A VE)e VY, (4.27)
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Note that 7y can be regarded as a constant with respect to Eg. For La(¢), we deal with two
cases separately. We first deal with the case t — 7y > 1. Set r := 7y. By the Markov property,

- . ty B 1 @Q
La(4) = Eo (e_o‘o 2N (f1Y=Br)+200)" (=) <f’"(’”+> 1T>

t—r)3/2

Y 0
_ VN (1Y B ) 42000 (t—r) [ Jr — Br+1
= Eo< R e <(tr)3/2 Lp.<yim, s<r)

X Pp (Bs <f. s<t—r B, > fiY— 4) > (4.28)

For z < fbY, set 2/ := fiY — 2. Using ([@.8)), the fact that fstfr/,, — 2 =2 s — b and ([4.10))
(which is still valid when k = ¢ is not an integer) with F; " ’z/([l, 5]) defined in (4.9)), we get that

<B < s<t-r Bt_rsz’y—4>

_ VN (V2N Bt N* (t—7)
= Eg € 1{Bs<ftf —z, s<t—r, By >fPY—4-z}

< e V(- 2+ tnp, (B, < —h s <t—r, B, > —4—h" :Z)

— e 2>\*(f +>\*(t T)P (Bs Kt r,z/’ s<t—r, B r<4+ht rz)
—VX(fPV=2)+A (1) (

=e Zl—l—ht ”+1,s<t—r BtT§5+ht ”H)
X 1
< f\/2/\*(ft,yfz)+)\ (t—r) 2+
Se ¢ @ r) (4.29)

Combining (4.28]) and (4.29)), we get that

t tvy B + 1 1+O¢0
—(1 22 (f, Y —B- 14+2a0)N* (t— T T
La(6) <Ep [ e~ (oo VB (578, 41200 () (@_W) g oo
1 ¢ "
=: —(1+ao) V2A* f ¥+ (1+2a0) A* (t—7¢)
= (t— 73)3(1+a0)/26 ag t agp TR (Gl{Bsﬁfst’y, SST£}> ) (4.30)

where G := e(1+20)V2N'Bry(fby _ B 4 1)1+20 Next, using (4.8) with A = v/2X*, and noticing that
(Bs, PY?") S 4 (B, + V2X*s, Py) and that fo¥ = /2X*s — %Y, we get that

oo
Eo (Gl{Bséfst’y, SSTZ}) - ZEO (Gl{BsSf?yv SSW}l{BTz_ ﬁfe[—k—l,—k}})
k=0

< 7 VI R) () 4 g raogy V2V

B,
”{Bsgf;“ ,s<m} {Br,—fr,Y €[k~ 17k}})
k=0

= OV I AN Ze—aom*’f(l@m)H%PO (Bs < —hY, s <70, Br, + B2Y € [—(k +1),—k]) .
k=0

When 7, > 1, by Lemma we have for all k > 0,

Po (Bs < —h¥, s <70, Bry + ht¥ € [~(k + 1), —k])
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=Py (Bs > hLY, s <7, By, — hiY € [k, (k +1)])
<Py (B, >hV*, s<7, B, — h’;’f“ €k+1,k+2)
_ (D AVR(R+1) _ (yAVE(R+1)

< T < T (4.31)
Ty Ty
When 7, < 1, we use the trivial upper bound 1. Therefore, using the fact that > ;2 e~*V 2>‘*k(k +
2)1re0(k 4+ 1) < oo, we conclude that
Eo (Gl{Bsgfﬁ’y, s§n}>
o0
=t * o ONE, AVE)(kE+1
S eaomﬁzy—w\ B Ze oV k(k + 2)1+a0 <y \/;))/(2 )1{7521} + 1{Te§1}
k=0 Te
* £ty *
< (y/\ \/%) OV 2N fr A Ty ( 3/ 1{T£>1} + 1{T£<1}> (4.32)
Combining (4.30) and (4.32)), we get that in the case when t — 7 > 1,
o~ (14a0) VA f{¥ 4+ (142a0)X* (t—7¢) oo V2N fr/ 42" [
¢

- —/2)\* (t + 1)3/2(t - 7-6 + 1)30&0/2 A\t 1
= (yrvi) e e Sl + Ly
VA

vavey (D2 ]
S (y A \/Z) ! (t — 7'6)3/2 ' Wl{‘rezl} + 1{Te§1}
¢

oy —)\* 1 1
< (y A \/i) e VI e (7_3/21{t/QZT1221} + Wl{t/kugt—l} + 1{n§1}> - (4.33)
V4

Now we deal with the case t — 7y < 1. For z = B,

P. (By < filys St=70Big, 2 [V = 4) <Py (Big, > [V — 4 - 2)

W2 [ 2N By, A (t—T V2N (fEY —4—2)+N* (t—T,
o EO (6 o ( Z)l{Bt T2 f Y_4— Z}) S € (ft 2 ( 2)7

which implies that for all y,t > 1 and ¢ with t — 7p < 1,

—agV2A* (Y —B;, A*(t—T,
L2(£):EO (6 agV?2 (ft 4)+2a0 (¢ é)l{Bsgij, sgt,Bthtt’y—4})

* ty *® (4
< Eg (6_(”“0”” (fi7=Bry )+ (1+200) X" (¢ T’“’)l{Bssﬁ’% s§ﬂe}>

o0
o~ (14a0) VN [}V 4 (14+200) A" (1—7¢) Z E, (e(1+a0)\/zx*3
k=0

T”{Bssﬁ’y, SSTE}I{BW—f Ve[~ (k+1), k]})

< —(1-‘,—040)\/2)\*ftt’y+(1+2ao))\*(t—7'z) Oto\/2)\*f%y A*T1y

XZe_aomkPm(B <fty7 s<m,B Ty ftye[ (k+1)7—k])
k=0
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o
< e_(1+040)‘/2/\*f:’y+(1+2040))\*(t_TZ)eaO /2)\*ff—2ye>\*7'€ Z e—ao\/Q/\*k (y A\ \/E)(k; + 1)
~ 3/2 9y
k=0 Te

where in the last inequality we used (4.31]). Therefore, when ¢t — 7y < 1,

L) < e~ (a0 VIR £ V4 (L4 200) X (£70) g0 VIR 1 (X' 7 (y A V)
~ B
Z

S (y A \/i) e N temVINY, (4.34)

Using (4.26)), (4.27), (4.33) and (4.34), taking expectation with respect to @(O’i), we get

Ky
B ((A™)™ 1) < K, (Ll 2 Lz(f)>

/=1

Ky

Nt TS Z Lyt /257,>1 Lit/o<r<t—1

S WAV eI VE ) (1 ’ ( R+ itt/jf;ém} +ln<y + 1{mzt—1}>> '
(=1 Ty

We have finished the upper estimate on IE(O,@') ((Aby) Ly (g))-
Therefore, by (4.21)), we have

E(o,5) ((A™(i"))'F)

y/\\f t/2>m>1y | L{/2<r<t—1
~ (GW E,) (”Z( {/ 3/5 bt {(t/_< U +1{ﬂz§1}+1{n2t—1}>>' (4.35)

77)
Step 2 Let 0 < a <@ be such that

0 < a < min(a; + \*) < max(a; + \*) < a.
i€S €S
Recall that D := {t : Ic(t—) # I¢(t)}. We can define two processes I;* and I{ with the same jumping
probability as I¢(t) and with constant jump rates a and @ respectively. Similarly, we define D% and
D? to be the jumping times of I}* and I?. We can construct a coupling of (I¢(t), I}, I¥) such that
the embedded chain of the three processes are the same and the jump times

Dy={t,:0<ti <ta<..}, DE={t2:0<t{<tg<..}, D" ={t%:0<t{ <t§<..}(4.36)

satisfy t2 < t,, <t for every n. More precisely, let {Y,, : n = 0,1,...} be the embedded chain of
I¢(t) with Yy = I¢(0). Let Ty :=t; and T;, := tpq1 — t,, for n > 1. Then by the strong Markov
property, given Y;,0 < j < n, T, is an exponential distribution with parameter ay, + A\*. Let
TS = (ay, + \)Tn/a < T, < (ay, + \)T,/a =: Ti. Then we see that given Y;,0 < j < n, T
and Ty are exponential distribution with parameter @ and a respectively. Now for n > 1, define
9 = Z?;& T§ and ty = Z?;ol Ti. Define Kf := sup{n : t§ < t}, K := sup{n : t% < t},
If = Yy and Ij := Yga. Then (Ig(t), [}, If) is the desired coupling. Therefore, for any non-
negative and non-increasing function f,

Kt Kt Ky
YooFE) =D ) <D FE S ) = > f(s), (4.37)
s€D j:s<t n=1 n=1 i=1 s€D%:s<t
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here K; < # {D"N[0,t]} = K;' by the coupling. Applying (4.37) to f(s) = 1{5§1}+s*3/21{56[17t/2}}
and f(s) = 1g4<1}, by the Markov property at time ¢ — 1, we get that

2>79>
(1 + Z ( “ 3/5 L1y + 1{Tz2t1}>>
< E (1 + Z ( {t/2§/7—;>1} + 1{Tz§1}>> + SupE (0,5) <Z 1)

K(l Ka
: 1
SIHE (Y e lypsmmsyy + lpray | +E (D1
= i) P
t 1 1
=1 —|—a/ <1{8§1} + 83/21{86(1’t_1]}> ds +a/ 1ds < 1. (4.38)
0 0

For 7, € (t/2,t — 1], note that

K 1 “_1]_1 1

Z {t—1>71y>t/2} < Z {k<te<(k+1)}
— 3/2 _ . _1)3/2°

= (t—m) Narry (t—k—1)3/

where [t — 1] is the smallest integer larger than or equal to t — 1. For each k, using the Markov
property at time k, and using (4.37)), we have

= = Lit—1>m>t/2) Rl 1
131,
E o, (Z(tfg)3/2 ) < Z} —(t—k—1)3/2 supE (0,5) <Zl>

=1 :[t/2
Mt—1]-1 ) [t—1]-1 .
< — < [
< > . 3/2 Zl < D> (ETEEE <1 (4.39)
k=[t/2] k=[t/2]
Combining (4.35)), (4.38) and (4.39)), we get (4.20)). The proof is now complete. O

Remark 4.4 As a consequence of (4.37), we have the following useful inequality: for any r < t
and any decreasing non-negative function f on [r,t],

Eop [expq— D fls) >é2£E(OZ) expd— > f(s+r)
seD jir<s<t seD j:s<t—r

t—r
> l}relf E(O o |expq — Z f(s+r) = exp {—a/ (1 —e (S”)) ds} (4.40)
seDa:s<t—r 0
Using the fact that #{D;N[0,t]} > #{D%N|0,t]}, we also have that for any 6 > 0,
I/F:(O’i) exp{ —0 Z 1 < sup IE(OI) exp | —0 Z 1

seD jir<s<t tes seDa:s<t—r

t—r »
= exp —a/ 1—e? ds} _ e—g(t—r)(l—e ).
{ef (o)
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Using Propositions [.2] and we can get the following result:

Theorem 4.5 For anyi € S, (Mt —m(t), t > 1,IP(07Z-)) is tight. Also, <Mt’/ —m(t), t > I,P(Oﬁ-))
is tight for any 1,7’ € S.

