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Abstract

Let N(t) be the collection of particles alive at time ¢ in a branching Brownian motion in R,
and for u € N(t), let X, () be the position of particle u at time ¢. For § € R?, we define the
additive measures of the branching Brownian motion by

(14 Lo —o-
pf(dx) = e~ (=)t Z e GX“(t)5(xu(t)+9t)(dX)-
u€N (1)

In this paper, under some conditions on the offspring distribution, we give asymptotic expansions
of arbitrary order for u?((a,b]) and uf((—oo,a]) for € R? with ||§|| < v/2. These expansions
sharpen the asymptotic results of Asmussen and Kaplan (1976) and Kang (1999), and are analogs
of the expansions in Gao and Liu (2021) and Révész, Rosen and Shi (2005) for branching Wiener
processes (a particular class of branching random walks) corresponding to 6 = 0.
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1 Introduction and main results

1.1 Introduction

A branching random walk in R? is a discrete-time Markov process which can be defined as follows:
at time 0, there is a particle at 0 € R? at time 1, this particle is replaced by a random number
of particle distributed according to a point process £; at time 2, each individual, of generation 1,
if located at x € R?, is replaced by a point process x + Ly, where Ly is an independent copy of
L. This procedure goes on. We use Z,, to denote the point process formed by the positions of the
particles of generation n.

Biggins [5] studied the LP convergence of the additive martingale

/ e %7, (dx),

where m(0) := E ([ e 9*Z;(dx)). He used the L convergence of the additive martingale to study
the asymptotic behavior of Z,(nc + I) for fixed ¢ and bounded interval I. To describe Biggins’
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result, we introduce the following additive measure uf"’ of the branching random walk, which is a
shifted version of the measure introduced before Theorem 4 in [5]:

pZ9(A) == m(9)™" / e Y1 4(y — con)Zn(dy), A e BRY), (1.1)

with (cg); := m(0) 'E ([ wie ?*Z1(dx)). [5, Theroem 4] implies that, in the weak disorder regime
(i.e., —logm(0) < —0 - vm(6)/m(0)), if there exists v > 1 such that E(W7(0)Y) < oo, then for
x € R4 and h > 0, as n — o0,

(2h) " Woo (6)

(2ndet(Te)) 42

n2uZ0(x + I,) —
where Wao (0) := limy, 00 Wy, (0), I, = [~h, h]¢ and

(S0)s.j :m(0)1E</(a:i — (co)i)(wj — (ce)j)e*f’-le(dx)), ije {1, ..,d.

In the case d = 1, Pain proved that, see [I5 (1.14)], in the weak disorder regime, if there exists
v > 1 such that E(W;(0)7) < oo, then for any b € R, as n — oo,

120 ((—00,b%9v/n)) — Woo(0)®(b)  in probability,

where ®(b) := \/% ffoo /242,

For the case 6 = 0, there are many further asymptotic results. In the case when d = 1 and the
point process L is given by £ = Zf; 10x;, where X; are iid with common distribution G and B is
an independent N-valued random variable with P(B = k) = py and p := ), kpr, > 1, Asmussen
and Kaplan [2, 3] proved that if G has mean 0, variance 1 and > re, k(log k)1 Tp; < oo for some

€ > 0, then conditioned on survival, for any b € R,
120 ((—00,bv/n)) =3 Weo (0)® (D),  a.s. (1.2)

They also proved that if G has finite 3rd moment and Y -, k(log k)3/2tep, < oo for some £ > 0,
then, for any a < b € R, conditioned on survival,

V2rnpZ([a,b]) =3 (b — a)Wso(0), a.s. (1.3)

Gao and Liu [I0] gave first and second order expansions of ug’o((—oo, by/n]). A third order ex-
pansion was proved by Gao and Liu [9, [II], where branching random walks in (time) random
environment were studied. They also conjectured the form of asymptotic expansion of arbitrary
order for pZ%((—o0, by/n]). For general branching random walks, results similar to and
were proved in Biggins [4].

When the point process L is given by £ = Zf: 10x, where X, X, ... are independent d-
dimensional standard normal random variables and B is an independent N-valued random variable
with P(B = k) = py and p := ), kpr, > 1, Z, is called a supercritical branching Wiener process.
Révész [17] first proved the analogs of and for branching Wiener processes, then Chen
[6] studied the corresponding convergence rates. Gao and Liu [§] proved that, for each m € N,
when Y2 k(log k)t pp < oo for some A > 3max{(m + 1),dm}, there exist random variables
{Va, |al] < m} such that for each t € R,

mo 1\ a
(e til) = wltVo+ 30 U 57 2R, o), as
(=1 la|=¢



where for a = (a1, ...,aq), |a] = a1 + ... + ag, al = a1!---ag!, P4(t) is the distribution function of a
d-dimensional standard normal random vector and D*®,(t) := 0;}'...0;¢®4(t). For the local limit
theorem (L.3), Révész, Rosen and Shi [18] proved that, when Y p° k*py < oo, for any bounded
Borel set A C R?,

(27m)d/2 g_: —1° Z S Ch(—1)P My (A)Voa o+ 0(n ™), a5, (14)

(=0 a=t & b<2a

where b < 2a means that b; < 2a; for all 1 < ¢ < d, C’%’a = C’g;l .
fA xlfl . 'dedazl...dxd.

