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Abstract

We study the asymptotic behavior of the supremum M; of the support of a super-
critical super-Brownian motion. In our recent paper (Stoch. Proc. Appl. 137 (2021),
1-34), we showed that, under some conditions, M; — m(t) converges in distribution to
a randomly shifted Gumbel random variable, where m(t) = cot — ¢1 logt. In the same
paper, we also studied the upper large deviation of M;, i.e., the asymptotic behavior
of P(M; > dcpt) for § > 1. In this paper, we study the lower large deviation of M, i.e.,
the asymptotic behavior of P(M; < dcot|S) for § < 1, where S is the survival event.
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1 Introduction

1.1 Super-Brownian motion

Let ¢ be a function of the form
P(A) = —aX + BA% + /Oo (e =1+ \y)n(dy), A>0,
0
where € R, # > 0 and n is a o-finite measure satisfying
/Ooo(y2 Ay)n(dy) < oo.

¥ is called a branching mechanism. We will always assume that limy ., ¥(\) = oco. Let
{B,t > 0;P,} be a standard Brownian motion starting from = € R, and let E, be the
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corresponding expectation. We write P = Py and E = Ej. In this paper we will consider a
super-Brownian motion X on R with branching mechanism 1.

Let BY(R) (resp. B, (R)) be the space of non-negative (resp. bounded non-negative)
Borel functions on R, and let M g(RR) be the space of finite measures on R, equipped with the
topology of weak convergence. A super-Brownian motion X = {X;,¢ > 0} with branching
mechanism 1) is a Markov process taking values in Mp(R). For any u € Mp(R), we denote
the law of X with initial configuration p by P,, and the corresponding expectation by E,.
We write P = Pjs, and E = E5,. As usual, we use the notation (f, u) :== [ f( and
||l := (1, u). Then for all f € B (R) and u € Mp(R),

—logE, (¢”X) = (Vi(t, ), ), >0, (1.1)

where Vi (¢, x) is the unique positive solution to the equation
t
Vit o) +Em/ BVt =5, B))ds = Eof(B),  t>0. (12)
0

The existence of such superprocesses is well-known, see, for instance, [8], [12] or [18].
It is well known that ||X;|| is a continuous state branching process with branching mech-
anism v and that
P(lim [|X,[| = 0) = e,

where A\* € [0, 00) is the largest root of the equation (A) = 0. It is known that A* > 0 if and
only if @« = —¢/(0+) > 0. X is called a supercritical (critical, subcritical) super-Brownian
motion if @« > 0 (= 0,< 0). In this paper, we only deal with the supercritical case, that is,
we assume « > 0. Let M; be the supremum of the support of X;. More precisely, we define
the rightmost point M (u) of up € Mp(R) by M(u) := sup{x : pu(z,00) > 0}. Here we use
the convention that sup() = —oo. Then M; is simply M(X;). Recently, in [19], we studied
the asymptotic behavior of M; under the following two assumptions:

(H1) There exists v > 0 such that

/ y(log y)** 'n(dy) < oo
1

(H2) There exist ¥ € (0,1] and a > 0,b > 0 such that
P(A) > —aX+ AT A > 0.

It is clear that if 3 > 0 or n(dy) > y~1~?dy, then (H2) holds. Condition (H2) implies that
the following Grey condition holds:

/ — d/\ < 0. (1.3)

It is well known that under the above Grey condition, lim o P, (|| X;| = 0) = e Ikl
Denote § := {Vt > 0, || X;|| > 0}. It is clear that P(S) € (0,1). Define, for ¢t > 0,

Dy := {(V2at — -)eV2V2at) Xy
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It has been proven in [17] that {D;,t > 0} is a martingale, which is called the derivative
martingale of the super-Brownian motion X;, and that D, has an almost sure non-negative
limit Do, as t — oo. Assumption (H2) also implies that

& 1
/ VS () du

Under (H1) and (1.4), D+ is non-degenerate and

d¢ < oo. (1.4)

M
Tt — V2a, P-as. onS, (1.5)

see [17, Theorem 2.4 and Corollary 3.2].
For any f € BT(R), put

us(t,x) == —logE (e’fRf(y’x)Xt(dy); M, < :c) : (1.6)

Note that us only depends on the value of f on (—o00,0]. Let H be the space of all the
nonnegative bounded Borel functions f on (—oo, 0] satisfying

/0 yemyf(—y) dy < oo. (1.7)

It has been proved in [19, Theorem 1.3] that under (H1)-(H2), for any f € H, we have that

tlim up(t,my +x) = we(x), (1.8)
—00
where 3

my = V2at — logt, (1.9)

2V 2«

and wy is a traveling wave solution of the F-KPP equation, that is, a solution of
1
o Waz + V2aw, — Y (w) = 0.

Moreover, wy is given by wy(x) = —logE [exp{—é’(f)Dooe_mx} , with

C(f) := lim \/g/oo uy(r, \/%r+y)yemydy € (0, 00).
0

In the remainder of this paper, we write u(¢, z) and w(zx) for us(t,z) and ws(z) respec-
tively when f = 0.

1.2 Main results

In [19, Theorem 1.2], we proved the following upper large deviation results for M; under
conditions (H1)-(H2):



(1) For § > 1,
lim Ve ~VP(M, > V2a6t) € (0, 00);

t—o0
(2)
t3/2
lim —————P(M, > V2at) € (0,00).
t—o0 m logt

However, using the methods in [19], we could not get the asymptotic behavior of the lower
large deviation probability P(M, < v/2adt|S) for § < 1. The purpose of this paper is to
study the asymptotic behavior of the lower large deviation probability. To accomplish this,
we use the skeleton decomposition of super-Brownian motion and adapt some ideas from [7]
used in the study of lower larger deviations of the maximum of branching Brownian motion.

For branching Brownian motion, the asymptotic behavior of the maximal position, also
denoted by M;, of the particles alive at time ¢ has been intensively studied. To simplify
notation, we consider a standard binary branching Brownian motion in R, i.e., the lifetime of
a particle is an exponential random variable of parameter 1 and when it dies, it gives birth to 2
children at the position of its death. Bramson proved in [4] that P(M;—m(t) < z) — 1—w(z)
as t — oo, where m(t) = V2t — % logt and w(x) is a traveling wave solution. For the large

deviation of M, [5, 6] studied the convergence rate of P(M, > /26t) for 6 > 1. Recently,
Derrida and Shi [9, 10] studied the lower large deviation of M;, i.e, the asymptotic behavior
of %log P(M, < /25t) for § < 1, and found that the rate function has a phase transition at
1 — /2. In [7], Chen, He and Mallein studied the limiting property of P(M, < /28t) for
0 < 1. For more results on extremal processes of branching Brownian motions, we refer our
readers to [1, 2].

To maximize the possibility of M, < /26t for § < 1, a good strategy is to make the first
branching time 7 as large as possible. It was shown in [7] that, conditioned on {M, < v/26t},
T~ %ti()(l)\ﬁwhen §€(1—-+v2,1); 7~ t—0(1)Vt when 6 =1—+/2and 7 =t —O(1)
when § < 1 — /2. The asymptotic behaviors of P(M,; < \/5(525) are different in these 3
different cases.

The intuition above also works for super-Brownian motion, but we need to use the first
branching time of the skeleton process, which is a branching Brownian motion. Put

q:=¢'(X\*) >0, p::\/1+¢/()\*):1/1+g.
a a

We also use 7 to denote the first branching time of the skeleton process of super-Brownian
motion. We will prove that, conditioned on {M; < v2adét,S}, as t — oo, T € [1%575 —
(log t)V/t, 1—;‘5t + (logt)v/t] when § € (1 —p,1); 7 € t — /£ [t7/*,logt] when § = 1 — p and
7 € [t — O(1),t] when § < 1 — p. The asymptotic behavior of P(M; < v/2a6t|S) exhibits a
phase transition at 6 =1 — p.

Now we state our main results.

Theorem 1.1 Assume that (H1) and (H2) hold. If § € (1 — p, 1), then for any f € H,

lim e2e(p—D(1-6)t;=3(p-1)/2[ (6— Je Fy=V2a80Xe(dw). N1 < /D0t 5)

t—o00
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A ag(p_l)/z > V2a(p—1)
=— e VT A(we(2))dz,
| (wy(2))

)

where ag = 1 — 1% and

A

A = S (3) + (1) (1 - F) >0, A>0.

Theorem 1.2 Assume that (H1) and (H2) hold. Then for any f € H,

lim ¢—3(—1/4 (a+alp—1)?)tg <67 Ja Hy=V2(1=pOXu(dy), Nf < /2 (1 — p)t| 5)

t—o00
A* 1 o 3(p—1)/2 —ap?s? R~
-~ - $3P=1)/2—ap’s ds/ e V2a(r=1)z A(1p4(2))dz.

Theorem 1.3 Assume that (H1) and (H2) hold. If 6 < 1 — p, then for any f € B, (R),

lim \/ge(qmaz)t]E <€* Jr f(y*\/%‘%)xt(dy); M, < ~/2a(5t]5>

t—o0
A* 1 1 o
= (q—ad)s V2abz
6’\*_1[2\/ﬂ‘5’+\/%/0 e dS/Re Gf(S,Z)dZ:|,
where |
Gylt,2) = = [Vt 2) = 0O + uj(t0) | + quyt, @), (1.10)

with vy, uy being defined in (2.6) and (2.7) below.

The reason that we assume f € H in Theorems 1.1 and 1.2 is that (1.8) plays an important
role in the proofs of Lemmas 3.2 and 3.7. Lemma 3.2 is used in the proof of Theorem 1.1
and Lemma 3.7 is used in the proof of Theorem 1.2.

Let C.(R)(C(R)) be the space of all the (nonnegative) continuous functions with compact
support. Let Mpg(R) be the space of all the Radon measures on R equipped with the vague
topology, see [15, p.111]. Recall that for random measures p;, u € Mg(R), p; converges in
distribution to p is equivalent to (f, u;) converges in distribution to (f, u) for any f € CI(R).
See [15, p.119] for more details.

As a consequence of Theorems 1.1-1.3, we have the following corollary.