Proof: Fix i € S. For any € > 0, choose y > 4 and § small so that Koye V2)"Y > §, where Ky
is the constant in Proposition Now choose L large so that E ;) ((1 — §)NLD) < /2. Indeed,
we can find a large n such that (1 — )" < e/4, therefore,

9
B (1= 9)™N) < 24P (N2,1) <),

which is less than /2 for large L since (N, 1) — 400 P(g;-a.s. Let b > 0 be a constant such that

. 9

By Proposition for t large enough so that t — L > max{/2,y?} where Sy is the constant in
Proposition [4.3]

inf Po (M > m(t = L) +y) > Koye VP > 5,
i,i'e ’

Thus,

Pio) (My <mlt = L) = b+y) <Py (M <m(t—L)—b+y)

g ,L'l g
< 5 + E(O,i) H P(O,Iu(L)) (Mt—L < m(t — L) + y) < 5 + E(O,i) <(1 — 5)<NL,1>> <e.
ueZ(L)

From this one can easily see that there exists ¥ > 0 such that for all ¢ large

Po,iy (My <m(t) —y) <Py (MtZ/ <mf(t) - g) <e.

Also, by Proposition there exists y* large enough such that for all ¢ > 1
Ploy (M > m(t) +y7) < Py (My > m(t) + %) < Coy'e V2 <, (4.41)

Thus there exists T > 1 such that (M; —m(t), t > T,P ;) and (Mtzl —m(t), t > T, IP(O’,;)> are

tight. Since minj<;<r M,f/ is finite P(g ;y-a.s., for y* large enough we also have for 1 <t <T,

Py (M > m(t) —y*) > Py (Mtil >m(t) — y*)

> P4 i i —u _
= ]P(O,Z) <121SHT (Mt m(t)> > =y > >1—c.

Combining this with (4.41)), we get
P,y (=y" < My —m(t) <y*) =Py (My —m(t) > —y*) — Py (Mg —m(t) > y*) > 1 - 2¢

and
P, (—y* < Mtil —m(t) < y*) =Py, (Mt’/ —m(t) > —y*> — P4 (MZI —m(t) > y*> >1—2e.
This completes the proof. O
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5 Proof of Theorem 1.1l

5.1 Upper bound for v

In this subsection, we first give some estimates involving R(¢; v) defined in and then use these
estimates to get some upper bound for solutions of with initial condition satisfying . We
roughly follow the arguments of [9, Sections 6-8]. However, some of the arguments in [9] do not
work in the multi-type case. We will explain these later in this section.

Let § € (0,1/2) and K > 24 +v/2)\* be fixed constants. If L is a function on [0, t], for t > 4r > 0,
as in [9, (6.11), p. 88|, we define

0,4 0L(s) = L(s+sA({t—3s)°)+Ks"A(t—s)°, r<s<t-—2n
" L L), otherwise.

We define 9;3 to be the inverse of 6, ;. Similar to [9} (7.6), p. 99, (6.13), p. 88, and (6.14), p. 89],
we define
t—s

Lyy(s) := ( ) = *m(t) a(r),
L, (3) Lo Ly4(s),
Zr,t(s) = (gr,t © Lr,t(s)) \ Lr,t(s) \ Lr,t(s)v

and similar to [9) (7.44), p. 111] or [23] (2.11)], we define

EASY/ N t .
—00, otherwise,

! (s) = { Lnt(s)—l-;m(t)—{—t_sa(r), r+r<s<t—2r
where the function «(r) is either taken to be —logr or taken to be identically 0. Let
By = {Xs > M, ,(t —s) for all s € [0, —r]} .

Note that when s € [0,27) U [t —r — 7%, ¢], M, ,(t — 5) = —oo, therefore,

(Bup)© = {3 s € [2r,t —r —r°] such that X, < M, (t - s)}
Similar to [9, (7.19)-(7.20), p.102-103], we define

Strt)==sup{s:2r <s<t/2, X <M. (t—5)},

52(7",75) := inf {s t/2<s<t—r Xs< M;J(t — s)} ,

S(r,t) := SM(r, )1 g1ty +52(m) > + 7 ) 11810y 52(r ) <t}

We use the convention that S'(r,t) = 0 if Xy > M, ,(t —s) for all s € [2r,/2] and that S*(r,t) =t
if X > M, (t—s) forall s € [t/2,t—7]. Next, similar to [9, (7.21), p.103], we define for r; € [r, /2],

(Byh)¢ = {r1 < S(r,t) <t—mr}={3se€[r1V(2r),t—r] such that Xy <M (t —s)}.

Let j; be the integer such that j; < ¢/2 < j; + 1. Define G; = [j,j +1) U (t —j—1,t —j|,j =
0,---,j1—1and Gj, = [j1,t — j1]. Similar to [9} (7.23)-(7.24), p. 103], we define for j =0,--- , j1,

Aj(r,t) .= {S(rt) € G},

A}(r,t) = Aj(r,t)N {Xs > —(sA(t—s))+ §y+ 2 for all s € Gj}
and A?(r, t) = Aj(r,t) \Ajl-(r, t). The following result is [9, Lemma 7.1, p. 104].
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Lemma 5.1 For large r, t > 4r and r1 € [r,t/2], for any y > —logr and x > m(t),

n ~P, (Bup| Xt = v) -

(B” | Xi=y) S

Recall that by the definitions —-,

(v(t — s, X5
exp Z log <Zd‘PL(( (—s),)Xs)> = Ri(t —r;v).

seDj,s<t—r j=1"s,5Vj t

If v solves (1.5 with initial value satisfying ((1.11)), then by (1.6), for any i € S,

vi(t,r) > 1 —E 11 (1 = 1Coony) (Xu(t)))
u€Z(t):Iy(t)=io
=1-Eq, H Lix,@y+a>ny | =1 —E@o H Lix,(H)<z—N1}
WEZ(t):Tu (£)=i0 WEZ(t):Tu (t)=i0
= P(O,i) (th >x — Nl) . (51)

By induction, for any 0 < xg, yr < 1 with i + yx < 1 for all 1 < k < n, it holds that

H 1—ap —yx) < {1—H(1—$k)}+{1—n(1—yk)}- (52)

k=1 k=1
Indeed, it is easy to see that ) holds for n = 1. If (5.2]) holds for n and 0 < xp, yx, vk + yp < 1
with 1 < k < n, then
n+1 n

=TT =2 =) = (1= Zns1 = yos1) (1 -l - —yk)> + Tnt1 + Yns1

k=1 k=1

n n
< (1= Znt1 — Ynt1) ({1—1_[(1—9% } { H (1— k) }>+$n+1+yn+1
k=1 k=1
n n
§(l—ZEnJrl){l—H(1—$k)}+(1_yn+l { H 1 — ) }+$n+1+yn+1
k=1 k=1
n+1 n+1
= {1— H(l —xk)} + {1 - H(l_yk)}7
k=1 k=1
which implies ((5.2]).

Suppose that v satisfies (1.5 and (1.11)). Forr > 1 and ¢t > r, define v;f(O, 7)== (1, 2) L{z>—1ogr}
for all j € S and

it =ra) =1-Fuy [ T (1= vh0n©Xult=r) |. (5.3)

ueZ(t—r)

The next lemma is slightly different from [9, Proposition 8.3 (b), p. 136]. In [9] (see the
argument [9, from (8.44) to (8.46), p.137]), Bramson used the Feynman-Kac formula to get

(m®)+z—)?
=) t—r
v(t,m(t) +x) = / v(r,y)ie Ep(t)4a <exp {/ kE(v(t —r— S,XS))dS} )Xt,r = y) dy,
R 2r(t —r) 0
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[9, (8.45), p. 137] ), he used the fact that if f : [0,1] — [0,00) is a concave function with f(0) =0
(which is obviously the case for f(z) =1 — >3 pr(1 — )k with {py : k > 1} a distribution with
finite mean), then k(x) = f(x)/x is decreasing in (0, 1]. But when f is a multivariable function like
4, it no longer holds that

fv)
vf)-v

where k(x) = f(x)/x. Then he separated the integral into fﬁlogr + fixfogr. For the ffolfgr part (see

)
vf(0)-v’

< 1f121)]2’17]20f01'auj65

To avoid this difficulty, we deal with the part f__ofg " by first using probabilistic representation

(1.6)), Propositions and and then using the Feynman-Kac formula. This is accomplished in
the following lemma.