For the lattice case, analogs of and can be found in [7, 12], and an asymptotic
expansion similar to for Z,,({k}) was given by Griibel and Kabluchko[I2].

In this paper, we are concerned with branching Brownian motions in R%. A branching Brownian
motion in R is a continuous-time Markov process defined as follows: initially there is a particle
at 0 € R?, it moves according to a d-dimensional standard Brownian motion and its lifetime is an
exponential random variable of parameter 1, independent of the spatial motion. At the end of its
lifetime, it produces k offspring with probability p; for £ € N and the offspring move independently
according to a d-dimensional standard Brownian motion from the death location of their parent,
and repeat their parent’s behavior independently. This procedure goes on. We will use P to denote
the law of branching Brownian motion and E to denote the corresponding expectation. Without
loss of generality, we assume that

o
Z kpk = 2.
k=0

Let N(t) be the set of particles alive at time ¢ and for u € N(t), we use X,,(t) to denote the position
of particle v at time t. Define
Z %, (0

ueEN(t

-Cotand Mp(A) =

For 0 = (91, ...,Qd) S Rd,

Wi(0) = e 0190 37 0%t
u€N (t)

is a non-negative martingale and is called the additive martingale of the branching Brownian
motion. When @ is the zero vector, W;(6) reduces to e *Z;(R%). Tt is well-known that (for d = 1,
see Kyprianou[T4]), for each § € RY, W,(6) converges to a non-trivial limit W..(#) if and only if

10]] < v/2 and
Zk‘ log k)pi, < 0. (1.5)
k=1

From now on, we will only consider § € R? with ||0]| < v/2. For any set A C R and a € R, we
use |A| to denote the Lebesgue measure of A and aA := {ax : © € A}. Asmussen and Kaplan [3]
Part 5] proved that when d = 1, under the assumption » - k?pi, < oo, for any Borel set B with
|0B| =0, as t — oo,

e 'Z (\ﬁB) — Mi;;%o)/Be_z2/2dz, P-a.s. (1.6)
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and that for any bounded Borel set B with |[0B| =0, as t — oo,
V2rte ' Z, (B) — |B|Ww(0), P-as.

Kang [13, Theorem 1] weakened the moment condition and proved that (1.6) holds with B =
(—00, b] under condition (|L.5]).

Similar to (T.1)), we define the additive measure uf of branching Brownian motion as

—(14 e 6.
pd(dx) = e 0+ 2 Z e GX“(t)(s(xu(t)Wt)(dx)-
ueN(t)

The aim of this paper is to prove asymptotic expansions of arbitrary order for ¢ for § € R? with
10]] < V2, see Theorems and below. These expansions sharpen the asymptotic results of
[3, 13, Part 5] mentioned above. The asymptotic expansions of [§, [I8] are for the additive measure
ug’o of branching Wiener processes, while the asymptotic expansions of Theorems and are
for the additive measure p¢ of branching Brownian motions with @ not necessarily 0.

One might expect that the asymptotic expansions for branching Wiener processes, when con-
sidered along {t,, = nd,n € N}, can be used to used to get the expansions of this paper by letting
0 — 0. However, it seems that this idea does not work due to two different reasons. One of the
reasons is that values along {nd,n € N} are not good enough to control the behavior between the
time intervals [t,,t,+1]. Another reason is that {Z,5 : n € N} is not a branching Wiener process
since in Zs = 3~ e n(s) 0%, (6), for u,v € N(8),u # v, Xy(d) and X, (9) are not independent.

1.2 Notation

We list here some notation that will be used repeatedly below. Throughout this paper, N =
{0,1,...}. Recall that N(t) is the set of the particles alive at time ¢ and that for u € N(t), X, (t)
is the position of u. For u € N(t), we use d,, and O, to denote the death time and the offspring
number of u respectively. For v and u, we will use v < u to denote that v is an ancestor of u. The
notation v < v means that v = u or v < u.