Corollary 1.4 Assume that (H1) and (H2) hold. Conditioned on {M; < \/2adt, S}, X; —
V2adt converges in distribution to a random measure Z5. Moreover, for any f € CH(R), if
0 € [1 - P 1);
© —V2a(p—1)z
E (effRf(y)Ea(dy)> _ e A<wf(z))dz;
I e~V2ap=1)z A(w(z))dz

(1.11)

and if 6 <1 —p,
o0 —ad?)s adz
va o e ds [ VPGl (s, 2) da
—\/%IM + [ elemads ds [o eV25:((s 2)dz

E (e— Jie F@)Es(dy)

where Gy is defined in (1.10) and G(t,x) := Go(t,z).
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Proof: We consider the case of § € [1 — p,1) first. For any f € H and 6 > 0, by
Theorems 1.1-1.2,
> e‘m(p_l)zA(wgf(z))dz

I
lim E (e*”ﬂ@ Hly=V2000)Xe(dy)| 1 < 2a5t,8) === :
t—o0 [M: < ffooo e~V2alp=Dz A(w(z))dz

It has been proved in [19, Lemma 3.3] that limg_oC(0f) =
wyr(x) — w(z). Note that A(N) is decreasing on (0, \*) and 0
ing the monotone convergence theorem we get that

oo eV DE Awgp(2))d 2

li ad
530 ffooo e~V2alp=1)z A(w(z))dz

C(0), which implies that
< wpr(z) < A*. Thus us-

Thus, conditioned on {M; < v2aét,S}, [, f(y — V2adt)X;(dy) converges in distribution
for any f € CF(R), which implies that X, — v/2adt converges in distribution to a random
measure Zs with Laplace transform given by (1.11).

Similarly, using Theorem 1.3, we can get the result for 6 < 1 — p. a

Throughout this paper we use C' to denote a positive constant whose value may change
from one appearance to another. For any two positive functions f and g on [0,00), f ~ g as

s — oo means that lim,_,. % =1.

2 Preliminaries

2.1 Skeleton decomposition

Denote by P, the law of X with initial configuration x conditioned on extinction. It has been
proved in [3, Lemma 2| that (X, P*) is a super-Brownian motion with branching mechanism
P*(A) = (A + A*). Note that (¢*)'(04) = ¢'(A\*) = ¢ > 0. So (X, P*) is subcritical.

Let D(]0,00), Mp(R)) be the space of all the right continuous functions w : [0,00) —
M#z(R), and D be the space of right continuous functions from (0,00) to Mp(R) having
zero as a trap. It has been proved in [13] that there is a family of measures {N,,z € R} on
Dy associated with the probability measures {P; : z € R} such that

/W (1 — e’<f’"““t>) N} (dw) = —log P, (e’mxt)) , (2.1)
0

for all f € B, (R) and ¢ > 0. The branching property of X implies that, under P5 , X; is an
infinitely divisible measure, so (2.1) is a Levy-Khinchine formula in which N plays the role
of Lévy measure. By the spatial homogeneity of Brownian motion, one can check that

PL (X0 = P (6—f f(z+y>xt(dy)> ,ON:(1— e Um)) = N; (1 o f(x-‘ry)wt(dy)) ‘

It was shown in [3] that the skeleton of the super Brownian motion X; is a branching
Brownian motion Z; with branching rate ¢ = ¢/(\*) and an offspring distribution {p, : n >
2} such that its generating function ¢ satisfies



We label the particles in Z using the classical Ulam-Harris notation. Let 7 be the set of all
the particles. We write @ for the root. For each particle u € T, we write b, and o, for its
birth and death time respectively, N, for the number of offspring of u, and {z,(r) : v € [by,, 4]
for its spatial trajectory. v < uw means that v is an ancestor of u. Now we introduce the
three kinds of immigrations along the skeleton Z as follows.

1. Continuous immigration: The process I is defined by

ItN* = Z Z 1rj<twj(t - Tj)v

ueT (Tj 7wj)ED1,u

where, given Z, independently for each u € T, Dy, := {(r;,w;) : j > 1} are the atoms
of a Poisson point process on (b,, ;] x D§ with rate 28dr x dN?,

2. Discontinuous immigration: The processes I¥ is defined by

I = Z Z Lo <ew;(t —1y),

ueT (7’7' ,’w]')EDQ w

where, given Z, independently for each u € T, Dy, := {(rj,w;) : 7 > 1} are
the atoms of a Poisson point process on (b,,0,] X D([0,00), Mp(R)) with rate dr x

fye(o,oo) ye - yn<dy)dpy5z (r°

3. Branching point biased immigration: The process I" is defined by

=Y "1,,X%0

u€eT

where, given 7, independently for each u € T, X. ) i5 an independent copy of the
canonical process X issued at time o, with law Py, 5 o where, given u has n(> 2)
offspring, Y,, is an independent random variable with distribution

n

{00 20 + O e ) |

o (dy) =
7in(dy) DPnA*q

Now we define another M p(R)-valued process I = {I; : t > 0} by
=1V 4+17 417, (2.2)

where IN' = {IN" : ¢ >0}, I¥ = {IF" : ¢t > 0} and [" = {I] : t > 0}, conditioned on Z, are
independent of each other. For any integer-valued measure v, we denote by P, the law of
(Z,I) when the initial configuration of Z is v. We write P for Pyg,.

For any p € Mp(R), let Z be a branching Brownian motion with Z, being a Poisson
random measure with intensity measure \*p and I be the immigration process along Z.
Let X be an independent copy of X under P}, also independent of /. Then we define a
measure-valued process A = {A; : ¢t > 0} by

A=X+1. (2.3)

We denote the law of A by Q,. In particular, under Qs,, Zy = Ndy, where N is a Poisson
random variable with parameter A*. We write Q for Qs,. In the rest of the paper, we use
E, E* and Eq to denote the expectations with respect to P, P* and Q, respectively. The
following result is proved in [3].



Proposition 2.1 For any u € Mp(R?), the process (A, Q,) is Markovian and has the same
law as (X,P,).

Rgcall that M, is the supremum of the support of X;. Denote the supremum of Ay, I;, Z;,
and X; by MA, M! MZ, and M;¥, respectively. By (1.1), for any f € B¥(R),

Vi(t,z) = —logEs, < ~ e )Xl dy)) , xzeR.
By the spatial homogeneity of X, we have
Vi(t,—z) = —logE <e— fRﬂy—f)Xt(dy)) , z€R (2.4)

Setting fp := f + 01,0, We get

us(t,z) = 911}20 Vi (t,—x), z€eR. (2.5)

For any f € B*(R), put
vy(t,z) =E <e’ Je Sly=o)ludy), ppl < x) : (2.6)
Wwi(t, ) == — log E* (e— Je Fa=2)X2(dn); pf, < x) . (2.7)

For f = 0, we write v(t, x) and u*(t, z) for vy (¢, z) and u}(t, z), respectively. The relation
among uy,u} and vy is given by the following lemma.

Lemma 2.2 For any f € BY(R), t >0 and z € R,
up(t,x) = up(t, z) + AN (1 — vs(t, v)).

Proof: Recall that under Q, Zy = Ndy, where N is Poisson distributed with parameter \*.
By the definition of A, we get that, for any ¢t > 0,z € R,

et — | <e’ Je f=0)Xa(dy). pp < x) — Eq <€* Je fly=o)Ae(dy). MA < :C)
= Eq (e Je/w-a%udn), p X < x) Eq (67 e Fy=) (). T < x)
( fly—z) X (dy). M, < a:) Eq ([E(e‘ Jr f(y_lv)]t(dy); Mtf < x} N)
— o uj(t@) A (vp(t2)—1)

Thus uy(t, z) = wp(t, z) + \*(1 — vy (L, 2)). 0

Now we give some basic relations among M7, M} | M/ and M,.

Lemma 2.3 Under Q, given Ay, Z; is a Poisson random measure with intensity A\* Ay, which
implies that MZ < M}, Q-a.s.

Proof: We refer the readers to the display above [3, (3.14)] for a proof. O
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Lemma 2.4 Under P, M7 < M/, a.s.
Proof: First we claim that Q(M7 < M/) = 1. In fact, for any x, by Lemma 2.3, we have
O:Q(Mtz>$2MtA):Q(MZ>a: M! <=z Mthsc)
= QM7 >z, M] <2)Q(MS < x).

Using the fact that Q(Mt)~< <z) >0, we get Q(M7Z > x, M} < z)=0. Since z is arbitrary,
the claim is true.
Recall that under Q, Zy = Ny, where N is Poisson distributed with parameter A*. Thus

0=Q(MZ > M} >QIMZ > MI|N =1]Q(N = 1) = P(MZ > M])e™,

which implies that P(MZ > M) = 0. O

The following lemma implies that, to prove our main results, we only need to study the
limiting behavior of v (¢, v2adt).

Lemma 2.5 For any f € BT (R) and 6 < 1,
E <e* Jr f(y*\/ﬂ(st)Xt(dy); M, < ~/2a5t|8> \*
lim = )
t—00 vy(t, V2a0t) N —1

Proof: We also use & to denote the survival event of A. It is clear that, under Q, S C
{N>1}and Q(S) = Q(N >1) =1—e*". It follows that S = {N > 1}, Q-a.s. Then, by
Proposition 2.1,

(2.8)

( fRf(y ) Xt (dy). M < ZL’lS) Q( fR (y—z)Ae(dy). MA < .T|N > 1)

=Eq (e_ Jef y—x)Xt(dy); MtX < x) ( = Jp fly—2)Ie(dy). MI < z|N > 1)
Noup(tx) _ 1

=1 Eq(uy(t,2)VIN 2 1) = e ——
e —

(2.9)
Since (X, P*) is subcritical, we have, for any 9,

eIV S pr(|IX | = 0) » 1, ¢ — oo,

u} (t,v2a6t)

which implies that e — 1, as t = 0o. By (1.5), we have for any ¢ < 1,

E <e* Je Fy=v2000)Xe(dy), pp < \/204(515\8) < P(M, < V2a6t|S) — 0

Thus by (2.9), v(t, v2adt) — 0 for any 6 < 1. The desired result follows immediately. O

To study the behavior of v(t, v2adt) as t — oo, the following decomposition of vy plays
a fundamental role.