Lemma 5.2 Suppose that v satisfies (1.5) and (1.11). If r is large enough, then there exists a
positive function C(r) with lim,_o C(r) = 1 such that for all v < x < \/,

vi(t,m(t) +x) < C(r)v; (t —r,m(t) + z)

~ _(m(;zjx—)w? ()
= C(r)eMEp, LEh , <R t—r;v YAy ‘X = > d
" S ] G e A

Proof: The equality in the lemma follows from the Feynman-Kac formula (3.11)). Note that
1> U;(Oa .T) + 1{z§—logr} > 'Uj(’r) 33), by " and ' , we have

Ui(ta m(t) + l‘) < U:(t - m(t) + l‘) +1- Il'--1:(771(1?)-{-;18,1') H (1 - 1{Xu(t—r)§—logr})
ueZ(t—r)

= v (t —r,m(t) + z) + Py (Mi—r > m(t) + 2z +logr). (5.4)

By (5.1)), Propositions and for all r < 2 < /¢, if r is large enough so that r» — Ny > 5 and
V2N —1 <m(t) —m(t —r) < V2A*r, then

P (M > m(t) +x +logr) - P (M > m(t) +x +logr)
vit, m(t) + ) " Py (MP > m(t) - )

(m(t) —m(t —r) +x + log 7’)e_m(m(t)—m(t—r)+x+logr)
(.CU — Nl) G_W(I_Nl)

< ( /2)\*T_i_x_’_l(ogr)e—\)/W(mr-HogT) < o= f2A*(WT+lOgT)
~ Tz — N ~ ’

S

where in the last inequality we used the fact that for > r and r — Ny > r/2,

(V2 *r +x +logr) - (V2 X+ 14+ 1)z <1
(x—Nl) - x/2 ~

Therefore, if ' is a constant such that for large r and r < z < V¢,

Plo) (Mir > mlt) + @ +1087) _ 1 /osi(v/axersior) 1,
vi(t,m(t) + x)
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we can choose C(r) to be
C(’I") — <1 _ Fe—\/Q)\*(\/2)\*r+logr))7l .

Od
Next, we will prove a lemma (Lemma similar to [9, Lemma 7.2, p. 105]. A key step in
the proof of Lemma is the inequality ED In Bramson’s argument for the analog of
(see [9, (7.32) on p. 107, Proposition 7.1 on p. 97]), the Kolmogorov-Petrovsky-Piscounov theorem
(see [9, p. 34]) was used, see [9, Proposition 3.4 on p. 47 and (3.71) on p. 49]. In the multi-type
case, the analog of the Kolmogorov-Petrovsky-Piscounov theorem has not been proved yet. So we
have to overcome this difficulty. Lemma below is the key to , which is different from [9,
(7.32)]. Roughly speaking, since v} (0,y) = vi(r, y)1{y>_10g,} is very close to 1 when [y| < logr, by
representation for v (t,y), it suffices to show that, under P, ;), the probability of the event
that there is at least one particle locating in [—logr,logr] is close to 1 when r is large enough.
This is easy to prove since we know the behavior of the maximal position M; very well by Theorem
Using this, we can get Lemma [5.3] below.
Recall the definition of v*, where v is a solution to with initial value satisfying .
Define

3
my (t) := ma 2M*%t — log, t,0 .
o) = max { VIR - o 10

Lemma 5.3 For any ¢ > 0, there exists N = N(g) such that when r > N,
vi(t,y) >1—e, forallt>0,i€S, yel0,my(t)]
Proof: We first prove that for any £; > 0, there exists N* = N*(e1) such that when r > N*,
Pogy (#{ue Z(t): |Xu(t)| <r}=0)<e, i€8,t>0. (5.5)
Using Theorem and symmetry, we get that, for any €; > 0, there exists N1 such that

_ €1
supsup P (o ;) (|M; — mo(t)] > N1) = supsupP(o ) (|M; +my ()] > Np) < 5 (5.6)
>0 ieS >0 ieS

Here M, := inf ¢ z(+) Xu(t) is the leftmost position among all the particles. By the Markov property
and branching property at time ¢/2, we have

Pog #{ue Z(t): | Xu(t)] <2N1} =0)

€1
< 5 TP (1Mo —my (8/2)] < Nu gt {u € Z(8) : [ Xu(t)] < 2N} = 0)
€1 _
<<+ sup supP(, ; (|M | > 2N1>
2 z:|z—m4 (t/2)|<Ny JES (&.d) b2
€1 _
<o+ sup  supP. ) (|Mt/2 +my(t)2)] > 2Ny — |z — m+(t/2)|)
z:|z—m4 (t/2)|<Ny jES
€1
-

+sup P, (|M;/2 Fma(t/2)] > Nl) <er
2 jes

Therefore, (5.5) holds with N* = 2Ny.
Next, we prove that, for any 5 > 0, there exists N’ = N’(g3) such that when r > N/,

Pl (#{ue Z(t): |X,(t)] <7} =0)<ea, i€S,t>0,y€l[0,me(t). (5.7)
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Let tp > 1 be a constant such that m4(¢t) = m(t) for all ¢ > to. When ¢ < ¢, we use the trivial
upper-bound
Py (#{ue 2(1) - |Xu(®)] <7} =0) <Py (|Bi] >7)

and the tail probability of normal random variables; when y < m(tp), we use the bound
Py #{ue Z(t) : [Xu()] <7} =0) <Py (#{u e Z(t) : [Xu®)] <7 —m(to)} =0)

and (5.5). So we only deal with the case when ¢ > ¢y and y € [m( ),m+ t)] = [m(to), m(t)].
Suppose that y = m(s) for some ¢ty < s < t. Let ¢; = e9/2, Using (5 , (5.6) and the fact that
Pog) (IMg 4+ my(s)] > Ni) = Py (|Mg7| > V1),

g F#{uc Z() - [Xu@)] < N1+ N} =0)

§§+IP< vy (1M < Nu#{u€ Z(t—s) 2 [Xu(t —5)| < Ni+ N} =0)
<=4 sup supPr) (#{u€ Z(t—s): [Xu(t—s)| <Ny +N*} =0)
4 Lz jes
< S supBuy (hu € Z(—a): X9 <N =0) < T+ F <
which implies (5.7)).

For any ¢ > 0, by (5.1)) and Theorem when 7 is large enough, we have for all z €
[—logr,logr] and any i € S,

vi(r,z) > P 4 (Mﬁ0 >x— Nl) > P, (Mﬁo —m(r) >logr —m(r) — Nl) >1-— g

Takmg go =5 in , we get that for any i € S;t > 0 and y € [0, m(t)], as long as logr > N’ &
r>eN = N

vity) = 1-Eqp | TT (105,00 X.0))

u€eZ(t)

>1—Eya | [T (1= vnm0 Xu®)x,0)<osr})

u€Z(t)
9
>1-=Eyy H (1 - (1 - 5) 1{\Xu(t)|§logr})
u€Z(t)
>1-— % —P(yJ) (#{ue Z(): | Xu®)| <logr}=0)>1-e.

This completes the proof.
O
For single-type BBM, the assumption pg = 0, p1 # 1 implies that the offspring mean is strictly
larger than 1. This fact is used in the inequality k(v(t —s, 32.4(5))) < 1/2 above (7.34) on page 107
of [9] to prove the exponential decay in [9, Lemma 7.2], where 3, , is the Brownian bridge starting
at = and ending at y. But for multitype BBM, the assumptions pg(i) = 0 for all i € S and A* > 0
do not imply n; = E;-lzl m;; > 1 for all . We can only get that there exists jo € S such that
nj, > 1. For multitype BBM, the fact n;, > 1 will play a role in getting the exponential decay
in Lemma [5.5] below. In Lemma [5.4] below, we give an estimate which will replace the role of the
inequality k(v(t — s, 324(s))) < 1/2 of [9] in the multi-type case.
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Lemma 5.4 Suppose that nj, > 1. Then for any 0 > 0, there exist Cy > 0 and € = g9 > 0 such
that for allt > 0,

sup E?x,i) exp{ —0 Z Lr.—jo} < Cge™ e,
zeRES seDs<t

Proof: Since I and X are independent, we only consider the case z = 0. Let {Y,, : n = 0,1, ...}
be the embedded chain of I; under P g ;. We first prove that there exist C1,d; > 0 such that

sup Pl (Yo 7 o, ++ Yo 7 o) < Cre™™" (5.8)
1€

Since {Y,,} is irreducible, for each i € S, there exists L; € N such that P?o 9 (Y, # jo) < 1. Let
L := max;ecs L;. Then

sup Py ;v (Yo # jo, -, Y1 # jo) < sup Pl ;) (Yr, # jo) =: e~
1€S €S
Therefore, for n > L, we have
sup Py (Yo # Jo, -, Yn # jo) < e sup P{ly ;) (Yo # o, - Yar # o),
ies €S
which implies (5.8) with C; := e®!,6; := &1 /L.
Next, define Uj, :=inf{t € Dy, I; = jo}. We prove that there exists do > 0 such that

sup Eé}m (e‘sQUﬂ'O) =: Cy < 0. (5.9)
€S

To this end, it suffices to show that there exist constants C5,e2 > 0 such that for ¢ large enough,

sup P?O,i) (Uj, > t) < Cze ="
€S

Recall that in the paragraph containing , we defined a coupling (I3, I}*) so that the embedded
chain of I and I® are the same, and the jump times Dj = {t,, : 0 < t; < t3 < ...} of [ and the jumps
times D% = {0 <t} <t5 < ...} of I* satisfy t, <ty for all n > 1. Let Uj, := inf{t € D% I} = jo},
then U;, < U ]% . For n € N, on the event that the first hitting time of jo by the embedded chain is
larger than n, by we can bound P?O,i) (Uj, > t) from above by Cre~ %", On the event that the
first hitting time of jy by the embedded chain is less than or equal to n, we bound Pl(l(],i) (Ujy > 1)
from above by

n
a n
sup Y Pl (Vi + .. + Ve > 1) <ne ®Zsup (E?o ) (e@Yr/2)> _ pe—at/2on
€5 m=1 7 i€sS ’
Taklng n = [EQt] for 0 < g9 10g2 < Q/27 we get

Sup Pl (U > 1) < Cre e 4 [ept]est/2 260,

which implies (5.9)).
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Define V]%) :=1inf{t € Dy, I, = jo} and Vi = inf {t eDy:t> ijfl I :j[)} for n > 2. Set
U]]-L0 = VJ}) and UP = V' — Vj’gfl. By the strong Markov property, {UJ : n > 1} are indepen-
dent. Define S := 3 cp .o<; 1{1,=jo} = sup {n: dom=1 Ul < t}, then for any n, {S; =n} C
{Z%;ll Ui > t}. Thus, by (5.9) and the strong Markov property,

sup E?m-) (6795t> <e "4+ sup ZP (St =1)

z€R,icS zeRi€S =1
+1 n+1

<e 4 sup ZPN ZU}?>7€ <e " 4n sup P(“) ZU$>t

z€R ZESE 1 m=1 zeR,ieS m—1

n+1
n+1 m .
< e 4 ne_‘SQtsup E?O i) <e§2 Lm= UJo) <e —0n 4 o2t H sup E(OZ (e‘SQUJo>
ieS ’ — i€S

. e—en +7’L€(n+1)62_62t.