For a = (ay,...,ay) € R%, define (a); := a; and (—oc0,a] := (—00,a1] x -+ x (—00,ay). For
a,b € R we use a < b (a < b) to denote that (a); < (b); ((a); < (b); ) for all 1 < j < d. For
a,b € R? with a < b, define (a,b] := (a1,b1] X -+ x (ag,bg]. The definition of [a,b] is similar.
For k = (ki,...,kq) € N set |k| := k1 + ... + kg and k! := k;!--- k4. For a function f on RY,
x € R and k € N%, let DX f(x) := 9F!...0% f(x). We also use the notation ¢(y) := ﬁe_yQ/Q and

Py(x) = H?Zl 7 _#(z)dz. Sometimes we write ®(y) for P1(y).

1.3 Main results

We will assume that
> k(log k) py < o0 (1.7)
k=1

for appropriate A > 0. Let Hjy be the k-th order Hermite polynomial: Hy(z) := 1 and for k£ > 1,

Hk(ﬂf) = Z ﬁ%kiQ]
= 2751k — 25)!



It is well known that if {(Bi)i>0,Ilp} is a standard Brownian motion, then for any k& > 0,
{t*/2H},(B;/V/'t),0(Bs : s < t), I} is a martingale. Now for k € N¢ and 6 € R? with ||0]| < v/2,
we define

2 d X, (1)); + 05t
MED e N coxa o2 T g, (Fe@i 0ty )
' UEZN(t) JI;[1 ’ ( \/E >

Note that Mt(o,e) = W.(A). We will prove in Proposition below that if (1.7) holds for A\ large

enough, Mt(k’e) will converges almost surely and in L! to a limit Mé}f ¥) Here are the main results
of this paper:

Theorem 1.1 Suppose 6 € R? with ||0|| < V2. For any given m € N, if (I.7) holds for some
A > max {3m + 8,d(3m + 5)}, then for any b € R, P-almost surely, as s — oo,

0 (=D 1 (k,0) —m/2
ue (o0, bVsl) = > S Di@a(b) MG + o(s™/%)

m l k
_ (_1) Z D (I)d(b)M(k,G)_i_O(Sfm/Q)'
k! *

=0 k:|k|=¢

Theorem 1.2 Suppose § € R with ||0|| < /2. For any given m € N, if (L.7) holds for some
A > max{d(3m + 5),3m + 3d + 8}, then for any a,b € R? with a < b, P-almost surely, as s — 0o,

k79)

m V4 ' ( k+i+1
:ZSTlﬁZ(_l)J Z M% Z D(I)d/[ab]H ]szl dzg + ofs m/2)7

=0 j=0 k:|k|=j T iilij=—j
where 1 := (1,...,1).

Remark 1.3 Note that we only dealt with the case that the branching rate is 1 and the mean
number of offspring is 2 in the two theorems above. In the general case when the branching rate
is B > 0 and the mean number of offspring is p > 1, one can use the same argument to prove
the following counterpart of Theorem : Suppose 6 € R with |0 < \/28(u — 1). For any given
m €N, zf holds for some X\ > max {3m + 8,d(3m + 5)}, then for any b € R?, P-almost surely,
as s — 0o,

pd (=00, by/s]) i= e PlmF0E N = o= 0%y o o (Xu(t) + 601)
ueN (t)
S Dkq)d(b) k.0 —m/2
Z Sg/g TMéo7 ) + O(S / ))
=0 k:|k|=¢

with Méé"") given by

d

Ley? s X, (t); + 0t

M(k9) _thjgoe Bp—1)+5-)t 2{ e~ 0-Xu(t)4[k[/2 | | Hy, <—( (Bji J ) (1.8)
ueN(t) j=1



In the general case, the counterpart of Theorem is as follows: Suppose 0 € R with ||0] <

V2B8(p —1). For any given m € N, if (1.7) holds for some A\ > max{d(3m +5),3m + 3d+ 8}, then
for any a,b € R? with a < b, P-almost surely, as s — o0,

2
Y210 ((a, b)) = e~ (BE=DHEDE S 0Kl (X (1) + 6t)
u€EN(t)

m ¢ (k,0) ktit+1 d
1 , o P is -
= E ) E (—1) E Mk' E Dl'd(o)/[ . | | zj]dzl...dzd—i-o(s m/2)’
! a,

£=0 §=0 k:|k|=j T ili|=t— j=1

with Mg’e) given in (|1.8]).

Remark 1.4 One could also consider asymptotic expansions for the additive measure uﬁﬁ for
branching random walks. Using the tools established in [J], it is possible to get fixed order expan-
stons. However, getting asymptotic expansions of arbitrary order may be difficult.