Proposition 2.6 For any f € BY(R), t >0 and x € R,

Uf(t,x) = ULf(t,tT) +U2,f(t,$l?), (210)
where
Ups(t, ) :E[e* Jy v O +upra=B)dr B o x] : (2.11)
Uy (t, 2) :E/ — v tmre=B)dr Gy (p — s 1 — By) ds, (2.12)
0

with éf(t, x) being defined by

jay 1 > * * *
Gylt,w) = 1 [ﬁ()\*)%f(t,x)Q + /0 (et 1 — Nt 2)y) e +“f(t’x))yn(dy)}

1

= 2 [Plust @) =B+ ) + VO gt )N ()] (2.13)

Proof: Let 7 be the first splitting time of Z, that is 7 = 0. By considering the cases 7 > ¢
and 7 <t separately, we get

vi(t,z) = B <e_ S Fly=) ), g1 < x)
_ E (67 fR f(yfﬁ)lt(dy); Mtl S x, T > t) —'— E (67 f]R f(y*I)It(dy); Mt[ S ,’L" - S t>
=: U s(t, ) + Usy(t, 7). (2.14)

By Lemma 2.4, Uy (t,z) = E (e‘ Jr Fy=2)Lu(dy). M <z, MZ <z,7> t). By the decom-
position of I in (2.2), on the event {r > t}, we have that I, = I}' + If". Thus using [3,
Lemma 3], we have that, on the event {7 > t}, for any z € R,

E (e* Jr Hy==2)le(dy). M < x’]:tZ) — ehm E (e* fR[f(y*IHf?l(o,oo)(yfx)]lt(dy)’_7:5)
—00

—en{- [t —sa -2 as,

where {F7,t > 0} is the natural filtration of Z and
OOV = P4 N) ) =200k [ (1= M (o). (215)
0
Note that, on the event {7 > t}, Z; = 0.,(s) and {25(s),s < t} L {Bs,s <t}. Thus
¢
Ups(t,x) = e_nt[exp{ — / o(uf(t —r,x — B,)) dr}; B, < x}
o
= E[exp{ — / V(N up(t =1z — B,)) dr}; B, < x] (2.16)
0

On the event {7 < t}, the immigration process I has the following expression:

I = Z w;i(t —r;) + Z w;i(t —r;) + +x32 +Z[Z .

(rj,w;)€D1,0 (rj,w;)€D2,0

10



= T+ Jop + Tap + Tug, (2.17)

where, given Z., I',i = 1,---, Ny, are ii.d copies of I under P. ). Since, given FZ,
Jit,t =1,2,3,4, are independent, we have

1 o (0 7)1
fd E [Hl,tH27tH37tH4’t; T S t] s (218)

where
H;, = E(eifRf(y*I)sZ',t(dy);k7l,7t(x7 00) = 0|F%), i=1,2,3,4

Put fo = f + 01(0,c). By the bounded convergence theorem, we have

H;

t =
’ 6—00

lim E (e* e fe(y*xmf(dy)\ff) . (2.19)

By the definition of D & and (2.19), we have that, on the event {7 < t},

H,; = lim exp {—25/ / (1 —e” fRfe(y—‘”)Wt*T(dy)>NZZ(T)(dw) dr} . (2.20)
6— 00 0 DoJr

Using (2.1), we get that
lim (1 — e Jr fe(yfx)wt—r(dy)) N*(dw) = lim —logE} [e* Jr fe(yfx)Xt_r(dy)}
600 [t f—o0 :
— —logE; [6— Jo Fy=2)Xemrldy). < x] — it — o — 2).

Thus we have that

Hy; = exp {—2&/ uwp(t — 1, — 25(r)) dr} : (2.21)
0
For Hy,, on the event {7 < t}, we have that
Hyy = elim exp {—/ dr/ ye‘A*yn(dy)Ezéz ) (1 —e ) fg(y—z)xt”(dy)> dr} . (2.22)
—00 0 0 2

It follows from the branching property of X that

lim PZ& (e” fRfe(y—z)thr(dy)) — lim [IF’; (e” Jr fe(y—m)thr(dy))]y _ efu}(t*T,Z*Z)y’
H—00 # H— 00 #

which implies that

Hy;, =exp {—/ / y[l — e_“}(t_r’x_zg(r))y]e_)‘*yn(dy) dr} : (2.23)
o Jo

Combining the definition of ¢ in (2.15) with (2.21) and (2.23), we get that
H,.Hs; = exp {— / p(uf(t —r,x — 25(1))) dr} : (2.24)
0

11



By the definition of X(>?) on the event {7 < ¢}, we have that
Hs, = ehm E (P%(S ( — fo fo(y—2) X¢— s (dy) ) |]_—Z> [
:E< u?(t T,x—2e (T Yg|fZ>

1 o0 (\* Ng . .
:pN )\*q (ﬁ(/\*)QlNQQ + / %e—uf(t—r,x—zz(ﬂ)ye—k yn(dy)) . (2‘25)
@ 0 a-

It follows from the branching property that on the event {7 < ¢},
Ng
Hyy = [Pazzm (67 Je flu=e)Xemsld), ppT < 33)] =vp(t — 7,1 — 25(7))N7. (2.26)

s=T

Note that

E(Hs Hyp;m < t1,{25(r),0 <r <7}) = ZE Hs Hyp;m <t,Ny =n|t,25(7))

> 1 ()\*y)" .
-1 * 21 B =Tz —20(T))y ,— A"y . . n
T<t;pnp—n)\*q (5()\) n_2+/0 o Ye n(dy) | vt — 7,2 — 25(7))
1
:1T§t)\Tq [(B(/\*)Qvf(t — 7,7 — 25(7))?

+/ (e)\*vf(tff,xfzg(f))y 1= )\*Uf(t —Tr— Z@(T))y) e —(Atuf(t—T =20 (T )yn(dy)]
0
= 'Gi(t — 7,7 — 25(7)) Lrsy. (2.27)
Combining (2.18),(2.24) and (2.27), we get that
Usp(t,x) = BE[Hy 1 HoE(Hs  Hy gy 7 < t7, {265(r),0 <1 < 7})]
— ¢ 'P (exp {— / p(ut(t —r,x — 25(1))) dr} G’f(t — 7,0 — z5(7)); T < t)
0
t s
= E/ exp {—/ (¢4 ¢(us(t —r,z — B,))) dr} Gy(t — s,x — By)ds,
0 0
where in the last equality, we use the fact that 7 is exponentially distributed with parameter

q and {zz(r) : r > 0} is a standard Brownian motion. Note that g+ ¢(\) = ¢'(A* + A). The
proof is now compete. O

Note that ©=3=% = 3", m’;—f is increasing in z on (0, 00). So eNUrbDY —1— v, (¢, z)y <
vy(t, )*(eN? — 1 — A*y), which implies that

Gyt < 35 |07+ [ @ = 1= X i) oo
= (W) =)/ vy (.2)* = quy(t,2)* < qult, ). (229)

Here in the last inequality, we use the fact that v (¢, z) < v(t,z).
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2.2 Some useful estimates
In this subsection we give some useful estimates for u}(¢,z) and vy(¢,x). Recall that ¢ =
W'(A7) and p = /1 + q/a.
Lemma 2.7 (1) For any f € BY(R) andt > 0,2 € R,
up(t,z) < k(t) := —log P*(X; = 0),
and t — e'k(t) is decreasing on (0, 00).

(2) If (H2) holds, then there exists a positive constant ¢y such that

ecg’ﬁt _ 1

1 1/9
k(t) < [—1 , t>0, (2.29)
and for any f € B, (R), there exists a positive constant c3 such that
Wit z) < cy(1+a ")t ¢ x> 0. (2.30)

Proof: Since E* (e~ Ja/W=o)Xeldw); N[, < z) > P*(X, = 0) for any t > 0,z € R, we have
u}(t,r) < k(t). By the branching property and Markov property, we get that

P(|| X, ]| = 0) = B* (P, (| X,]| = 0)) = E* (e F&)IXe=slly

Put uj(t) := —log E* (e "I*¥ll*). Then k(t) = Up sy (t—s). Under P*, |LX;[ is a continuous state
branching process with branching mechanism (A* + A). Then according to [16, Theorem
10.1], we have
K(t) = =0 (X + upo(t — 5)) = =0\ + k(1)) (2.31)

Since ¥(A*) = 0 and ¢ is increasing on (0,00), (A" + X) > ' (A*)A = ¢gA. Thus K'(t) <
—qk(t). Using this one can check that (e?k(t))’ < 0. The proof of (1) is complete.

Assume that (H2) holds. Then there exists c; > 0 such that (A" + \) > co(A + A1),
Thus, by (2.31), we have that

K (t) < —calk(t) + k(1)'),

which implies that

¢ K (s) -1 o —1 _
—cot > /0 R(s) & h(s) ds = ?log(l +k(s)™)|} = 5 log(1 + k(t)™7).

Hence (2.29) follows immediately.
Since u}(t, x) < uy(t, ), it suffices to show that (2.30) is true for us(¢, ). By [19, Lemma
2.3(2)], we have that
Vien () < Vi (L) + Vi (L o).

By (2.5),

up(t, ) = lim Vi (¢, —x) < Vi(t, —x) + elgglo Voro.00, (8, —2) = Vi (t, =) + ult, ),

60— 00
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where fy = f + 01 ~). By (2.4) and Jensen’s inequality, we have that

Vitt,—a) =~ tog e (02X < ([ 1y 0)lay) ) = B (B-0) < 1))

By [19, Lemma 4.2 and 4.3] (with A being replaced by z, and z there replaced by 0), we get
that there exists a positive constant C' such that

u(t,z) < C(1+ 27", tx>0.
Combining the two displays above, we get that
up(tyw) < e||fll + C(1+a77)e™ < (C+ || fI)(1 +a727)elerr,

Now (2.30) follows immediately. O
Lemma 2.8 Assume that (H1) and (H2) hold. For any A >0 and ¢ > 0,
A
/ b(k(s))s" ds < oc.
0
Proof: Note that, by (2.31),

K(s) = =¢(k(s) + A7), K'(s) = =9 (k(s) + A")K'(s).