Taking n = [t/2], we get the conclusion of the lemma.
a

Our goal is to get the upper bound for v;(t, m(t) +x) for large 7 and r < 2 < v/t in Proposition

Lemma implies that the upper bound is related to E?m) R(t—r;v )W'Xt = y>

for m(t) +r < & < m(t) + Vvt and y > —logr. In Lemma and Proposition below,

we will estimate E?m.) <R(t —r; U*)%’i’y); (Bup)©

y > —logr. We first prove Lemma which is an analog of [9, Lemma 7.2, p.105]. Recall that j;
is the integer such that j; < ¢/2 < j; + 1.

Xy = y) under the condition x > m(t) and

Lemma 5.5 Let v be a solution to (1.5) with initial value satisfying (1.11) and let v, be given by
(5.3). Then for r large enough, t > 4r and j; > j > [r + 9], it holds that

v t—r T’ — v t—r T,
E?:B,z) (R((T’,t - T]; U*)M Al’(ra t)‘Xt = y) 5 fs/cE?:c i) (I(y)) E? ) (AI(T7 t)}Xt = y)

for all y > —logr,x > m(t) and some constant C.

Proof: First note that j; > j > [r + 9] implies that r < j — j%/2 < j<t—randr <t—j <
t—j+4°/2<t—r. When r is large enough, we have

v r,
E?Z‘,Z) (R((T7t - ’f‘], ,U*)Ithr(y)’ Ajl(ra t)’Xt = y)

t—r

v, (75 Y)

< E?w,l) (Rt—T«j _j6/27]]7v*) }_‘L ;A;(T, t),S(T, t) = Sl(r7 t)‘Xt = y)

t—r

B (Rt,«t gt 320 P Y L) S0 = 820,10 X, = y) .
’ 1

t—r

For the first term, when s € [2r,t/2], by [9, (7.30), p. 106],
— t
ML (t—s) =m(s1) - (K + M) s +or(1), (5.10)
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where 57 =t — s — 5% + 03(1) and 01(1),09(1) = 0 as r — oo. Since K > 2 4 v/2\*, for r large
enough, we have for any s € [2r,t/2],t > 4r and s’ € [2r,t/2] N [s,s + 1),
Lt —5") <m(sy) —2s°.

EASY N

Now we prove that, for any e > 0, there exists N(e) such that for all » > N(¢g), i € S;t > 4r,
se2rt/2) and 0 <y < M, (t—s') + 259 < m(s1) with some s’ € [2r,t/2] N [s,5 + 1),

vit—r—sy)>1-¢. (5.11)
When ¢’ € [0,m(t —r — s)], by Lemma [5.3 we can find Ny (¢) such that for r > Ny (e),
vit—r—sy)>1-c (5.12)

Combining the above with ([5.10) - We get (5.11)) when my (t—r—s) > m(s1). fmy(t—r—s) < m(s1),
then for ¢/ € [my(t —r —s),m by and (5.4),

v (t —r—5,9) > it — s,y") — Po, (Mi—r—s >y +logr)
> P(O i) ( t s > y - Nl) P(O,i) (Mt—r—s > y’ + log T‘)

> P, ( 2o >m(s1) — Nl) =P,y (My—p—s > my(t —7 —5) +logr), (5.13)

where ig € S is the type fixed in (T.11). Note that t —s — s; = s° — 09(1) and m/(s) > V/A* for
large s, when r is large enough,

- x
m(t—s)—m(sl)+N1 > VA (t—s—s1)+ Ny > TS + Ny — +o0.
Therefore, by Theorem there exists Na(g) such that for r > Na(e),

P, (Mfgs —m(t—s) >m(s1) —mlt

|
N

[
=

N~—

AV
—

|

Py (M—r—s —my(t —7r —s) >logr) <
Putting these inequalities back to (5.13), we have that v} (¢t —r —s,y’) > 1 —& when r > N(e) and
y € [my(t —r — s),m(s1)], which, together with (5.12), implies (5.11].
On the event Ajl (r,t) N {S(r,t) = St(r,t) € [j,j + 1)}, set
B = {XS — Xgigy <20° Vselj—j0/2,5r t)]}
Then on A}(r, t) N {S(r,t) = S'(r,t) € [4,5 + 1)} N Ej, it holds that
Xo <25 + Xgr(py = 25" + My, (t = S (r,1)) .
By (5.11)), uniformly for i € S, on Ajl-(r, tyNn{S(r,t) = S*(r,t)} N E;,
it —s,X,)>1—¢, forselj—35°/2 7]
This implies that on A]l(r,t) N{S(r,t) = S*(r,t)} N E;, for s € [j — 7°/2, 4],

or, (V¥(t —s,Xs)) 1
s < 1 1
Z?=1 my, it —s,X) ~ (L—¢)n {L=g0} T {120}
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We have nj, > 1 by assumption. Choose an € > 0 sufficient small and an appropriate < 1 so that

- <<l
(1 - 8)njo
By [9 (7.36)], under the assumption y > —logr and = > m(t), for r large enough, we have

P, (ES|AL(r,t),S(r,t) = S (r,t), X, = y) < e 7'/

Using the independence of X and I, we get

v t—r r’
Bl (Rior (G = 2223500 0 4300, 5(00) = 540X =)

t—r
< E?m-) (W B Al(r t),S(r,t) = St(r, t)]Xt = y>

h vr,_,. (1, y)
TEG,) | exp > Lir,=joy logn T

s€Dy,j—j%/2<s<] e

LBy, A (r,1), S(r t) = SY(r,t)| Xy = y
- v -7 T7y
<o hEL (I}Lf)) P (AL 1), S(r,1) = S, 0)| X, = y)
t—r

UI —r (T7 y)
+ B | exp > Ur=joy logn p =72 | Pl sy (A5(r,0), S(rt) = §'(r, )| Xy = y)
s€Dy,j—5%/2<s<j 1

t—r

By Lemma and the fact that infjcginf,>1 454y P( ) (I—r = j) > ¢ > 0, we have

U[_T(T,y)
EI(Z,Z-) exp Z Lz,=joy logn 7;1
sE€D,j—5% /2<s<] o
Uj(?“,y) h < 75]

<0y Bl (end S agg ey ] <6300

=1 j xR ES s€D.y,s<j0 /2 =1
< @Eh ) ’U[tfr(r? y) —ej°/2
- c (x72) hItf'r

Combining the two displays above, we get

Vr,_., (T, y)

E?x,l) <Rt—'f((.j —j6/27j];1)*) }_7, ;A}(Ta t)v 5(7"7 t) - 51(7"7 t)|Xt = y)

< E, <UI” (r y)> Pl (Af(r,1),S(r,t) = S*(r, 1) | X: = ) (e_j§/4 + C’%-%‘%)

C

< e*jé/CE? ) (W> (i) (Al(r t),5(r,t) = S'(r,t)| Xy = y)

C:max{4,2}.
€
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The second term can be treated similarly. Thus the assertion of the lemma is valid.

The next proposition is similar to [9, Proposition 7.3, p. 108].

Proposition 5.6 Let v be the solution of (1.5)) with initial value satisfying (1.11)). Then for r large
enough, t > 4r, y > —logr and x > m(t), it holds that

h <,U1tr(r7 y)

1
h . . c
| D <R((r,t — r],v*)ihlt s (Bup)©| Xe = y) <32 E( hy > P(z N (Bup| Xt =) .