We end this section with a few words about the strategy of the proofs and the organization of
the paper. In Section [2, we introduce the spine decomposition and gather some useful facts. We
also study the convergence rate of the martingales Mt(k’e) and moments of the additive martingale
W(0). In Section |3, we prove Theorems and To prove Theorem 1.1} we choose a sequence
of discrete time 7, = n'/* for some x > 1. To control the behavior of particles alive in (PrsTns1),
we need r,4+1 — r, — 0. This is the reason we do not choose r, = nd. We prove in Lemma [3.1

that pf ((—oo,by/rp]) ~ E [,ufn ((—o0, by/T)) ‘f\/ﬁ}, where F; is the o-field generated by the

branching Brownian motion up to time ¢. To deal with s € (r,,7,4+1), we adapt some ideas from
from [3, Lemma 8] and [I3] paragraph below (13)]. We prove in Lemma [3.2]that, for s € (r, rp41),

1f ((—o00,by/s]) =~ {Mg ((—o0,by/s]) ‘fﬁ} We complete the proof of Theorem by using a
series of identities proved in [§]. The proof of Theorem is similar.

2 Preliminaries

2.1 Spine decomposition
Define

dp—?

|, W(9). (2.1)

Then under P~?, the evolution of our branching Brownian motion can be described as follows (spine
decomposition) (see [14] for the case d = 1 or see [16] for a more general case):

(i) there is an initial marked particle at 0 € R? which moves according to the law of {B;—60t, 1o},
where {By, I} is a d-dimensional standard Brownian motion;

(ii) the branching rate of this marked particle is 2;

(iii) when the marked particle dies at site y, it gives birth to L children with IP’*Q(E =k) =
kpr/2;

(iv) one of these children is uniformly selected and marked, and the marked child evolves as its
parent independently and the other children evolve independently with law Py, where Py denotes
the law of a branching Brownian motion starting at y.



Let d; be the i-th splitting time of the spine and O; be the number of children produced by the
spine at time d;. According to the spine decomposition, it is easy to see that {d; : i > 1} are the
atoms for a Poisson point process with rate 2, {O; : @ > 1} are iid with common law L given by
P~%(L = k) = kpy,/2, and that {d; : i > 1} and {O; : i > 1} and X¢ are independent. This fact will
be used repeatedly.

We use & and X¢(t) to denote the marked particle at time ¢ and the position of this marked
particle respectively. By [16, Theorem 2.11], we have that, for u € N(t),

—0-X (1) a2y ox, )
0. B e e 2 e
P (gt = U‘Ft) = ZueN(t) o—0Xu(t) W(0) . (2.2)

Using (2.2), we can get the following many-to-one formula.

Lemma 2.1 For any t > 0 and u € N(t), let H(u,t) be a non-negative Fi-measurable random

variable. Then )
el _
E( Y Hu.t)) =R (X H(G. 1)
u€eN(t)

Proof: Combining (2.1)) and (2.2)), we get

E{ Y Hut)| =" %u’t)

uEN(t) uEN(t)

_ ¢ Z H(u, t)e (1+”9“ )t 0 X (& _u‘]_-t)
ueN(t)

2
= HEIE (B | Yt H X0 R,
ueN(t)
HGH B \|9H _
= e EE [ H (G )"0 YT 1y | = R (X H (G, )
ueN (t)

2.2 Some useful facts

In this subsection, we gather some useful facts that will be used later.

Lemma 2.2 (i) Let £ € [1,2] be a fized constant. Then for any finite family of independent centered
random variables {X; :i =1,...,n} with E|X;|* < oo for alli =1,...,n, it holds that

n n
4
13X <23 Bl
i=1 i=1
(ii) For any ¢ € [1,2] and any random variable X with E|X|? < oo,
E|X - EX|' <E|X|* < (EX?)Y/2.

Proof: For (i), see [I9, Theorem 2]. (ii) follows easily from Jensen’s inequality. 0



Lemma 2.3 For any p € (0,1),b,z € R, it holds that
b—pr \ p
¢ (ﬂ) =@(b) — ¢(b) Z HHk—l(b)Hk(x)-
Proof: See [8, Lemma 4.2.]. O

To prove Theorem u we will define r,, := nx for some x > 1. For s € [Tn, Tnt1), applying
Lemmawith p=+/\/Tn/s and z = rﬁl/zly, we get that for any b,y € R,

(I)(b;[i_\/i») - Zkl k/QHk 1( )( "/ Hy ( 1/4>) (2.3)

Recall that (see [8, (4.1)]) for any £ > 1 and x € R,
|H(z)| < 2VEle® /4, (2.4)

Lemma 2.4 For a given m € N, let kK =m + 3 and r, =n'/%. Let K > 0 be a fized constant and
J be an integer such that J > 2m + Kk. For any b,y € R and s € [ry,rny1), it holds that

oL 000 )3 L5 (F))

and that
sup {5m/2 lemypsl i 8 € [Tnymny1), [yl <4/ Ky/rnlogn,be R} 0.
Proof: It follows from (2.4 that there exists a constant C' such that for all b € R, n > 2,
5 € [T, rnt1), [y £ /Ky/rplogn and k > m,
k/(4n)