Thus, using (2.15), we have

0 < o(k(s)) = ¢'(k(s) + A7) —q =

It follows that

[ owonsras s [ as= [ aost-ion

A
= —log(—Fk'(A))A° + lim s log(—K'(s)) + 6/0 log(—k'(s))s“ 'ds. (2.32)

Note that for A > 0, ¥"(A + A\*) exists and is decreasing. By Taylor’s expansion, since
(A*) = 0, we have that

DO A < )N + ()2, A > 0.
By (2.29), we have that k(s) < Cs™*/Y. Thus we get that

—k'(5) = P(k(s) + A*) <Y (N)k(s) + 9" (\)k(s)?
<OV 457N <07 s €0, A

Now the desired result follows immediately from (2.32). O

Now we give some upper estimates of v(t, ).
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Lemma 2.9 (1) For anyt >0,

v(t,r) < P(B; < ), r € R, (2.33)
and
v(t,z) < P(B; <1x) < ie_g x <0 (2.34)
) = t = = \/%‘Q}| ) : :

(2) There exist tg > 1 and ¢ > 0 such that for any t > to,
v(t, V2a0t — Vt) < P(MZ < V200t — /1)

—(q+ab?)t 4] .
e , <1 0;
S Ct{ 67204(,071)(179)1‘/7 1 p <0 <1. (235)

Proof: (1) By Proposition 2.6, we have

t
n E/ eff(; w’()\*JrU*(t*vaf*BT))dré(t —s,x— Bs) dS,
0

which is equivalent to

¢
+ Ex/ e Jo VAW t=nB)dr Gt — s B) ds, (2.36)
0

where G is the Gf defined in Proposition 2.6 with f = 0. Thus, by [12, Lemma 1.5, page
1211], the integral equation (2.36) implies that

¢ ¢
v(t,x) + Ex/ (N +u(t — s, By))v(t — s, Bs)ds = P, [Bt > 0] + Em/ G(t — s, By)ds.
0 0
(2.37)

Here we remark that since ¢'(A\*+u*(t — s, z)) may not be bounded as a function of (s, z), we
can not use [12, Lemma 1.5, page 1211] directly. However, since ¢/(A\*+u*(t —s, 2)) > 0, the
argument of [12, Lemma 1.5, page 1211] still works in the present case. Note that the right
hand side of (2.37) is finite, and thus we have E, fo PN +u*(t—s, Bs))v(t — s, Bs)ds < oo.
Combining (2.37) with the definition of G, we get

o(t.x) = P, [B > 0] + /\1E / W(u(s, Bis)) — (N +u'(s, Br_s))| ds.

Note that ¥(\) < 0 for A € (0,\*), ¥(A) > 0 for A > A\* and ¢ is increasing on (\*, 00).
Thus for any A\g > \*,

sup (A) = sup P(A) = ¥(No).

0<A<o A*<A<Ao
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Since u(s, z) < A\ + u*(s, z), using the above property with A\g = \* + u*(s, B;_s), we get
that ¥ (u(s, Bi—s)) — ¥ (A* +u*(s, Bi—s)) < 0. Therefore we have that

U(t,:c)ng[BtEO]:P[Btgx], x e R.
For x < 0,

1 o
P[Bt < x] - P[B1 > |x|t*1/2} - —/ e~V /2dy
|

2 I‘t71/2
1 & Yy 2 \/E 2
< — eV 2y < e /), 2.38
2T Jpaprre |[t=1/2 v= V27 || ( )
Thus (2.34) follows.
(2) We claim that there exists ¢ty > 0 such that for any ¢ > ¢, and z,
P(M7 < 2) < (2qt + 1) sup e *P <31 < (z—=V2a(t—s)+ \/Z)/\/§> : (2.39)

0<s<t

It is shown in [10] (see the discussion below [10, Lemma 3]) that the claim is true when
p2 = 1 and ¢ = 1. Using similar arguments we see that it is also true for the general case.
We omit the proof here.

Put a(t) := v2a(1 — 0)t. By (2.39), for t > t,,

P(M{ < V206t — Vi) < (2qt +1) sup e “P(By < (V2as — a(t))/v/5).

0<s<t

Note that by (2.38), P(B; < —y) < ——y e ¥/ for all y > 0. Thus, if v2as < a(t), we

T
have
1
o~ I5P ( < (V2as —af(t ))/\/_> \/\/_ a(t) — 2as€7qsei( o
NG 1 VEaa(t) ,—opts— "D (2.40)

\/%a( ) — Sas

It is clear that

“W > v2apa(t), (2.41)

. . a(t)
and is decreasing on (0, Toes

(i) If a(t) > v2apt (that is, § < 1—p), then vV2as < a(t) for s € [0,t] and thus by (2.40)
we have that

). We now prove the desired result in four cases.

Vi 1 at?
sup e P (B < (V2as — a(t s) < eV2aalt) gmar’t=
ogsgt 1= )/ Vs) = V2ma(t) — \/20425
_ WVt L @ra(-02-2a0-0) o ] ! e~ (a+ad)t,

- V2ma(t) - V2ai V2 V2a(p - 1)Vi
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(i) If V22t < a(t) < V2apt (that is, 1 — p < 6 < (1 — p)/2), then V2as < a(t) for
s € [0,t], and thus by (2.40) and (2.41) we have that

2
sup e P <B as —a ) e—V2a(p=1)a(t)
s, (Br < (VB = aO)IV5) € o me e
_ 2 o—2a(p-1)(1-0)t
V21V 2a(p — 1)Vt
(iii) If 1 < a(t) < v2a257¢ (that is, (1 - p)/2 < 6 < 1— =), then
sup e P (31 < (V2as —af(t ))/\/_>
0<s<t
2 a
< s e P (B < (Vaas - a(t)/V5) + e Ve
0S5 oy #(0)
< sup 1 \/5 e—VZalp-Dalt) 4 ,—VZal(p—1)a(t)
0<s<——2 \/%( al) V2ma(t 2as
1 : ~VIa(p-1)alt) | ,~V3a(p-1)a(t)
2am(p+1 amy

p+1 —2a(p—1)(1-0)t
< —+1 P .
( V2amrp—1 )

Here in the second inequality we used (2.40), (2.41) and the fact that

2 _ 2a(p*—-1) —
q\/ﬁ(p+ 1) V2a(p+1) Vaalp = 1)

(iv) Finally, if 0 < a(t) <1 (that is, 1 — <6 < 1), then

1
V2at

The proof is now complete. u
Recall that m; = v2at — 5==logt. The next lemma gives another estimate of v(t, 2).

The proof will be given in Appendlx
Lemma 2.10 For any € € (0,v2a(p — 1)), there exist c. > 1 and T. > 1 such that

v(t,my—z2) <P (MtZ < my — z) < cee’m(p’l)zeez, t>1T.,z>0.

3 Proofs of the main results

Put (f(t, ) := ' (A +uj(t,z)). It is clear that (s(t,z) > ¢'(X*) = ¢
Lemma 3.1 For any f € BT(R),

et 0>0;
Ul,f(ta 2&515) < { 17 —1/2_—(q+as? o
v A Y}
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Proof: Since (¢(t,z) > ¢'(\*) = ¢, by (2.11), we have that
Uy ¢(t,V2adt) = E <e_ Jo Cf(t_r"/ﬁ‘”_BT)ds; B, <V 2a5t> < e 4P [Bt < v 2a5t]

Thus, the desired result follows easily from (2.38) with x = v/2adt. O

Note that by the change of variables s — t — s, we have

t
Us,f(t,z) = E/ e~ s Gre=Bi-ndry (s 5 — By_,)ds.
0

3.1 Proof of Theorem 1.1: § € (1 —p, 1)

It follows from Lemma 2.5 that, to prove Theorem 1.1, we only need to consider the limiting
property of vs(t, v/2adt). Note that

q+ad® —2a(p—1)(1—-0)=a(p—1+95)? (3.1)
and
2a(p—1)(1—-6) <2a(p—1)<alp*—1)=¢q, §€]0,1). (3.2)

It follows from Lemma 3.1 that for any 6 € (1 — p, 1),
2a(p—1)(1—0)t
lim U 4(t, V206t) = 0.

tooo  13(p—1

Thus, by the decomposition (2.10), to prove the desired result, it suffices to show that

e2alp—1)(1-6)t q2P=1/2 poo
lim —— U ¢ (¢, V2a:0t) = g e_‘/ﬂ(”_l)ZA(wf(z))dz,
t—oo  ¢3(P=1)/ V2ap

where a5 = 1 — 22 and A(A) = 3=9(A) +¢/(A) (1 = A/X%).
The result above follows from Lemmas 3.2 and 3.3 below. In Lemma 3.3, we will show
that for 0 € (1 —p, 1),

e?a(p—l)(l—é)t

B/

P(MtI <V2adt,T ¢ [1—;575 — (logt)Vt, 1—;5t + (log t)\/l_f]) — 0.

Thus, on the event {MtI < 2a5t}, with large probability, the first branching time of the
skeleton happens in the interval [%t — (log t)V/1, %t + (log t)\/g} :

Lemma 3.2 Let § € (1 —p,1) and T, = [ast — (logt)v't,ast + (logt)\/t] N [0,t]. Then for
any f € H,

eZoz(p—l)(l—J)t

lim S B / e~ S rVRB=Bi) dr G (5 \/2abt — By_,)ds
It

t—00 t3(P—1)/2

3(p—1)/2 0o
:M/ e‘m(”_l)zA(wf(z))dz.
V2ap J-

[e.e]
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Proof: In this proof, we always assume that ¢ > 1 is large enough such that ast/2 <
ast — (logt)v/t < ast + (logt)v/t < (1 + as)t/2. Since ¥ is increasing and ¢ is decreasing,

it follows that, for any A > 0

Thus we have, for any s € 7,

q(t —s) < /t Cr(r,V2a6t — By_,)dr < q(t — s) + 9" (\¥) /t w}(r,vV2adt — By_,) dr

< qlt — 5) + 0" (X tk(ast — (log t)v/F).