Proof: Note that

(Bup)Cc U Aj(r,t) U AlrtU U A3(r,1).

j=[r+r9] j=[r+r?] j=[r+r9]

By Lemma and the independence of X and I, for large r, when y > —logr and = > m(t),

j*[’l‘-l—’!“s} hIt T
c v iepn (Ve ) o A
~ Z ¢ E(ffﬂ) hlt—r P(z i) ( J (Ta t) |Xt = y)

Note that the estimates of the probabilities of Al(r t) and Az(r t) only relies on the path of
Brownian bridge, using Lemma [5.1] and the argument on [9, p. 109] we get

J1 Ji
Z e—J‘S/CP?m) (A}(r, X =y) S Z e—J(S/C’P? (B]H\Xt — )
j=lr+r9] j=[r+r?]
& 50+ 1 1 i .
S Y el (BulXi =) < TPl (BulXe=y) x Y0 (D
j=[r+r9] j=[r+r°]

and

J1
Z P(m) (r,t) ‘Xt = y) Z e J/QP? (89+1‘Xt = y)

j=lr+r°] j=[r+r?]
1 S »
S ;P?x,i) (Bup‘Xt = 3/) X Z 5 (j+ e i/2,
j=[r+rd]
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Therefore, we conclude that

— 2 (Bup) €| Xy = y> (5.14)

vr,_,. (1Y 1 = . _s = . i
S E?“.) (th()) X P(z i) Up}Xt = y) X Z (j+1)e™ C 4+ Z (j+ De 32
- j:[T+T‘6] j:[T+’f"6]

As 7 — oo, the last term of (5.14]) decays faster than 7—!, thus the assertion of the proposition is
valid. O
We now give an upper bound for v;(t,m(t) + x):

Proposition 5.7 Suppose that v satisfies (L.5) and (L.11)). Let r be large enough, then for all
r<z< \/f, it holds that

_ (m®)+a—y)?
oo e 2(t—r)

d
Bu X —r = . . , d ,
—logr \/2717 m(t +,3) < p| At y) j;g]v] (r,y)dy

vi(t,m(t) + ) < Cup(r)e* h,

where Cyp(r) L 1 as r — 0.
Proof: By Lemma Proposition and the independence of X and I, we have
vi(t,m(t) + x)

(= >U)2 (r,y)

* t=r vr,_.\1Y

)\ t T t—r

h/ <R —rv ’X :y>dy
log 7 /271' t— 7, (m(t)-i—x 1) ( *) hftfr t—r

_ (m(t)+a— y)2

* r 6 2(t—r UI —_r (T, y)
< C(’I”) A= )h m(t)+x,i) <t;BUp

—logr / 27T

_ (m(®)ta— y>2

X 0 2(t—r) U1, (Tvy)
rewer e, [T 2T (= o) e ) =)
(r)e —logr 27T t—r) Dte) < ) hi,_, (Bup)'| Xe )

_(m®+a—y)?

*(t—r > e =) VI (T7 y)
< C(r)eX m(t)+a,) | Bup| Xt—r =¥ E?m(t)Jr:v,i) dy
—logr V/ 27T hIt—'r
M

ey, [T o1, (1)
+C(r)et (t=r)h, ( Eh (£)+2,i) < thl > P(m(t)+m (Bup‘Xt—T = y)) dy
t—r

—logr +/ 27T

_ (m®)+z—y)?

_ LY ae—r) © e vr,_. (1Y)
=C(r) <1+7~2> i Ctogr \/2m(E—T) Pt | Bun| Xe=r = ¥ )| Blingey i b )Y

Note that lim,_ o P( 9 (Ir = j) = pj = gjh; = lim, o sup;, P( 9 (I; = j). Letting

Cup(r) == C(r) (1 + 2> sup sup M

h b}
74 ) ijes t>r il

we get the assertion of the proposition. O
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5.2 Lower bound for v
Similar to [9, (7.42), p. 111 and (7.9), p. 99] or [23] (2.10)], we define

- (5) = gr,t(s) + %m(t) — t_Tslogr, 0<s<t—2r
rt - §+m(t)) t_27a<8§t’

where L, ; is defined in the beginning of Subsection Define
Biow = { X > vat(t —5), s€0,t—r]}.

Proposition 5.8 When r is large enough, it holds that for all t,z > 8r and all i € S,

_ (m®)+e—y)?

e 2(t—r)
X p = y) Zgﬂ}j T, y)dy,

B
t)+ ( low
\/27rt—7" ) =

Ui(t7m(t) +.CE) > Clow( ) A= r)h

where Cloy,(r) T1 as r — co.
Proof: When s € [0,2r], on the set By, for t,x > 8r and r large enough, we have
X > Mit(t —s)>m(t)+4r >m(t —s)+4r+ V2 s+ O(1) > m(t —s) +r + Na,

where Ny is the constant in ((1.11)). Note that for any y > m(t — s) + r + No, by (1.11)), (1.6) and
Proposition [£.2]

vilt—5,9) =Eqgq [1- JI (1= 05090, Xult — 5)))
ueZ(t—s)

<SEup (1= JI (1= Loony(Xult —9))
u€Z(t—s)

= Ploi)(Mims >y = N2) < P (Mg > mit —s) +7) Sre VT

Using (3.12)) and noting that logx ~ = — 1 as © — 1, we get that when r is large enough, on By,

> log <st013 (v(t —s5,X5)) ) > 3 e —aoV2ATT . 1(0,2r). (5.15)

s€Dj,5<2r j=1 mls’jvj(t B S’Xs) s€Dj,s<2r

Now we deal with the case s € [2r,t—r|. Similar as above, when r is large enough, for all s € [2r, t—7]
and y > m(s + s° A (t — 5)?),

vi(s,y) < Plos) (My >y = Na) < Py (M = m(s) > m(s + 8° A (£ = 5)°) = m(s) = No)
=Py, (MS —m(s) > V2 (s‘s A (t— 3)5) + O(l)) S (35 A (t— 3)5) =2V (0N (t=s)?)
5 efA*(s‘SA(tfs)‘s).

In this case, when r is large enough (see the display below [23] (2.14)]),

Mio(s) = mls+ " A (t—5)°) +5° A (=) (K ) logr> >

, - m(s+s° A (t —5)%)
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since K > v/2)\*. Therefore, on By, when 7 is large enough,

S g < d@ls (v(t —s,X5)) ) >_ 3 N (A=) (5.16)

Zj:l mi, ;0;(t — s, Xs) s€ED 2r<s<t—r
=:T9(2r,t —1).

seDj2r<s<t—r

Note that By, is independent of D ;. By (5.15)) and (5.16)), there exists a constant ¢ such that

_ (m®)+z—y)?

e 2(t—r)

vi(t,mt) + ) >N Eh |
(t;m(f) +2) 2 R \/27(t —T)

(exp {=cl'1(0,2r) — cl'y(2r,t — r)} hi;
It T

h
X B t)42.)

_(m®)+a—y)?

=N (t)p, e x P! ; (Blow Xty = ?J)
e o) Dmwed
(% (7", y)
% Bln(t)2,0) (eXP {—=cl'1(0,2r) — cl'a(2r,t — 1)} th1t_> d

Since when r is large enough, P’(lx ) (It—r =¥0) > >0 forallt >8r and i,/ € S, we get that

E?m(t)+$7i) (exp {=cl'1(0,2r) — c['y(2r,t — r)} —
t—r

_ E?m(t)—f—:v ) 1—exp{ —c Z PO0 =00V Z e—A*(s‘SA(t—s)‘s) vr,_,. (1Y)
7 seDj,s<2r s€D j2r<s<t—r hIt*""
- Eh M( t v[t—r (r7 y) < d Uj (T’, y) Eh (M t
= Bmt)+a,9) L) )7}% = Z h; (m(t)~+x,i) (r,1))
o =
1 h UI - (T7 y) h
< Bt 4e) <th[ E( )1 (M(r,t)) .
t—r
Therefore,
E](Lm(t)Jrz,i) exp{ —c Z TOé()e*OZO\/Q/\*T‘ ¢ Z 67)\* (sPA(t—s5)%) Uft}—Lr (Tv y)
s€eDj,s<2r seDj2r<s<t—r Tir
h VI, (T, y) h VI (Tv y) 1 h
= E(nt)+2.) <(1 — M(r,1)) I, ) > Bl b)) (fut_ X\ 1= SE(m)+aq (M(1,1)) ).

By the Markov property, we see that

Z 100 p—00V2NT Z o~ N A(t=5))

h
B (@) 4aa) | &P ¢
s€D j,s<2r seDj2r<s<t—r

—aoV2\*r

@0,

h
=3 I R D D
s€Dy,s<2r
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% lng E( () 4a5) exp{ —c Z e—)\* (S+2T)6
I€ SED j,s<—2r+t/2

X l}Ielg E(m(t)—f—x e) exXp —C Z €_>\*(t/2_s)6 . (517)
s€D j,s<t/2—r

By (4.40)), the product of the first two terms on the right-hand side of (5.17)) is bounded from below

by
o 2r 767,.(106—(10\/2)\*7" o o0 766_’\*36
exp 4 —a (1—6 )ds—a l1—e ds p =: Fi(r).
0 2r

For the last term of the right-hand side of (5.17)), let [x] be the smaller integer larger than x, then
by the Markov property and (4.40)),

N (e
s€Dj,s<t/2—r

[t/2—r]
oy _1.\6
ZE?m(t)—i—x,f) exp d — Z C Z o~ N (t/2—k)
k=1 s€D g, k—1<s<kA(t/2—T)
[t/2—7]
_yk _1.\6
S TP U D VR

$€D j,s<1IA(t/2—r—k+1)

[t/2—r] IA(t/2—r—k+1) . 5
> H exp {—CL/ <1 _ e—ce—)\ (t/2—k) > ds}
WQ—H EA(t/2—r) . s
- H exp { / <1 — e ) ds}
k—1

k=1

t/2=r e (t/2=s+1)0 > —ce s
>expi —a 1—e ds p > exp< —a 1—e ds p =: Fa(r).
0 r+1

By the definition of M (r,t), we conclude that for large r and t > 8r,
E{ ) 1as (M(r, 1)) <1 — Fi(r)Fy(r).

Since lim;_yso P?m.) (Iy = 7) = lim, o0 infys, P?m.) (I; = j) = gjh;, we have

: N v T,
T L e D
s€Dj,s<2r seDj2r<s<t—r Ti—r
P! (I; = j)
.o (z,i) \ 't 1
> inf inf ———— [ 1 — = (1 — F(
- juels%gr gjhj < ( 1 ) Zg]v] " y
d
= C’low (T) Z g;jv; (T, y)
j=1
It is easy to see that Ciyy(r) 11 as 7 — oo. The proof is now complete. O
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5.3 Proof of Theorem 1.1
Proof of Theorem [1.1t Define

_ (m®)+a—y)? d
2(t—r)
A=)y e

low(r 13 SL‘) \/m t)+z,i) (Blow Xy = y) Zgjv] r, y)dy,
j=1
_(m@®)+a—y)? d

. e 2(t—r)
Wop(rit, o) == N py Xty = y) Z%%’(ﬁ y)dy.