)| < ¢

S (B0) [ ()

kI, ( o7

Combining this with (2.3, we get that for J > 2m + Kk, n > 2, s € [rp,Tph+1), b € R and

ly| < \/K\/rylogn,

m/2 ‘gmy,bs’ <C Z —(k—2m—Kk)/(4K) <n (J+1—2m—KN)/(4Ii)'
k=J+1

Thus the assertions of the lemma are valid. O

Now we give a result of similar flavor which will be used to prove Theorem|[I.2] Taking derivative
with respect to b in Lemma [2.3] and using the fact that

dk k-1
20 = (1) He (D)o (),
we get that
1 b— px S ﬁ
ﬂ(b( 1_p2> ;k'm (). (2.5)



Now letting p = \/\/Tn/s, b = 2z/y/s and = = r;1/4y in (2.5), we get that for any z,y € R,

() = ol ) (o Xt () ()

The proof of the following result is similar to that of Lemma we omit the details.

Lemma 2.5 For a given m € N, let k =m + 3 and r, =n'/%. Let K > 0 be a fized constant and
J be an integer such that J > 2m + Kk. For anya <b € R, y,z € R and s € [ry,mn+1), it holds
that

Vi (i
=)

J
RIS S T .

n

and that

SUP{sm/2 |€m,y,278‘ s € [Tn77“n+1), z € [a, b]7 |y| < Kmlogn} nﬂf 0.

2.3 Convergence rate for the martingales

Proposition 2.6 For any 6 € R? with ||0]| < v/2 and k € N, {Mt(k’o),t > 0; P} is a martingale. If
(1.7) holds for some X\ > |k|/2, then Mt(k’e) converges to a limit Mé}f’” P-a.s. and in L'. Moreover,
for anyn € (0,\ — |k|/2), as t — oo,

Mt(k’e) — MK = o= A= Kl/2+my - pg g,
Proof: By Lemma it is easy to see that {Mt(k’e), t > 0; P} is a martingale.

Now we fix k € N% and assume holds for some A > |k|/2. We first look at the case when
t — oo along integers. Let t = n € N. Recall that N(n 4 1) is the set of particles alive at time
n+ 1. For u € N(n+ 1), define B,,,, to be the event that, for all v < u with d, € (n,n + 1), it
holds that O, < e“™, where ¢y > 0 is a small constant to be determined later. Set

MUEDE 155t

d
(Xy(n+1)), +6j(n+1)
—0-Xy(n+1 k|/2 J
x oy e Xl 4K/ HHkJ( O ) B
j=1 v

ueN (n+1)

Since |Hy(z)| < |2* +1 for all 2 € R and (|z| + |y|)* < |=|* + |y|¥ for all z,y € R, we have

T+ z
vn+1

which implies that for all j € {1,...,d},

(o + 0472 ()| < (el (o DM S ol 424 7,

(n+ 1)kj/2‘ij ((Xu(n + 1) +0;(n+ 1))‘

vn+1
S1(Xu(n)); +05n)% + 0557 4 [(Xu(n +1)); = (Xu(n)); + 6,1 (2.6)



Therefore,

k ,0),B
n+1 - n+1

d
(Xu(n+1)); +6;(n+1)
y Z =0 Xu(nt )]y 4 1)lKI/2 Hij J LB, .)e
Py | I (57|

Se—(H@)(nH) S XYY Kt Xun)
u€EN(n) vEN (n+1):uv

6—(1+%)(n+1)

x H (1K) + Byml's 4+ 82 4| (X 4+ 1)y = (X)) + 6, 1is, e

By the branching property and the Markov property, we get that

(k,0) (14 1801% “9” —6-Xy(n
(‘ n+1 n+1 “]-")<e Ze

u€N(n)
( —p e Z o0 Xu(1 ﬁ( +0|J+y]>1(D ))‘ o
vEN(1 j=1 w00 ) =l (X (n)j+05m] 0t 2
= 1+“9”2 Z 679 Xu(m) F (y) o @7
wEN(n) Y5=(Xu(n));+0;n|" +n"

where, for v € N(1), D,,, denotes the event that, for all w < v, it holds that O, < e®™. Recall
that d; is the i-th splitting time of the spine and O; is the number of children produced by the
spine at time d;. Define D, ¢, to be the event that, for all ¢ with d; < 1, it holds that O; < e®™.
By Lemma

Fy) = E-"(ﬁ (1Xe(W); + 05" +93) 15,0, ) -

J=1

Using the independence of {d; : i > 1}, {O; : i > 1} and X¢, we have that D, ¢, is independent of
X¢, which implies that for y; > 1,

d d
F(y) =TT (To(1B1%) + ) B~ (D5 ,) <11 (Mo(1B11) + ;) E( Y Lgo,5em)

d d d )
S ([Tw)P @ > e < ([Jui)P (L > ™) < Hq;jf’% (2:8)

here in the first equality, we also used the fact that {X¢(t) + 60t IP)*H} is a d-dimensional standard
Brownian motion, and in the last inequality, we used E~ (logl'M L) < oo (which follows from ((1.7)).