Here the last inequality follows from Lemma 2.7(1) and the fact that the function k is
decreasing. By Lemma 2.7(1), sup,., e?k(t) < oo, which implies that tk(ast — (logt)v/t) — 0

as t — oo. Thus as t — oo,

E/ e U Cf‘(“\/ﬁ‘”’Bt"")C“"C;’f(s, V2adt — By_s)ds ~ / e~ M=IE[G (s, V2adt — B,_,)] ds.
It It

(3.3)

Recall the definition of m; in (1.9). By the change of variables s = s(u) := ast + uv/t, we

get that
/ e 1IE[C (s, v/Zadt — B_,)]ds
It
:/I e MIE[G (s, m, + (V2a0t — my — B,_,))] ds
:/ €_q(t_s)d5/ ;e*%(}f@,ms —|—Z) dz
7, R

V2r(t - s)

logt —q(1—as)t ,q\V/tu 00 (ms<u>+z7\/ﬂ6t)2 R
:\/Z/ e e du o
“logt \/27(t — s(u)) —o0

For u € (—logt,logt), we have that

(o + 2 = VE0t? = (VEalas = 0)t + VEau - S

= 2a(ay — 0)*t? + 200t + 4a(as — 6)utv/'t — 3(as — 0)tlog(ast)
+2v2a(as — &)zt + Ry(t,u, 2)

= 2a(as — 0)*t? + 4afas — §)ut®* — 3(as — O)tlogt
+ [20u% 4 2v2a(as — 6)z — 3(as — &) log as)t + Ry (t, u, 2),

20—s(a)) Gf(s(u), M(y) + Z) dz.

2
log(ast + uv/t) + z)

(3.4)

2
where Ry (t,u, z) = (—#ﬁ log(ast + u\/t) + z) —3uv/tlog(ast +uv/t) +2v20u/tz —3(as —

§)tlog(1 4 u/(as\/t)). Using this one can check that for |u| < logt,

|ul

asV/'t

Ry(t,u,z) > —3lu|vtlog(ast + [u|vt) — 2v2alu|vt|z| — 3(as — d)t
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—3(logt)*Vt — 2v/2a(log t)Vt|z| — ( )\/_logt. (3.5)

1

Using the Taylor expansion of (1 — x)~', we obtain that

1 1
26— s(w) 21— an)t 1 —u/[(1 — ap) V]

1 U u?
= Sy (1 + Vi + 0o +R2(t,u)) ;

where

‘Rgtu

here we used the fact that logt/[(1 — as)Vv/t] < 1/2, and for 0 <z < 1/2, > 2" = 1— <
x3. Using the above estimates, we get that for u € (—logt,logt),

(M) + 2 — V2a6t)?
2(t — s(u))

_a(ag —9)? 2 4alas — 0)u
S (e ) i (V)

~ 3(as —0) 5 20u? — 3(as — 6)log(as) + 2v2a(as — 0)z

201 —ap) BT 2(1 — ag)

+ R3(t, u, 2)

:a(p—l);(1—5)t+qm/¥_3(,02— D 10gt+ T3 24+ V2a(p— 1)z

1_

_ g(p —1)log(as) + Rs(t,u, 2), (3.7)

where

dafas — d)u u? 3(as —9) u u?
) = i o (et )
2au? — 3(as — 0)log(as) + 2v2a(as — 0)z u u?
" 2(1 - as) (v )
+ (2@(@5 —0)%2 + 4a(as — O)ut®? — 3(as — 0)tlogt
Rg(t,u)
2(1 - a(s)t

+ [200® + 2V2a(as — )z — 3(as — 6) log cm]t)

Ry (t,u,z)
T2t —s(u)

Then it follows from (3.5) and (3.6) that lim;_,», R3(t,u, 2) = 0 and for any u € (—logt,logt),

_ w. z 2a(as — 9) oo )3 1/2 3(as — 9) o logt (log t)?
Ry(t,u,z) < (=) (logt)°t='/% + 51 —a) _a6)1 gt ((1 WG + iz a5)2t)




2a(logt)? + 3(as — 6) log(as) + 2v/2a(as — 9))|z| ( log ¢ N (logt)? )
2(1 — CL5) (1 — aa)\/z_f (1 — a5)2t
+ (2(1(@5 — 0)%* + 4a(as — 6)(logt)t¥? + 3(as — §)tlogt

+ [2a(log t)? + 2v2a(as — 0)|z] + 3(as — 6) log a(;]t> ﬁ(log t)3t5/2

1

2 ( )
+( (log t)*Vt + 2V 2a(log t)V/t|z| + Jlogt) 2((1 — ag)t — (log )v7)’

Thus there exists a positive function r(-) with lim; r(t) = 0 such that for any u €
(—logt,logt),

—R3(t,u,z) <r(t)(1+|z]). (3.8)

For any € > 0, choose t. such that r(t) < € for any ¢t > t.. Noticing that ¢(1 — as) +
ale=*1=0) _ 94(p — 1)(1 — ), by (3.3), (3.4) and (3.7), we get that

P
e2a(p—1)(1—5)t

lim & F / e N <<T7m5t*3t—r>dréf(s, V2abt — B,_,)ds
Iy

too  13(p—1)/2

logt

apd o0 A
—a5(p V2 lim 1p6“2du/ e’m(”’l)ze’RS(t’“’z)Gf(s(u),ms(u) + z)dz.

t—o00 “logt t — S

(3.9)
Note that w};(t,m; + x) < —logP*(X; = 0) — 0, as t = oo. Then it follows from (1.8) and
Lemma 2.2 that
lim vs(t,me+2) =1— wf(z)‘

t—00 A*

Recall the definition of G in (2.13). It follows that

lim Grlast +uvt,my uyi +2) = lim Gy(t,me + 2)
1 *

= 3= Wwr(2)) + g\ —wy(2))) = Awy(2)). (3.10)

Thus, as t — oo, the limit of the integrand in (3.9) is

3(p—1)/2
B0V

8 i VRalem D gy (2)).
e (wy(2))

By (3.8), (2.28) and Lemma 2.10, we have that, for  small enough, there exist 7;, > 1 and
¢, > 0 such that, for t > T, + ¢, the integrand in (3.9) is smaller than

3(p—1)/2
q aa(p / ef;igu —V2a(p—1)z je(1+]z]) o { 63,62[@(”’1)’”]'2, z < 0;
(1 — as) 1, z >0,

which is integrable over R x R if we choose € < v2a(p — 1) and —21n+ v2a(p — 1) —e > 0.
Thus using the dominated convergence theorem in (3.9), we have that
e20(p—1)(1-0)t feo(rEa A
lim —E/ e s crtr 200=Br—r)dr ¢t (5, /206t — By_,) ds
I

too  13(p—1)/2
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3(p—1)/2 00 S
% / e?piUQdu/ e‘m(p_l)zA(wf(z))dz

3(p—1)/2  poo

) - 2a(p—1)zA

= e we(z))dz.
o | e (wy(2))

|

Lemma 3.3 Ford € (1—p, 1), it holds that for § € (1—p, 1), it holds that for any f € BT(R),
eQa(p—l)(l—cS)t

Hm — a7

E/ eI Cf(r’mét_Bt*T)d’"éf(s, V2adt — B;_s)ds = 0.
[0,£\Z¢

Since (¢(t,z) > ¢, using (2.28) and the fact that v,(¢,x2) < v(t,z), to prove Lemma 3.3,
we only need to show that

620¢(p71)(176)t

m —er s

E/ €—Q(t—s)v2<s’ Voadt — Bt—s) ds = 0. (3.11)
(0,:¢\TZ

Note that
0,4\ Z, [0, et] U ([(% — O)t, agt — (logt)VE]) U Jast + (log t)V3, (as + e)t]>
U ([et, (as — €)t] U [(as + €)t,1]) .

In the following three lemmas we handle the integral in (3.11) over [0, €t], [(as — €)t, ast —
(log t)v/t] U [ast + (logt)\/t, (a5 + €)t] and [et, (as — €)t] U [(as + €)t,t] separately.

Lemma 3.4 Let 0 € (1 —p,1). For e > 0 small enough,

e?a(p—l)(l—(S)t

et
lim —E/ e~ 1=992(s, v/2a6t — B,_,)ds = 0.
0

too  13(p—1)/2
Proof: By (2.33), we have that
v(s,vV2adt — B,_,) < Pp, (B, < V2adt) = P[B, < V2adt|o(B, : r < t —s)].
Thus it follows that
E(v? (s, V2abt — Bt,s)> <E (v(s, V2abt — BH)> < P(B; < V2adt). (3.12)

Hence, for any € > 0,

€t
E / e 902 (s, V200t — By_) ds < ¢ 'e?'e "P(B, < V2adt)
0

< g Lpacet { e_qt’ ‘ ; 07 (3 13)
-~ q e X 1 —-1/2 — a62 .
T/map]t [Pemlated®t g <0,

where in the last inequality we used (2.38). Using (3.1) and (3.2), we can choose € small

enough so that
q 020,
20[(p_1)(1_6)+q6<{q—{—04527 56(1—P70)7

which implies the desired result. O
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Lemma 3.5 Let 6 € (1 — p,1). For e > 0 small enough,

2a(p—1)(1-9)t ast—(logt)v/t (as+e€)t
lim S g (/ +/ ) e~ 1=)y2 (s, v/2adt — B,_,)ds = 0.
( a

too  3lom1)/2 as—c)t st (log )V

Proof: Put S; := (as — ¢, a5 — (logt)/v/t) U (a5 + (logt)/+/t, as + €). Recall the definition of
my given by (1.9). By the change of variables s = rt, applying Lemma 2.10 for z > 0 and
the fact v <1 for z < 0, we get that, for 1 small enough, there exists ¢, > 1 such that for ¢
large enough,

ast—(logt)Vt (as+e)t
E / —i—/ e~ =992(s,v/2a6t — B,_,) ds
(as—e€)t agt-+logt/t

ast—(logt)Vt (as+e)t
—FE / +/ o d(t=s),,2 <87 ms — (ms — V2adt + Bt_s)) ds
( )t a

as—e st+logt\/t

<2 / o-a-mip [efw%(pfl)fm(mrtf\/mtw(l_r)t) A 1] dr
n s,
We claim that for any b; > by > 0,

1 1 1 2
E —b1(b2+B1) ANl) < — — 7b2/2, 3.14
(e ) Al ntn) (3.14)

Indeed, the left-hand side of (3.14) can be written as
E (e %8 By + by > 0) + E(By + b, < 0).