B _
\/2772571“ H”)( up —

J=1
By Propositions and for all & < x < ﬁ,

Cup(r) Wy (138, 7) = 0i(t, ) = Clow(r) Wy (13 8, 2)

with Cioy(r) T 1, Cyp(r) | 1. Note that the proof of [9, Proposition 8.3 (c)] only uses probabilities
of Brownian bridge. Using the same argument, we get that for all ¢ € S,

Uit @)
1< ————= < y(r)
v (rit,x)
with v(r) J 1 as r — oo. Define
(m(;zjx )u)2 d
Ul (rit, @) = e T, N Xy = y) Zgjvj(r,y)dy (5.18)

Bimi _
t)+a,i ( mid
\/277 t—r) ) =

with
Bia = {Xs > npt(t — s) for all s € [0,t — 7]}

and

nrt(s) == m(t) i : ! 2)\*7“: : s € [rt].
Then by [9, (8.61), p. 144] or [23] (2.26)],

M (t—s5) <npy(t—s) < Mf,t(t —s), forsel0,t—r]
when r and z are large enough. This yields that (see [0, (8.62), p. 144])

1 < vi(t,m(t) + x)
y(r) = Wl (it )

<A(r) (5.19)

for r > 71,87 < x < v/t with ry fixed. Therefore, to find the limit of v;(¢,m(t) + z) as t — oo, we
first get the limit of W! . (r;t,z) as t — oo.

Step 1: In thls step we study the limit of W¢ . (r;t,z) as t — co. Letting y1 =y — V2N r
and 11 = = — logt, using [9, Lemma 2.2 (a), p. 15], similar to [0, (8.63) and (8.64), pp

\/2>\*
144-145], we have that
_ (m®)+x—y)2 d
( t ) \ (t T)h /OO e 2(t—r) (1 e—2my1/(t—7")> Zg v (r y)dy
(Tt T e — 505 (T,
V2XFr \/27r t—r) =
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- (@1 —y1+VERF (7))
« 2(t—r)
— N (=), € % (1 _ e—%yl/(t—r))

“Jo V2r(t—r)

_ (z1—y1)?
e 2(t—r)

0 2m(t—r)

_ t3 36—\/2»%1, /OO o
27T(t — 7’) 0

M&

g5v;(r,y1 + V2 *r)dy;
1

.
Il

o0

d
=h; e VIV @my) o (1 — e~ 2o/ (- T)> Zggv] (ryy1 + V2X*r)dyy

d 2

(z1—y1)
E givi(r,y1 + V2X*r) | e M x (t—r) (1 - 672‘”’1/(%"0 dy1 (5.20)
=: C(r;t, x)ze VT,

Therefore, for r > r; and 8 < z < V¢,

Fy(lr)Cf;(r;t,:c)xe_ 23T < vi(t,m(t) + z) < 7(7“)05(7“; t,x)zre” 2\ (5.21)

Now We fix r first and replace = by x(t) and suppose that x(t) — = as t — oo. Let z1(t) =
x(t) — 2\/W logt. Then we can easily see that for any fixed yq,

(e (®—y1)?

e 2 (t—r) (1 - e_2x(t)y1/(t_r)> — 2zy;, ast— oo,

(z1(t)—y1)?

and that e 201 (t —r) (1 — e 22Ou/t=1)) < 24(t)y; < (2sup,z(t)) y1. Note that, for any
j €S, by (3.8) and Markov’s inequality,

* " X vy Nrp b vr, (0, X)
/0 yie Yj(r,y1 + V2 r)dy S/o yie U x et "h; E(y1+\/Wm') <hh dyr

o
<e r/ y1ePNUP s, (X < No)dy
0
o
= 6’\*T/ yreV AP (Xr <Noy—y1 —V 2>\*7“) dyr

< 6)\ r ylex/2)\ Y1

0

X e

_Qm(m—i-mr—NQ)EO (G—QWB’“) dy; < oo. (5.22)

Therefore, using the dominated convergence theorem, letting ¢ — oo in (5.20)), we get that when
z(t) — x,

hm i (st x(t) \/ —ze mxh/ yreV2A Zgyvj r,y1 + V2Ar) | dyg

7j=1
=: h;Cy(r)ze” e

or equivalently, by the definition of C?(r;t, x),

tli)m Ci(rit,z(t)) — hiCy(r), (5.23)
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where
2 [ v [
Cy(r) :== \/;/ yreV v Zgjvj(r, y1 + V2X*r) | dy;. (5.24)
0 .
7j=1

Step 2:  In this step we use the limit of U . (r;t,x) ast — oo to get the limit of v; (¢, m(t)+x)
as t — oo. It is easy to see that for any r > 0, Cy(r) € (0,00). Indeed, Cy(r) < oo follows from

-. On the other hand, by -,
’Uj(’l”, y1 + V2 *r) > P(O,j) (Mﬁo > y1+ V2 — Nl) > 0,

which implies that C,(r) > 0.
Therefore, for any r» > r; and x(t) > 8r with z(t) — z, by (5.21)) and -, we get that as
t — oo,

1 liminf; o v; (¢, m(t) + x(t)) - lim sup;_, . v; (t,m(t) + x(t))

< (r). (5.25)

v(r) ~ hiCy(r)ze—V2A'e - hiCly(r)ze—V2N'a
Now letting x — oo in ((5.25)), we get
0 < Cy(r) < liminf lim inf; o v; (£, m(t) + 2(1)) < lim sup lim inf; o0 v; (8, m(t) + x(1))
'7(7“) T—00 hixe— 2 \*x 300 hixe— 2 \*x
< liminf lim sup,_, . v; (t, m(t) + x(t))
T—00 hi:r:e* 2 \*x
li i (T t t
< lim sup n SUp, 00 vi (1, mAt) + 2(1)) < Cy(r)y(r) < oo. (5.26)
T—00 h;xe™ 2Arx

Letting » — oo, using the facts that v(r) — 1 and that the 4 quantities between C,(r)/v(r) and
Cy(r)y(r) in (5.26)) are independent of r, we get

lim Cy(r) = Jim Difeoe vi (b m(t) + 2())

r—00 T—00 hixe— 2\*x

— lim lim sup;_, . vi (t,m(t) + x(t))
T z500 hi:):e— 2\*x

=: Cy(0) € (0,00),

which implies that (1.12)) holds. Now let r = [z]/8 and

L Cv(r) Cv(oo)
Yi(a) = ( G Sl )w),

>0

Yo(t;n) :=2 (Sup (ﬂ:e_ 2’\*$)> X sup sup{’Cf,(r;t,x) — hiCy(r)|: w€n,n+1)}.
1€S

Let ng > 8r; be large enough such that v([z]/8) < 2 for all x > ng, then by (5.21)), for any n > ng
and = € [n,n + 1), we have

vi(t,m(t) + z) < ~(r)C} (T;t,x)xe* 2\t
=(r) (C,f](r 2 5”) hiCy(r )) T By (r) Oy (r) e V2A®
hiC(

42



and similarly,

yC |
vit,m(t) + ) > hiCy(oo)ze V'™ — Ya(t;n).
Yi(x)
Note that uniformly for all ¢ € S, it holds that
Yi(z) = 1, asx — oo, Ya(t;n) — 0, ast — oo. (5.27)

In conclusion, for all n > ng, x € [n,n+1),t > (n+1)2 and all i € S,
1
Yi(z)

with Yi(x), Ya(t; n) satisfying (5.27)).
Fix s > 0,z € R, let

hiCly(00) e~ V2N — Ya(t;n) < vi(t,m(t) + z) < hiCy(oo)ze VXY (z) + Ya(t; n)5.28)

3 s
x(t,s) ::m(t+8)—m(t)+x—ms:x—ﬁlogO—kg).

Then m(t + s) + x = m(t) + x(t, s) + V2\*s and

L= vi(t+s,mt+5) +2) = Bpnprsyran [ 1= [ 0= vns) (tXuls)))
u€Z(s)

=E@ | 1- H (1 — UL, (s) (t,Xu(s) +V2X*s + m(t) + z(t, 3)))
ueZ(s)
For any 1 > § > 0, let £ > 0 be sufficient small such that for all x € (0,¢),

e 107 <1 _ g <@,

For this € > 0, let ng be sufficient large such that when x > ng, we have

€ 1
, and 0

hiCy(00)ze V2T < ,Y(z) e[l —6,1+4],

DO |

which implies that

Y(x)

Thus, for any § > 0, there exists ng such that when x > ny,

* 1
hiCy(00)ze™ V2 max {, Y(x)} <e.