By (27) and (28), we have

k9 k9
d . |k k;i/2

g hen?y, —0-X,(n Hj:l (’(Xu(n))J + 0;n|" +n% )
< e (H50) E e (n) T .

ueN(n)
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Taking expectation with respect to P, by Lemma we obtain that

d K|/2
k.0),B 1 P nl
(‘ n+1 ng—i—l) D S n1+)\ HHO (‘Bn| T+n ]/2) 5 n1+)\ . (29)
j=1
On the other hand, by the branching property,
2
Méﬁ) B —+1, Z c0Xul) g
ueN(n)
where
d
s a Xy(n+1));+0j(n+1)
o= Y et X gy )2 T a (¢ i+ 1y
veEN (n+1):uv 7=1 ’ < v+ 1 )

are independent given J,,. For any fixed 1 < ¢ < min{2/||0||?,2}, Applying Lemma (i) to the
finite family {J,,, — E(Jmu’}"n) :u € N(n)} and Lemma (ii) to Jpu, together with (2.6), we
get that
L
)

k,0),B k,0),B
E(|m&? - B(m?

n) < 1) Z e~ 0Xum) (0, N2 (2.10)

ueN(n

where M, ,, is given by

My, :=E<e*2(1+%)( $ X, (y, 1)1DM>2>

vEN(1)

Y5 =1(Xu(n));+0;n|" +nki/?
. o 17d ‘ ks '
with S, (y,r) := Hj:l (X (1)) + 07" + ;). Set

Ton = Suly, Dlp, e HE) S 0%,y 1)1, .
veEN(1)

By Lemma [2.1] we have

w=e (1+”"“2)E< Z e‘e‘Xu(l)Tn,U)

u€N(1)

M,
Y =1 (Xu(n));+8;n|"7 +n*i/?

= E_e (Tn,§1 )

y;=|(Xu(n));+0;n| " +n*3/?

_ (14 le1? —o.
B (1p, ¢ S (v De 9 3T 0% W5, (v 11, )
vEN(1)

lloy?
<E(1p, ¢, S (v, e 1737 30 X5 (y,1))
vEN(1)

yi=|(Xu(n));+0;n|* +n*3/?

(2.11)

Y= (Xu(n)); 40,0/ +ni />

Conditioned on G := 0(X¢,d;, O; : i > 1), by the branching property, on the set D,, ¢,

| > M 0s..0[0)

vEN(1

11



d
_ Z (Oi_l)e—(l-‘y—lleQHQ)dle 9X§d)H (H( B1 d +Zj’kj+yj))

i:d; <1
d
Sewn Y e PR (yj +[(Xe(di)); + 9jdi|kj> —eon Y et Xelse (y,di), (2.12)
idi<1 j=1 idi<1

where in the first equality we also used Lemma Plugging (2.12)) into (2.11)), noting that Xg
and d; are independent, we get that

ZjZ(Xg (di))j +9j d;

E(1p, ¢, 56 (v,1) —a+l) 3 mexa Suly, 1| Xe)
vEN(1)
Ssgl(y’l)econﬂf—g(z XS, (v ’XE)
1:d; <1

1
=25 (y, 1)600"/0 efe'xﬁ(s)Sgs(y,s)ds

d

2
< goon H { <yj + SuI—f |(Xe(s)); + gjs|kj> ellfl sups <4 |(X§(s))j+9js|} ) (2.13)
s<

j=1

Since {X¢(s) + 0s,P~%} is a d-dimensional standard Brownian motion, combining with (2.11]) and
(2.13]), we conclude that

My S eo" Hno( by sup (B 1) el (B2

7j=1

d
H (1Xu(n)); + O5ml* + 0¥ /2>2 e, (2.14)

Y= (Xu(n)) 40,0/ +n*i/2

Plugging (2.14]) into (2.10)), we conclude that
(k,0),B t
(’ n+1 —E( Mn+1 ‘}—”) ")
< ecofn/267€(l+@)n Z —£0-X, (n) H ( i+ 0. n|k] + nki /2)6

u€EN(n)
— o~ (=D (A=11017¢/2)~cot/2)n ,—(1+€2| 6| /2)n

X Z e l0Xuln H ( )j + 0 n|ki + nki /2) (2.15)

ueN(n) Jj=1

ISH

Choose ¢y > 0 small so that col /2 < (£—1)(1—]0]|?¢/2) and set ¢; := (£—1)(1—||0]|*¢/2)—cot/2 > 0.
Taking expectation with respect to P in (2.15)), by Lemma with 6 replaced to £, we get that