By (2.38), we have that
1
E(B; + b, <0) =E(B; > by) < _b_2 o 3/2

By the Girsanov theorem, we have

E (e*bl(b2+Bl); Bl + bg > 0) — e*b1b2eb%/2E<Bl — b1 + b2 > O)

1 1 €—b1b2€b§/2e—(b1—b2)2/2_ 1 1 e—b§/2

<—— -~
TV2mbr — by V2m by — by
Now (3.14) follows immediately.

We will use (3.14) with by = 2(v2a(p — 1) — n)/(1 — )t and by = m(—?ﬁft For

€€ (O, o1 O A (1—a5)>, we have for any r € Sy C (a5 — €, as + €),

\/ﬁ(a5+e—§)ﬁ>b V2al(as — 6—6)\/%_ %@ logt
V(1 —as—e) V(1 —as+e) VI—as—e) VvVt

and

2 _
by — by > 2(v2a(p WA —ar =i Y2elaste=9) 4

(1—@5—6)
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_ m 2n
—foxfﬁP@—Uﬂ—aﬂ—@rﬂ”—@p—UﬂfZiu—ayf)v?
> i [ - ]

where in the final inequality, we used (p — 1)(1 — as) = (as — 0). So if we choose n €
(0,v2afas — & — (2p — 1)€]/2), and then for ¢ large enough, by > by > 0. Thus, using (3.14),
we have that, for ¢ large enough and r € S,

E [6—2<Jﬁ(p—n—e)(mm—mﬁw(l_w A 1] < O V2o T
31=8)  _ a(r—6)?
<Ot V*r-a-ae” =0 ", (3.15)

Here in the last inequality we used the following facts: r < as +¢e < 1 and

3(1—6) _a(r—8)>
S t2(17a576)€ (1-7r)

(Mt —V/2adt)? 3(r—8)  a(r—6)2

e 20-nt S (rt)z(l—r)e_ (=) t

t

For any x € (0,1) and ¢ € R, one can prove that

a(r —c)?

ZQa(p—l)(l—c)—i—ap2<1— 1_C—x>2. (3.16)

q(1 —z) + P

l1—=2

For a proof of the above inequality, see Lemma A.2 in the Appendix. Using the inequality
above, we get that, for r € Sy,

a(r —6)?
(I—r)

Thus, there exists 6 such that

e20(p—1)(1-0)t ast—logt\/t (as+e)t .
PR /( +/ e 0% (5,200t — By_) ds

as—e)t st+log ty/t

,02 (log t)Q'

q(1—r)+ .

> 2a(p — 1)(1 = 8) +ap®(as —7)* > 2a(p — 1)(1 = 6) +

<Ctlemor’loat)?* _, 0, ast— oo.

Lemma 3.6 Let § € (1 —p,1). For e > 0 small enough,

eQa(pfl)(lfé)t (as—e)t t
lim sup B / + / 102 (5, /2adt — B,_,) ds = 0.
(

t—o0 et as+e)t

Proof: Set Z = (¢,a5 — €) U (as + €, 1). By the change of variables r = s/t, we get that

(as—e)t t
E / +/ e~ 11=992(s,V/2adt — B,_,) ds
et (as+e)t

=tE / e*q“*r)tzﬂ(rt, V2adt — By_py) dr
T
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_ (z—VZast)? 9
=0t v (rt, z) dz

1
=tk / eiq(lir)t dr/ ——€
z R \/27(1 — 1)t
(\/ﬁartf\/ﬁf\/%ét)Q
=V 2Oét2/ dT'/ \/%eq(lr)te 2(1—r)t UQ(T't, V 20&67“75 — \/E) d9
A R 7T — 7"

\\?3/2 %(/ / /) el O (vt V2abrt — i) df

For I,(t), by Lemma 2.9(2) with ¢ replaced by rt, we have that for et > ¢y and 0 < 1 — p,
v(rt, V2a0rt — /rt) < erte” af?rt ,—qrt.

Then by the change of variables § — —0 in [;(t), we get that for t > ty/e,

a(Gr—l—%%—(S)z

3dr
) < A2 i exp{ - [q(l +7) + + 2049%"]75} dé
vV 1 — T Jp— (1 - 7“)
3 dr oe 2
< 02t7/2€7q(1+6)t67a52t r 672049 t 46
- zV1—r
— 2172e—a(0+e)t —ab?t / 3 dr " dr< C«t3€*qet€*(Q+a62)t'
2art /1 —r

Since q + ad? > 2a(p — 1)(1 — §), it holds that

‘ e2a(p—1)(1—5)t
A 5o

For I5(t), by Lemma 2.9(2) and the change of variables 6 — \/ﬁ — 0, we get that for
et > to, Io(t) is less than or equal to

02t7/2/\/r—3Trdr/11pexp - [q(l—r)—i—a(er(_lﬁ_é) —|—4a(p—1)(1—9)r]t}d6

dr/ Vaari [q(lfr)Jr"‘(ff =55 alo- 1)(1*9)’“}22@(;}*1)@(}1&
1 [ —

—247/2 /
Vit

§0t7/262m(p 1)\/67 1nfr€Z,9<1 H(Q,T')

Y

where H(0,7) :=q(1 —r) + o‘(g:f;)Q +4a(p —1)(1 — 0)r. We claim that

inf H(0,r)>2a(p—1)(1—9). (3.17)

reZ,0<1

Then it follows that
€2a(p71)(176)t
lim —————1I5(t) = 0.

tooo  $3(p—1)/2
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Now we prove (3.17). Note that

2 _
H(0,r) =— <6— 0 +2(p

1—r r

(1 - 7”)> —alp—1)Bp—1)(1 —7) +4da(p—1)(1 —9).

Forr*::%gr<l(thatiswﬁl)and9<l,

H(.1) 2 ~a(p= 1)@= D1 =) +a(p- )1 -5) = 2a(p— 11—+ L DL

For r € [0,7*] NZ and # < 1, since w > 1, we have that

where in the second inequality we used (3.16). Thus (3.17) is valid.
Finally, we deal with I3(¢). Since v(t,z) < 1, we have

NN
al r— -6 t
V2at
< t3/2 rdr 6_%_(1(1_7%

VI )

= —t d?“/ e~ 11"t =2/2 4,
\/_a /I @H—ﬁ

< %t /I e~a-ntp (191 > V2ai(r —0) - 1) dr. (3.18)

do

then

—a(=ntp [ B, > 2at(r —9) — 1 < ea0-nt < efq(lf‘s)te\/%\/E
- V1—r N

267204(/)71)(lfé)tefa(pfly(1*5)'56\/2%\/{' (3-19)

Ifr<5—|—\/—t,

If 6 + 2 <7 <1, then mjw > 1, and thus by (2.38),

ca-rp (B > V2at(r —4§) —1 < 1 V1—r 6_q(1_r)t€_<¢ﬁ;g7:jgfl>2
- V1—r T V2 2at(r —0) — 1

1 2
—6— t
a(r \/2at)

< e antem T (3.20)
It follows from (3.16) that for r € Z,
a(r — L_)2
g(1—7)+ V2ol

(1=7)
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>2a(p — 1) (1—5— \/%) + ap? (a(g—r—i- p\/za)z
>2a(p — 1)(1 — 6) + ap? (e— )2 —V2a(p— 1)t

1
V2atp

Then we continue the estimates in (3.20) to get that, if 6 + \/% < r <1, then

Vir

Combining (3.18), (3.19) and (3.21), we get

i (Bl Vil =) - 1) T G T T Y S

e?a(p—l)(l—ﬁ)t

The proof is now complete. u
Proof of Lemma 3.3: By Lemmas 3.4-3.6, we have (3.11) holds. Hence, by the para-
graph above Lemma 3.4, the assertion of Lemma 3.3 follows. O

3.2 Proof of Theorem 1.2: 6 =1—p

It follows from Lemma 2.5 that, to prove Theorem 1.2, we only need to consider the limiting
property of vs(t, v/2adt). It follows from Lemma 3.1 that for 6 =1 — p <0,

lim ¢ =30~/ Aelata(=pt1r (4 \/2a(1 — p)t) = 0.

t—o00

Thus, by the decomposition (2.10), to prove the desired result, it suffices to show that

lim ¢ =3~ D/Ae(atale=D2t, (1 \/2a(p — 1)t)

t—00
L[ s6-1/2,-as /oo —VEa(p-1
= S e % ds e V2P=D2z A (4 (2))dz.
= 3 (1 (2))
The display above follows from Lemmas 3.7 and 3.8 below. In Lemma 3.8, we will show that

t—3(p_1)/4e(q+a(1—p)2)tP (MtI S /205(1 o p)t, T ¢ |:t o (10g t)\/£7 t — t1/4i|> N 0

Thus, on the event {Mtl <V2a(l - p)t}, with large probability, the first branching time of
the skeleton should happens in the interval [t — (log t)V/t, t —tV/ 4].

Lemma 3.7 It holds that for any f € H,
) (log )Vt , )
tli>m +=3(p=1)/4 g (a+a(1=p)*)t R /1/4 e Js Cf(m/ﬁ(lfp)t*Bt—r)dTGf(S’ V2a(1 = p)t — B,_,) ds
> t

L7 s0-1)/2 —aps? /oo —VFa(p-1)
= s e~ % ds e VP2 Alwe(2))dz.
- / - (wy(2))
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Proof: In this proof, we always assume that ¢ > 1 is large enough such that logt < /7.
Using an argument similar to that in the first paragraph of the proof of Lemma 3.2, we get
that, as t — oo,

(log t)v/t . ~
E/ e~ i G rVaa(-p)t=Bir)dr iy (s, V2a(l —p)t — Bt—s) ds
t

1/4

(log t)v/t R
NE/ e 1=9Qq, (s, V2a(l — p)t — Bt_s> ds
¢

1/4

logt (t—uV/t)
[ e
e/ (t — U\/_

For u € (t~/4 logt), we have that

ﬁ+z+\/%(pfl>t)2 R
2(t—u/t) Gf ('UJ\/%, mux/% + Z> dZ <322)

(mu\/g+z+\/%(p—l)t)2:(\/2_( — D)t + V2auvt — \/_log(U\/_) )

=2a(p — 1) + 2au’t + 4a(p — Dutv/'t — 3(p — 1)t log(uv/t)
+2v2a(p — 1)zt + Ry(t,u, 2),

where

Ry(t,u,z) = (—2\5)% log(uv/t) + z) 2 — 3uv/tlog(uv't) + 220N/t 2
> —3(log )2Vt — 2v/2a(log t)v/1|z].