1

1— h;Cy(c0 g~ VT
(c0) Vi(o)

1
<e —h;Cy(00)xe™ 2)‘*9”}
< xp{ (0) e
< exp {~(1 = 0)hCyo0)we V0

{
1-— hiC’v(oo):Ee_mmYl(m) > exp {—(1 + 5)hiCU(oo)me_me1(:L‘)}
{
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Since Mg + V2A*s := min,e z(5) Xu(s) + V2A*s — oo (see [24, Theorem 4]), there exists s(w) such
that for t > s > s(w),

Au(s,t) 1 = Xyu(s) + V2N s + (L, s)
Xu(s) + V2 s + 2 —

3
log2 > ng, Yué€ Z(s).
N T (s)
It follows from ([5.28)) that when ¢ > s > s(w),

1= vg,() (8 Auls, ) +m(t)) > 1= Ay, (5 Co(00) Ay (s, e VX BNV (A (5,1)) — Yalt; [Au(s, 1))

> exp { = (14 )21, (5 Co(00) Au (s, D)™V E 0 = yo(1; [Ay (s, 1)),

and
1 — v, () (8, Auls,8) +m(t) < 1= hy,(5)Col00) Au(s, t)e VA BUEDY (A (s, ) + Ya(t; [Au(s, 1))
< exp {—(1 — 8)hy, (5)Co(00) A (s, t)e*mﬁuw)} Yo (t; [Au(s, 1))

Therefore, on the event that {M{ + V22X s+ x(t,s) > no}, it holds that

IT (exp {1 = 9, Culo0) (s )™ A D - Yo(t:[A, (5.1)]))

ueZ(s)

> 11 (1 — vr( ( L X () + V2X s +m(t) + a(t, 3)))
ueZ(s)

> T (exo {=(1+ )%, Colo0)Auls, e 2O vyt [Ay(s, 1)) . (5.29)
ueZ(s)

Since z(s,t) — x as t — oo, we have A, (s,t) — X,(s) + V2A\*s + x as t — oo. Letting ¢ — oo in
(5.29), we get from (5.27) that

limsup (1 — v (¢, m(t) + x)) = limsup (1 — v;(t + s,m(t + s) + x))
t—o0

t—o00

< P (My + V2N's + 2 < no)

+ Eo,) (eXP {—(1 —0)Cy(00) (wW\/W(S) + M\/W(S)) e 2/\*1} 1{M§+ms+x2no}) ’
and

ht@)g)lf (1 —wi(t,m(t) + x))

> B (exp {—(1+6)2Cu(00) (2Wg52(5) + Myze(s) ) eV My ey

where {W 55=(s),s > 0} is the additive martlngale defined by (1.7), and {M f55x=(s),s > 0} is

the derivative martingale defined by . By (1.9) and - letting s — oo and noting that
) (MS +V2*s4+x > n(]) — 1 for every fixed x and ng, we get that

P, (exp {—(1 — 5)Cv(oo)Mm(oo)}) > limsup (1 — v (¢, m(t) + x))

t—o00
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> T i .
_htrgérolf(l vi(t,m(t) + x))

> Plq0) (exp {—(1+ 8)2Cy(00) M 55:(0) } )

Letting § — 0, we get the desired convergence. O

6 Extremal Process for multitype branching Brownian motion

In this section, we study the asymptotic behavior of the extremal process of multitype branching
Brownian motion and prove Theorems [1.4] and

Proposition 6.1 For any ¢ € C/ (R x S) and z € R,

Jim B g (exp {—/¢(y + x,j)&(dydj)}) =Eo) (eXp {_O(@M\/ﬁ(oo)e— 2,\*95}) ’

where

r—00

. d
C(¢) := lim \/E/o yemy Z;gjvj(r,y +V2Xr) | dy € (0,00) (6.1)
j=

with v a solution of with initial value v;(0,y) = 1 — e~ ¢¥J),
Proof: For L € R, define

0;(0,y; L) =1 — (e*¢<*y’j)1{,y§L}> : (6.2)
then

’Ui(t, Z; L) =1- E(x,z) H (1 — UIu(t) (O, Xu(t); L))
ueZ(t)

=1-Eqy (exp{ = D o Xult) =2, Lu(t) ¢ Lancorry | - (6.3)
ueZ(t)

For any fixed L, v;(0,y; L) satisfies (1.11]). Therefore, by Theorem

lim (1= (6, 0(0) + 25 1)) = P (exp {~Cl05 LM, g(o0)e V7).

t—o00

with C'(¢; L) defined by

d
2 [® e
C(¢; L) = lim \[ eV [N " gjui(ry +V2Xrs L) | dy. (6.4)
T o0 i 0 N
7=1
Since
0 <wj(t,z; L) — v;(t, x) (6.5)
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= E(QJ‘) (eXp { Z ¢ (Xu(t) -, Iu(t))} 1{Mt>m+L}) < P(O,j) (Mt >+ L) ,

we get that
2 [ o [
Hy(r;L) — Ho(r; L) := \/>/ yeV Ay Zgjvj(r,y + V2Xr; L) | dy
™ Jo -
7j=1

d
2 w *
e A N DY (Mr >y Vo T+ L) dy

™
0 =

o d
< \/5/ yeV2AY ( E gjvi(r,y + \/2)\*7“)) dy =: H(r)
m™Jo -
J=1

2 [ s [
< \/7 yeV2Ay Zgjvj(r, y+ V2\r; L) | dy = Hyi(r; L).
™ Jo X
j=1

Therefore,
Hy(r;L) — Ho(r; L) < H(r) < Hy(r; L). (6.6)
Note that
d
/9 * 2 & /9 \* =00 /I )\*
Hy(r;L) < eV L\/;/ yeV A (Z%’P(o,j) (Mr >y + \/ﬁr)) dy =3 e VPO,
0 -
7j=1

with Co given in Corollary Thus

lim limsup Hy(r; L) = 0.

L—+0o r—oco

Also note that lim,_,o, Hy(r; L) = C(¢; L). Since C(¢; L) is positive and decreasing in L, letting
r — oo and then L — oo in , we have

C(¢) :== lim C(¢; L) <liminf H(r) < limsup H(r) < lim C(¢; L),
L—oo r—00 L—oo

=00

which implies that lim,_,. H(r) = C(¢).
Next, for any ¢ € C(R) with ¢ # 0, there exist ¢y € S, ag, < by, and ¢y > 0 such that
é(y,lo) > co for all y € [ag,, by,]. Thus,

Eioa (o { = [otnd)etan)}) < B (M~ mit) € o b))
(1= Pl (M7 = m(t) € [asg, bry) ) )
It follows immediately from Corollary [I.3] that
tlgglo Po,i) (Mfo —m(t) € [azo,bgo)) > 0.
Thus C(¢) > 0. Hence we have shown that C(¢) > 0 when ¢ € C/ (R x S) and ¢ # 0.
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For any z € R, when L is large enough so that z + L > 1, by Proposition there exists a
constant Cy such that

1—v(t,mt)+z;L) <1—v; (t,m(t) + )
< 1= (t,m(t) + ;L) + P (My > m(t) + x + L)
<1 —w;(t,m(t) + ;L) + Co(z + L)e_m(“'L),

Letting t — oo, we get

Po,i) (exp {—C(¢; LYM j55=(00)e™ 2>‘*m}> < liminf (1 — v; (¢, m(t) + x))

t—o00

< limsup (1 — v; (¢, m(t) + z))

t—o00

< P (eXP =06 )M fxe(o0)e ™2 ) 4+ Co(a + L)e VPV Hh),
Next, letting L — oo, we get the desired result. -

Corollary 6.2 The point process & converges in distribution to a random measure Ex, where the
Laplace transform of £ is given by

Eo,5 <exp {—/¢(y —I—x,j)goo(dydj)}) =K (exp {_C(dﬁ)Mm(oo)e_ 2,\*3:})
with C(¢) given in .

Proof: Without loss of generality, we assume x = 0, otherwise we may consider gg(, j) = éd(x+-, 7).
It suffices to prove the tightness for &, which is equivalent to the tightness for [ ¢(y, j)&(dydy).
By Proposition it suffices to show that limgy o C(6¢) = 0. Choose m,, so that ¢(y,j) = 0 for all
y <mg and j € S. Let |[[¢]loo := Supyer jes |(z, )], then

B (o0 { ~ [ 000 )60t }) = B (ex0 {00l (00 0) x )
79”¢H°°N]P)( i) (gt ((m¢, OO) X S) < N) .
First letting t — oo, next € — 0 and then N — oo, we only need to prove that for all 1 € S,

lim limsup P ) (& ((mg,00) x §) > N) = 0. (6.7)

N—oo  t—oo
Suppose that under {& ((mg,00) x ) > N}, ui,...,un € {u € Z(t), Xy(t) — m(t) > my}, then
]P)(O,i) (615 ((m¢, OO) X S) >N, M1 — m(t + 1) < n)

< Pl (& (o o0) x 8) > N, max MY+ X, (0) =it +1) < n)
<

(
) (8 (mevoc) x ) N, e MY 4 m(0) 4 mg = (e +1) <)

N
< [ sup Pz (M1 +m(t) + mg —m(t +1) < n)) .
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By Proposition we have

P05y (& ((mg,00) x §) > N)
N
< P (Myp1 —m(t+1) >n) + <Sup P ) (M1 +m(t) +mgy —m(t +1) < n))
jeSs

Sne VA 4 (P (By+m(t) +mg —m(t+1) <n))™, nt,N>1. (6.8)

~

For every n > 1, letting ¢ — oo first and then N — oo in , we get that

lim limsup Pg ;) (& ((mg, 00) x S) > N) S ne” 2

N—oo t—eo

Letting n — oo, we get (6.7]) and thus & converges in distribution to a random point process
O

Recall the definition of W’ .. (r;t,z) defined in (5.1§ ) By (5.20} -, we have

. / \/W :c+ *logt V2N
‘Pi(’l‘;t,ﬂj‘) = \Ijmzd (7" L, T+ —— 2 Og 27r o r QW / Y

d 2
_(@=y)? _ 3 _
Zgjvj(r,y + V2Xir) | e 2 x (t—r) (1 —e 2(x+2\/ﬁ logt)y/(t T)) dy
j=1
1 67\/2)\*33}7,@‘ /OO e\/2)\*y
2r(t —r)

d 2

_(=z—y)° _ 3 _
3 gy + V2 | € 2 <1_e 2+ e logt)u/ r>> dy.
=1

It follows from ([5.19)) that

1 vi(t, V2M*t + )
TG TR R (69

holds for r > ry,8r — logt <z <Vt — 2@ logt with r fixed.

2\/2>\*

Lemma 6.3 Let v solve (1.5)) with initial value satisfying (1.11)). Then for any fized x € R,
£3/2 . -

lim ————Wi(r;t,z) = h;Cy(r)e” e

t—o0 N logt

where Cy(r) is given by (5.24).