 (|uis” - & (u%07)m)|)

—cin k;j ki/2 ¢ n‘k|/2 '
e HH0<\(Bn)j*(£*1)9j”|’+”J ) 55 (2.16)
j=1

12



Now combining (2.9) and , using the inequality:
E(IX — E(X|F)) < B(X - Y)) + E(Y — E(VIF)) + E (B (X - Y|F)))
AL/
<2E(X -Y)+E (Y ~EXIF)I)

270<0)

and the fact that M,(Lk’e) =E ( 1

|.7: ) we get that

(i) < i - )

1/¢ Ik|/2
(k.,0),B (k,0),B € n
+E (‘M —E (M7 F,) ) S S (2.17)
Since A > |k|/2, we have ) 7, (‘ n+1 — )D < 00, which implies that M{*? converges to

a limit Mé!f’@) P-almost surely and in L'. Therefore, M}Lk’e) =E <Mé§’9) ‘Fn), n>1.

For s € (n,n+ 1), Ms(k’o) =E ( nﬁf)‘}") (Még’e)‘}'s), thus the second assertion of the
proposition is valid.
Now we prove the last assertion of the proposition. For any n € (0, A — |k|/2), by (2.17)),

o0 o

—|k|/24+X— k,0 k.0 1
Y nolzt ”E(‘MLR—M}L )D Sznun < 09,
n=1 n=1

which implies that

n

o0
Z nA—1kl/2=n (MT(LI_{F? — M(k’e)) converges a.s.

Thus n*~kl/2=1 (Mr(bk’e) — m 9)> %0, P-a.s. (see for example [T, Lemma 2]). For s € [n,n+1],
by Doob’s inequality, for any € > 0,

Z ( —lkdl/24x=n gy ‘M(kﬁ) _M’V(Lkﬁ)‘ > 6)

s
1 n<s<n+1

RE
< Z oW/ (| A0 — M) < oo

Therefore, n~[kl/2+A=n SUDy<s<n+1 ‘Ms(k’e) - Mék,&) "% 0, P-a.s. Hence P-almost surely,

sup s IKl/2HA=n ’Ms(k,e) _ Méé(ﬁ)‘

n<s<n+1
< (1) "Mz g ‘ M) M,gk@‘ + (4 1) K/2HAT | ared) (k)
- n<s<n-+1
n—oo
— 0,
which completes the proof of the last assertion of the proposition. O
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2.4 Moment estimate for the additive martingale

In this subsection, we give an upper bound for Wy(#) which will be used later.

Lemma 2.7 Suppose 0 € R with ||0|| < /2. If (T.7) holds for some A > 0, then there exists a
constant Cy  such that for all t > 0,

E ((Wi(8) + 1) 1og" ™ (Wi(6) +1)) < Cpalt+1).

Proof: Since EW,(#) = 1, it suffices to prove that there exists a constant Cy  such that for all
t>0,E (Wt(ﬂ) logH’\ (Wt(ﬂ))) < Cpa(t+1). By using an projection argument, we can easily
reduce to the one dimensional case. So we will only deal with the case d = 1. By , we have
E ((Wt(ﬁ)) log1+)‘(Wt(9))> Y (logH)‘(Wt(H))). Using the spine decomposition, we have

1:d; <t

here d;, O; are the i-th fission time and the number of offspring of the spine at time d; respectively.
Given all the information G about the spine, (thi]di)jzl are independent with the same law as
Wi_q,(0) under P.

Using elementary analysis one can easily show that there exists A = Ay > 1 such that for any
x,y > A,

logh ™ (x +y) < logi™ () + logi ™ (y). (2.18)
We set
Kl = e*(1+%)t679X§(t)?

O;—
2
o Z —(1+2)d;  —6X¢(d;) Z Wi Z
K2 T e 2 € ‘ t—d; 1{ ’(HT)dle’@Xi(d )Z Wti,deA} < A 17

i:d; <t i:d; <t

(1482
K3 — Z e 1+ ) )d 9X§ Z Wtjjd { a4l 62 )dzefexg(d )Z >A}

i:d; <t

Note that logi™(z + y + 2) < logi™(3z) + logh™ (3y) + logi™(32), logi™(zy) < (log, z +
log, )™ <logit(2) +loght*(y) and logi™(z) < 2. By (2.18), we have

1Og1+/\ (Wt(e)) loglJr)\ (Kl + K2 + Kg) < ]0g1+)‘(3K1) —+ 10g1+)\(3K2) + 10g1+A(3K3)