Using the Taylor expansion of (1 — z)~!, we obtain that, for u € (/4 logt),

L L1 1<1+u+u2+R(z& ))
= = - - , U )
20t —uvt) 201 —u/iE 2t N

where |Rs(t,u)| < 2(logt)*t~3/2. Thus

(M7 + 2+ V2a(p — 1)t)* p 3(p—1)
20— ) =a(p—1) t—l—qu\/f—Tlogt

3
+ap*u® +V2a(p — 1)z — i(p — 1) log(u) + Rs(t, u, 2).

Here lim; o, Rs(t, u, z) = 0 and there is a positive function 7*(-) with limy_,., 7*(¢) = 0 such
that —Rg(t,u, z) < r*(t)(1 + |2|) for all u € (t71/4,1logt). Now, using (3.22), we get that

) (log )Vt
lim ¢~/ glata-0?g /

t—o00 $1/4
logt
= lim \/E U 3(p— 1)/2 —ap?u d’LL/ —V2a(p—1)z —Rs(tuz (U\/— mu\[_|_2> dz.
t—o00 t—1/4 27T(t . U\/%)

e ) Cf(“m(lfp)t*Bt—r)dTéf (3, V2a(l - p)t — Btfs) ds

Using an arguments similar to those in the proof of Lemma 3.2, the desired result follows
from the the dominated convergence theorem. ]
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Lemma 3.8 It holds that for any f € BT(R),

lim t_3(p_1)/4e(q+o‘(1_p)2)tE/ e U Cf(T"/ﬂ(l_p)t_Bt*’”)dTéf(S, V2a(l — p)t — B;_)ds
t=o0 [0,6)\(¢1/4,(log t)V/t)
= 0.

Proof: We only need to show that

elata(l—p)?)t
tlim t3(p—1)/4E/ e_q(t_S)U2($> V2a(l — p)t — B, s)ds = 0.
*° 0,0\ (t1/4,(log t)v/?)

We prove the above result in three steps.
Step 1: By (3.12), we have that

E <U2(57 V2a(1 — p)t — BH)> <P <Bt <V2a(1 - p)t) < 2@(;_ 1)\/Eea<p1>2t.

Thus, for any T' > 0,

6(q+a(p—1)2)t T . ,
B—1)/4 E/ e =02 (s,v/2a(1 — p)t — B,—,) ds

0
1 1

T
< e?® ds
< 2/alp — Vi Be

Step 2: Using arguments similar to those in the proofs of Lemmas 3.5 and 3.6, we get
that,

— 0, ast— oo. (3.23)

elatalp=1)*)t t
t3(p—1)/4 E/\/ e_q(t_S)v2(S’ V2a(l —p)t — B;_s)ds — 0, ast— oo.
tlogt

Step 3: Note that there exists Ty such that m, > 0 for all s > Tj. Using Lemma 2.10, we
get that, for 7 small enough, there exist ¢, > 1 and T;, > 1 such that for T > T}, + Tj,

1/4
E/t e~ 1=0%(5,v/2a(1 — p)t — B,_,) ds
Tt1/4
:E/ e 102 (s, m(s) — (m(s) +vV2a(p — 1)t + B;_,)) ds
Tt1/4
<2 / ¢~ 1(1=9) [ ~2(V2(p=1)=n)(m(}+VER(p- 1)+ Bes) p 1] s, (3.24)
T

Similar to (3.15), we have that, for T < s < t!/4,

E[e2(V28(p—1)=n) (m(s)+v2a(p— 1)+ Brs) 1]
mi(s « — 2
gC’t’l/QeJ ()%ﬂs D)

3(p—1)

<Ot V25 el (3.25)
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with C being a positive constant. Here in the last inequality, we used the fact that

(m(s) +v2a(p— 1)t)2  (V2aps — 575=logs +v2a(p —1)(t — 5))°
2(t —s) 2(t —s)

>a(p— 1)t —s)+V2a(p—1) (\/ﬂps — 2\5)% log s)

3
=a(p—1)*+qs— §(p —1)logs.

Putting (3.25) back to (3.24), we get that

$1/4

(g+a(p—1)?)t o
R D/ E/ e 1=992(s,v2a(1 — p)t — B,_,)ds < Ct™V/* B 0, ast— oo.
T

Now the proof is complete. O

3.3 Proof of Theorem 1.3: d <1 —p
Note that, by Proposition 2.6, we have

ve(t,z) = [ ~Jo ¥ O Hu (tore=Br)) dr B, <«

+ E/ e Jo Ve teras B dr G (f — s o — By)ds.
0

Using the same arguments as those in [12, Lemma 1.5, page 1211] or [18, Proposition 2.9],
the above integral equation implies that

vi(t,z) = e 'E [Bt < x} + E/t e"1=9G (5,2 — By_,) ds, (3.26)
where
Gr(t,x) : = Gylt, ) — (W' (X" +uj(t, @) — q)ug(t, x) (3.27)
_ Ai [0+ up(t, 1) Nug(t,2)) — o + i (t,2)] + vt 7).

It follows from Lemma 2.5 that, to prove Theorem 1.3, we only need to consider the
limiting property of vs(t, v/2adt). Using L’Hospital’s rule, one has that

. PBi>z) 1 [Zevirdy 1
e \/gxlg?o e far (3.28)
It follows that
2 1
lim V/teldtad)t *nt[Bt < V2 525} = hm Vielited)te—aty [Bl >V 2a|5|\/¥] =
t—00 2y/mald
(3.29)
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Hence, by (3.26), to prove the desired result, we only need to prove that

t
lim Vet / e~ 1=9G (5,208t — B,_,) ds

0

I 2 e
-— (a-a0%)s q / e d
e S € S, z)dz,
V2T /0 R 1(5:2)

which will follow from Lemmas 3.9 and 3.10 below. In Lemma 3.10, we will show that, for
any T' > 0,
Vielatad)p (M,f < V2ast, T € [0,t — T]) 0.

Thus, on the event {Mtl < 2a5t}, with large probability, the first branching of the skeleton
happens in the interval [t — T, ¢].

Lemma 3.9 If§ < 1— p, then for any f € B, (R) and any T > 0, it holds that

=T
lim \/ge(qua‘sQ)tE/ e~ 179G 1 (s5,v/2a6t — B,_,) ds
0

t—o00

1 2 Ior
(g—ad )sd / 2a5zG d
= (& S (& S, 2)dz.
V2T A R f( )

Proof: Note that

\/Ee(q+a52)tE/ G_Q(t_S)Gf(S’ V 20[(St - Bt—s) ds
0

(z—2a85)2
2= Gy(s, z)dz.

:/ \/E e(q—a52 st/ 6\/5626_
0 \/27T(t — S) R

The absolute value of the integrand above is less than \/%7 1+ 5/Tela=0d)seV2002| G (5, )
thus by the dominated convergence theorem, it suffices to show that

/ Vs + Teli-09)s ds/ em‘sﬂGf(s, 2)| dz < oc. (3.30)
0 R

By (3.27), (2.28) and the fact that v(¢,2) < v(t,x), we have that
(Gr(s,2)] < d(uj(s, 2))vs(s,2) + Gyls, 2) < d(uj(s, 2))u(s, 2) +qu(s, 2)*. (3.31)

We will prove (3.30) in two steps. Recall that k(¢)

Step 1: First we consider the integral over s €
¢ is increasing, by Lemma 2.7(1), ¢(u}(s, 2)) < o(k
z) = P(B; < z/4/s). Thus we have for 0 < s < A4,

~ log P*(|| X;]| = 0).
,A), where A > 0 is a constant. Since
s)). By lemma 2.9(1), v(s, z) < P(Bs <

/ \/ﬁﬁzgf)(uf(s 2))u(s, z)dz < ¢(k / \/@;ZP By < 2/\/a)ds

=/50(k / eV2BV=P (B, > 2)dz < /s50(k / eV2lVAp (B > 2)dz.
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Since P(B; > z) ~ \/%2_16_22/2 as z — 00, we have [ eV2lIVA:P(B) > 2)dz < oo, Thus

/ e‘/%‘sng(u}(s,z))v(s,z) dz < Cv/sp(k(s)). (3.32)

For any e > 0, since v(s, z) < 1, we have

/0 5 V20w (s, 2))u(s, 2) dz < s (k(s)). (3.33)

By (3.32), (3.33) and Lemma 2.8, for any ¢ > 0,
A s€
/0 Vs + Te(qo“sg)s/_ em‘szgﬁ(u’}(s, 2))u(s, z)dzds < oc. (3.34)

Since ¢/(A) = ¢(A* + A) is decreasing and ¢(0) = 0, we have
d(\) < ¢'(0)A. (3.35)
Thus, by (2.30),
S(ui(s,2)) < @' (0)us(s,2) < O(1+ 2~ P)elereds 25,

Since v(s, z) < 1, we have for 0 < s < A,

/ em52¢(u}(s,z))v(s,z) dz < C’e(“+°‘)s/ eV2ellz(1 4 2727 qz

Ac 00
< Celotod [/ (1+2"Ndz + / e~ V2aldlz(q 4 Zﬁ2/ﬁ)dz] < CO(1 + 55172/,

S

Now we choose € small enough such that €(2/9 — 1) < 1. Thus
A 00
/0 Vs + Teld=00)s /6 e‘/ﬁgqu(u}(s, 2))u(s, z) dzds < oo. (3.36)
Combining (3.34) and (3.36), we obtain that
A o
/ Vs + Te(q_o“sg)s/ em‘sng(u}(s, 2))v(s, z) dzds < 0. (3.37)
0 —00

Step 2: By Lemma 2.7(1), sup,. 4 e%k(s) = e*k(A) < oo. Hence we have for s > A,

d(us(s,2)) < ¢'(0)uj(s, z) < ¢'(0)k(s) < ¢/(0)e k(A)e .