Proof: The proof is very similar to that of [4, Lemma 4.5] and we omit the details.
O

Let v solve (|1.5)) with initial value satisfying ((1.11)). By Lemma and , we have for every

z € R,

t3/2 :
lim ——s———v;(t, V2A\*t + x) = h;Cy(o0)e V', (6.10)
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where C(00) = lim, 00 Cy(7), given by (|1.12). Hence for every = € R,

£3/2 -
Jim ———— B0 (M > V2Nt @) = hiCoe ™, (6.11)
7 5o 08t

with C defined in (T.13)). Now we extend (6.10)) to the case v;(0,7) = 1 — e~ ?(-¥:1):

Lemma 6.4 For any ¢ € CT(R x S), let v solve (1.5)) with v;(0,y) =1 — e~ ¥4 then

#3/2 :
lim —s———;(t, V2A\*t +x) = h;C(d)e” 22w
t—o00 N ]Qg

with C(¢) defined in (6.1)).
Proof: Let v;(t,z; L) solves with initial value . By (6.10)),

£3/2 :
tlim 3 vi(t, V2Nt + 3 L) = hiC(¢; L)e V2A'®
e 2v2)* log

with C(¢; L) defined in (6.4). By (6.5) and Proposition we have
0 <wi(t, V2Nt + x; L) — vi(t, V2X\*t + x)

—\/K( log t+a:+L)

SP(071)<Mt>\/ﬁt+x+L)§< logt—}—gc+L>e VoI

3
2V 2)\*
Note that C(¢) = limy_ oo C(¢; L). Letting t — oo first and then L — +oo, we arrive at the
desired conclusion.

O

Define

&= Z 5Xu — VNI, (1)) Er—zi= Z 6Xu V2N t—2 I, (1))

ueZ(t ueZ(t

Proposition 6.5 Foranyz € Randi € S, under P ( ‘Mt > V2 + z) (Et — 2z, My — V2M\¥t — z)

converges in distribution to a limit (E,Y) independent of z and i, where € is a point process,
Y is an exponential random variable with parameter /2 \* and

C , T C
OzGW{ /¢% @MN}Y>x>= g L—é@, (6.12)
where C(¢) is given by (6.1)), Cs is given by (1.12), and
C(o —rlirgo \/>/ yeV2Y Zg (v1)j(r,y + V2 *r) | dy (6.13)

with vy being a solution of (1.5)) with initial value

(01)i(0,y) = 1= e ey, Q€S
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Proof: By (6.11)), for any x > 0,
tlim Po,i (Mt — V2Nt — 2z > :L“}Mt > V2N + z)
— 00

PP (M > VNt + 3+ 2)

= lim 2% o = VT, (6.14)
t=o0 7i logt]P)(o’i) (Mt > 2)\*t + Z)
2V220%

Then we have under P ;) (|Mt > V2 + z) , My — v/2)\*t — z converges in distribution to Y, an
exponential random variable with parameter v2\*. For any ¢ € CI (R x S) and = > 0,

Eq.) <exp {—/(Z)(y,j) (& —2) (dydj)} s My > V2Nt + 2 + x| My > V2N + z>

1 /N J——
g E(O,z) H e—¢(Xu(t)— 2 t—Z,Iu(t));Mt > 2)\*1: + > + T
P(O,’i) (Mt > 2)\*1: + Z> uGZ(t)
1 /"
= 1—=Eq,; H e PXuO=V2N =2 L), N < VNt 4 2 4w
P, (Mt > V2N + Z) ueZ(t)
B 1 Eos [1- T o~ H(Xu ()~ VN2 L (1))
]P)(O,i) (Mt > 2X*t + Z) uEZ(t)
1 1
= (v1)i(t, V2X*t + 2) — (v2)i(t, V2A*t + 2)
P (Mt > VN z) Pios) (Mt > VNt + z)
where v; and vy solve (1.5 with
(01)i(0,y) =1 —e VD1 (02)i(0,y) =1—e?C¥) e S (6.15)
according to (6.3]). Using Lemma and , it is easy to see that
1 1
lim (v1)i(t, V2A*t + 2) — lim (v2)i(t, V2X*t + 2)
% P (Mt > VN + z) 2 P (Mt > VNt + z)
Clp,z) _ C(9)
= - 6.16
Cx Coo ’ (6.16)

with C(¢, ) being defined by (6.13), and the right-hand side of (6.16) is independent of z € R and
i€ S. Let x =0 in (6.16]), then

lim E <exp {—/(;S(y,j) (& — 2) (dydj)} ‘Mt > V2Nt + z) = C(4,0) — C(¢). (6.17)

t—o0 Ooo Coo

Note that (Et — z) under P(g ;) (]Mt > 2\ + z) is still a point process. We now prove the

convergence of (£, — z) in distribution under P (|Mt > V2Nt + z). By (6.17)), it suffices to
prove that

_[C(86,0) C(09)\
10%1< o Coo>_1' (6.18)
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By Corollary we have limgo C'(#¢) = 0. Note that the initial value of v; in (6.15) with 2 =0
satisfies condition ([1.11]), it follows from Theorem |1.1] that

ueZ(t)

= By (exp {~C(06,0)M s55=(00)e VP 2})
and by Corollary
lim N (M <m(t)+2) =E, (exp {—C M (oo)e_mz})
fvoo (0) WEE = (0,3) oM, 55+ .

Also note that

P, (M <m(t) + 2) — ) H €_9¢(Xu(t)_m(t)_27[u(t)); M; <m(t)+ 2z
u€eZ(t)

<1-Eqy (eXP {—9/¢(y - Z,j)gt(dydj)}> -

Letting t — oo, we get that

B0y (exp {~CooMyye(00)e ™) — By (exp {~C106,0)0M s (o0)e™ > )|
< 1B (exp { ~C(06) M g=(00)e ™7 })

Let 6 | 0, we get that limg C(0¢,0) = Cso, which implies (6.18). Combining (6.14), (6.16), (6.18)
and the fact that the process (X¢,Y;) is tight if X; and Y; are both tight, which follows from the
inequality

InfP(| Xy < K, |V <K)>infP(| X < K infP(|V}| <K)-1
inf P(|X| < K, [Vi] < K) 2 inf P(|X¢| < K) +inf P(|Yy] < K) — 1,
we get that under P ;),
(Et — 2, My — V2\*t — Z) YRS
converges joint in distribution to (€, Y’), where the joint law is given in (6.12) and is independent
of zeRandi€S.

O
Proof of Theorem Define D := £, — Y. By Proposition and [4, Lemma 4.13],

also note that D; = (ft — z) — (Mt — V2Nt — z), we get that under Po,5) (‘Mt > V2N 4 z), Dy
converges in distribution to D. Also, for all z > 0,

E 0,1 (exp {—/qﬁ(y,j)Dt(dydj)} s My > V2A 4+ 2+ x}Mt > V2N + z>
= E(O,i) (exp {—/¢(y — M+ V22t + 2+ $,j)gt(dydj)} ‘Mt > V2Nt 4 2 + J))

X Po,i) <Mt > V2Nt + 2 + x| My > V22Xt + z)

o1



— Eo) <exp {— / by —Y, j)é’oo(dydj)}> P (Y > )
=E 0, (eXp {— / ¢>(y,j)D(dydj)}> Py (Y > ).

The desired result follows.
Od

Proof of Theorem [1.5} By Proposition [6.1] and Corollary We only need to show that
for any ¢ € CF (R x S),

k.n

Note that by Campbell’s formula,

E(0,1) (eXP { D o <pk + AP, q'r(lk)) })
k,n
= E (eXP {_ Z / ¢ (pr +y, ) D®) (dydj)}>
!

SO | S e T

i (o0 { [ (1B (o0 {- [ 006+ 01D 00} ) ) ottt ) )

It suffices to show that for every ¢ € C (R x 5),

C(¢) = COO/R <1 — K (exp {—/¢(z +v,5) D (dydj)})) V2Xre VAR (6.19)

Suppose that ¢(y,j) = 0 for all y < my and j € S. Recalling that Y is an exponential random
variable with parameter v2A* and £,o =D + Y, we get that

/R (1 ~E.) <e><p {—/¢(z+y,j)9(dydj)}>> Varre VR

= /n: (1 ~Ewa <exp {—/¢(z +y,j>D(dde‘)}>> 2AFe~VAAE,

= ¢V /Ooo (1 —E,) (exp {—/¢(z+y+m¢,j)9(dydj)})> V2rre VIR,

_ VI, (1 ~Eq, <exp {—/¢ (Y +y+mg,j)D (dydj)}))

= VI (1 ~ B <eXp {—/¢> (y +mg, 1) Eoo (dydj)}>> : (6.20)

Applying Proposition with z = my, we get
e VIATms <1 — E(0,) (exp {— / ¢ (y+mg,J) Ec (dl/dj)}>>
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t—o00

e T (1 —Eq <6Xp {—/¢ (y +mg,5) (E¢ —my) (dydj)} ‘Mt > V2Nt + m¢>)

1—exp{— [&(y,j)E (dydj)}; My > \/Wt—i-m(p)

E,
— 6—\/2)\*m¢ lim (0,9) (

t—o00 P(O,i) (Mt > \/ﬁt + m¢>
— o V2Xmy i E. (1 —exXp {_ J o9& (dydj)}) . (6.21)
e Py (M> VRN my)
By (.11,
Pos) ( My > V2A+t
V2N i . < : ) =1.

b0 P(0,5) (Mt > V2t + m¢>

Therefore, by the probabilistic representation of (ve);(t, vV2A\*t) given by (1.6, we continue ((6.21))
to obtain

V2N (1 —E0,) <6Xp {—/¢ (y + Mg, j) Ex (dydj)}>>
Eo,) (1 —exp{— [¢(y,7)E: (dydj)})

= tlim
oo P,y (M > V2A*L)

~ lim ! (v2)i(t, vVarrt) = S0 (6.22)
t=o0 ]P)(O,i) (Mt >V 2)\*t) Coo

where va solves ([1.5) whose initial value is defined in (6.15)) and in the last equality above we used
(6.16). Combining (6.20) and (6.22)), we get (6.19). The proof is now complete.

a
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