Thus we get that, for s > A,
/ em‘squ(u’}(s, 2))v(s, z)dz < Ce / V2% (s, 2) dz
R R

=CvV 20(86_(186_\/%6\/5/ ?*%%04(s,v/ 2005 — /) db. (3.38)
R
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We will divide the above integral into three parts: [~ + f117p + fj;}p . We deal with them
one by one. Using Lemma 2.9(2), we have that for A > t; and s > A,

oo o0 1
62a586U s, 200s — \/g do < / e—2o¢\5|59 do = —6—2a\6|s’
/1 ( )d0 < 1 V2ald|s

1

1
/ 20«559 ( /9 afs — \/E) de < CS/ 62045506—204(/)—1)(1—9)5 do
1-p 1—p
< 65)067204(/#1)(/)thS)s7

and

1—

1—p p )
/ 2&659 ( \/_@S . \/g) do < CS/ 62a68967(q+a9 )s do

—00

I 0—6)2 1/2 52
=csel1t )s/ e~ @s(0=07 49 < Ogl/2e(-atad)s,

o0

For <1 — p, one can check that
200 < —2a(p —1)(p+6) < —q + ad>.

Thus for s > A,
/00 20050y (5, /2005 — \/5) A < Csel-a+ad®)s, (3.39)
It follows from (3.38) and (3.39) that
/ Vs + Teld=%) / V2% g (u* (s, 2))u(s, 2) dz
SC/A Vs + Ts2e™15e V2005 g < o0,
Combining the two steps above, we get
/OOO Vs + Teli=ed)s ds/Reméng(u}(s, 2))u(s, z)dz < oo.
Similarly, one can prove that
/00 Vs + Teli-09)s ds/ﬂgem‘szv(s, 2)*dz < .
0

Hence (3.30) holds and the desired result follows immediately. O

Lemma 3.10 If§ <1 — p, then for any f € B (R) and T > 0,
t
tlim \/%6(‘“0‘52)@/ e =G (s, vV2adt — B;_,) ds = 0.
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Proof: Note that
T

¢
E/ e~ 1=9|G (s, V2t — B;_,)|ds = / e PE|G¢(t — s,V2adt — By)|ds
=T 0
T
:/ e E[|G4(t — 5,V2a6t — B,)|; By, < —(et — V)] ds
0

T
+/ e E[|G(t — s, V206t — By)|; By > —(et — V)] ds,
0

where € < 1 — p — 9 is a small constant.

By (3.35) and Lemma 2.7(1), sup,., ¢(u}(t,z)) < ¢'(0) sup,s up(t, x) < ¢'(0)k(1) < oo.
Since v(t,z) < 1, we have sup,.,sup, |Gf(t,z)] < +o0o. Hence we have, for t > 1 large
enough, and s € (0,7,

B[1G(t — 5, V3adt - BJ)| B, < —(et = V1)| < CP (B, > (et - V)

et—\/f et—\/¥

where in the second inequality, we used (2.38).
Thus for any € > 0, as t — o0,

<0V _tavirien < o VT waviren),

T
\/ie<q+a52>t/ e B [|Gf(t — 5,V2adt — B,)|; By < —(et — Vt)| ds — 0.

0

Note that if By > —(et — /), then
V2abt — By < V2a(0 + )t — VE<V2a(8 + €)(t — ) — VE—s.
Using Lemma 2.9(2) with § =0+ e <1—p, fort >ty + T and s € (0,7),
v(t — 5,V2a6t — By) < v(t — 5,V2a(0 + €)(t — 5) — VE— 5) < cte 1) gal0+ (t=s),
By Lemma 2.7(1), we have that for t > to + T and s € (0,7T),

P(up(t — s, V2ait + 2)) < ¢’ (0)u}(t — s, V2ait + 2)
<@ (0)k(t — 5) < ¢'(0)et0k(tg)e 1),

Thus, by (3.31), we get that, if By > —(et — \/z_f),
|Gt — 5,V2a0t — B,)| < CtPe2a0=9) gm0+ (1=s)

SC€2qsea(6+5)28t2€_2qt€_a62t6_2a66t. (340)

It follows that, as t — oo,

T
\/ge(qwé?)t/ e~ PE[|G4(t — s,vV2a0t — B,)|; By > —(et — /)] ds

0
T
§0t5/2€—(q+2a65)t/ eqsea(5+5)25ds < C(t5/2€—(q+206(56)t N 0’ (341)
0

if we choose € small enough such that g + 2ade > 0. The proof is now complete. |
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A Appendix

Lemma A.1 Fork > 1,
P(|1Zi] < k) < ke

Proof: Let Z] be a continuous time branching process with branching rate ¢, and when a
particle dies, it splits into two particles. Then Z, is a pure birth process, and the distribution
of Z] is given by
P(Z/ <k)=1-(1—e )"
According to the definition of Z;, each particle splits into at least two children (py = p; =
0), then we get that

P(|Z] k) S P(Z <k)=1-(1—e ™} < ke ™.

O
Proof of Lemma 2.10: Since v(t, m; — z) < 1, it is clear that the desired result is valid
for z < 1. In the following, we only need to consider the case z > 1. Put a* = v2a(p—1)/q.
Assume that n € (0,a*/2) and t > 1.
(i) First we deal with the case z > ‘%\/Z Since for any 6,

q+ab* —2a(p—1)(1—-0)=alp—1+6)*>0,

which implies that
q+ab* > 2a(p—1)(1 - 0). (A1)

Then by Lemma 2.9(2), one has that there exist ¢y > 1 and ¢ > 0 such that, for any t > ¢,
and 0 < 1,

v(t, V200t — Vt) < P(MZ < V200t — V) < cte 2P~ DU=0) (A.2)

where in the last inequality we used (A.1) to get an uniform upper bound for the two cases
in Lemma 2.9(2). Thus, using the above inequality with § = 1 — ?ft < 1, we get that for
any t > to,

P(MZ <my —2) < P(ME <V2at — z) = P(MZ < V2abt — /1)
< Cte*\/ﬂ(f’*l)(zf\ﬁ) < CZQQ*\/%(P*UZQ(IW’ (A.3)

where in the final inequality, we use the fact that ¢t < (Lz)* < 2% and v2a(p — 1)Vt =
qa* V't < qnz.

(ii) Now we consider the case z € [1, 4 C/t]. Put K := [a*/n]. Note that K > 1. Define
s, = nzn. In the following, we always assume that ¢ is large enough such that sx < t. Note
that

K
P(M7 <my—2) SP(|Zoe| < 2) + Y P (120l < 2 <12, M7 <y —2) . (A4)

=1
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By Lemma A.1, we have that
P(|| Z, || € 2%) < 2%e 9K = 2 01K= < ;2eim7e~V2a(o- 1)z, (A.5)

Now we deal with the second part of the right-hand side of (A.4). For any s > 0, let L,
be the set of all particles of Z alive at time s. Suppose 1 < [ < K. Note that for any
u € Ly, zu(s1) Ly ~ N(0,s;). Let MtZ“ '= MaXyer, u<w 20(t) — 2u(s1), for any u € Ly,. By
the branching property of Z, given o(|| Zi||,s € [0,s)]), {M/",u € L} are iid. with the
same distribution as (M7, P), and independent of {z,(s;),u € Ly, }. Tt is clear that

t—sp?

MZ = max|z,(s;) + M/™"].

’U,Eﬁsl

It follows from [14, Lemma 5.1] that
P (M7 <m; —z|o(||Z], s € [0, 51]))

o(|Zs € [o,sm)

’ue[:sl

<P (Y + max MtZ’" <my—=z

Since Y is independent of o (|| Zs||, s € [0, ], we continue the above estimation:
P (MtZ <my—z ‘U(HZSH, s € [0, sl]))

<PY <my—my_s, —2)+P <max MtZ’u <myu_g|o(||Zs||, s € [0, sl]))

u€Ls;

=P (Y <my—mpy )+ [P, < my)] P

t—s;
Thus

P (|Zo,| < 2 < 12|, M7 <y — 2)
P (|Zo | < 2 < | Z,DP(Y <my—myyy —2) + [P(MZ,, <miy)]

22
Since t—s; > t—sg > t—a*z > t—%\/% — oo ast — oo and limy_,.. P(MZ < m;) € (0,1),
there exist t(n) > 1 and ¢y > 0 such that for all ¢t > ¢(n),

[P (0

t—s;

<my_g)]F < e (A.6)

As my _th_Sl — 2 < —z(1—=+2anl) and v2anl < V/2anK < QQ(’;_ ) = p+1 < 1, we have by
Lemma A.1,

P ([ Zs || <22 <1 Z]l) P (Y <y —my g, — 2)
<2eal=1nzp <le < —z(1-+v2 nl))

—2p—a(l=1nzp (31 > \/—< /_QQ\/ﬁ))
< 1 43/2p=a(l=1)n < \/_> le 3 (g —V2aV/il)?z
< 7 — 2

27
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-1
< 1 ( 1 _\/%\/a_*> 53/2 o107 p—V2a(p=1)z (A.7)
2m \vVa*

Here in the second inequality we used (2.38), and in the final inequality we used the facts
that nl < nK < a* and %(ﬁ —V2av/M)? + qnl = (a + q)nl + ﬁ —V2a > +V2a(p—1).

Combining (A.3)-(A.7), we get that for any n € (0,a*/2), there exist ¢, and ¢y, C > 0
such that for ¢ > ¢, +t; and z > 1,

P(M7 <m;—2) < 0(226‘”26_@(’)_1)2' L)

Since 2?2 < 2(qn)~2e?*, and cyz? > qa*z — %, thus

*)2

(qa
P(MtZ <my—2)<C (2((]77)_2 +e “ico ) 2anz o —V2a(p—1)z

The proof is now complete. O

Lemma A.2 For any x € (0,1) and ¢ € R,

a(r —c)?

> 2a(p—1)(1 —¢) +ocp2<l — 1;C —x)z.

1_
¢(l—2)+ ——

Proof: Note that the function (0,00) 2 z — g(z) = alx + Z—% achieves its minimum 2a;as
at the point © = ay/a; and for any = > 0,
ai 2
9(x) = 2a1a; + ;(f —az/ar)”. (A8)

Then we have that for any = € (0,1)

q(l—x)+%:(a—i—q)(l—x)—l—%—Qa(l—c)
=a[p*(1 — ) + % —2(1 —¢)]
- _ . p? 1= . 2
—af200— 1)1 )+1_x(1 ; )}
oy Ll—c . 2
> 2a(p—1)(1 - ) + ap*(1 p )
where in the third equality we used (A.8). O
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