1+log1+A(K1)+< Z ) Z 10g1+A< (149 )d; ,—0Xe(ds) Z Wf’_jd)
j=1

i:d; <t 1:d; <t

< 1+log1+)‘ Ky)+ ( Z 1+10g1+/\ -(1+% 2 )d; —9X§(d))>
i:d; <t

0;—1
+ > 108 (0 Wi, (2.19)
j=1

i:d; <t

14



Put v := 1 — 6%/2 > 0. Recalling that {X¢(t) + 0¢t,P~?} is a standard Brownian motion and
{d; : i > 1} are the atoms of a Poisson point process with rate 2 independent of X¢, we have

(logH)‘(Kl Z 1 +10g1+>‘( —(+ )die*(’Xg(dz‘))D

idi <t
t o2
_ E—0(10g1+>\(K1) + 2/ (1 + 10gi+>\ (e—(1+7)56—0X5(s))d8))
0
t
S Ho( (0B — yt)} +/0 (1+ (—0B; —vs): ™ )ds) St+1, (2.20)

where the last inequality follows from the following estimate:

14+
Mo ( (=08, =)™ = s V2 (10181 = 1v/5) ™ Lo s)
<A (s + DI VAL ((16]|Br| + 1) €1P1) < 1.
For the last term on the right—hand side of (2.19 m, conditioned on {d;, O; : i > 1}, we get

( 3 logh™ ( Z Wi, )|di, Opyi > 1)

i:d; <t
< Y log 0 - 1)+ Y B (10g1+A (max W, )|di,Oii > 1). (2.21)
indi<t idi<t I=5

Note that
(10g1+>\ (jg%)%zglwffdi){di,@,i > 1)

:(1+)\)/0 y Pl < max W va, > €Y

di, 04,0 > 1>dy

71<0;—1
= (1+)\)/ yk<1— [T @-p?(W?, > e¥|di,0;,i > 1)))dy
0 1
* jo- 1
5/ P(1-(1-e¥)7 )dy, (2.22)
0

where in the inequality we used Markov’s inequality. When O; — 1 > e¥/2 (which is equivalent to
y < 2log(O; — 1)), we have y (1 - (1- e_y)oi_1> < 1logh(O; — 1); when O; — 1 < e¥/2, by the
inequality (1 —x)" > 1 — nx, we get

P1—(1—e )97 <0, = De? < ye /2,
Thus, by ,

<10g1+)‘ (jg{l}g}fl WZ_Jdl) ‘di, O;,i> 1) < logﬁ)‘(Oi —1)+1.

Plugging this back to (2.21)) and taking expectation with respect to P, we conclude that

( Z logH’\ Z W,J )

1:d; <t
gE*"( 3y (logHA(O 1)+ 1)) St (2.23)
i:digt
Combining (2.19)), (2.20) and ([2.23]), we get the desired result. O
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3 Proof of the main results

Let ¥ > 1 be fixed. Define

1
K

rpi=nx, neN

Lemma 3.1 For any given o, 8 > 0 and § € (0,1], assume that (1.7)) holds for \ with A0 — « >
k(1 +B).

(i) For each n, let a, < nP and {Ynu : u € N(rd)} be a family of random variables such
that E (Yn,u|-7:r;§> = 0, and conditioned on Fs, Ynu,u € N(r8), are independent. If |Yy.| <

Wa, (0;u) + 1 for all n and u € N(rd), with (Wan(e;u),ﬂ”(-‘fri)> being a copy of W, (0), then

(1o len?y s 0. s —
roe~ (I 5)m g e 0Xulmy, "0, as.

n
u€EN(rd)

(ii) Consequently, if \6 — o > k + 1, then for any sequence {A,} of Borel sets in RY,

n—oo

iy — 0, a.s.

Tn

i (An) =B [, (A0) | Fg

Proof: (i) Define

Yn,u = Yn Y?i,u = Yn,u —E (Yn,u‘fr%> 5

1
UV ul<ecs TR Y

where ¢, > 0 is a constant to be chosen later. Then for any € > 0,

2
]p( TSQ*(H@)@ Z e*Q'X”(Tg)Ynju > 5‘?@)
ueN(ry)
2
< IP’( rf{e*(”@)rg Z o0 Xu(r)) (You—You) | > %‘}}g)
ueN(ry)
LR+ Y oty |5 S )
ueN(ry)
1 =1+ 1T+ 11l (3.1)

,(1+H8“2)r6
{r;‘{e 2N

wEN(rd) G_G'X“(TQ)E<?"’“ ’]:r;i> ‘>§}

Using the inequality

[Yiu — ?n,U| = |Ynull W, (0;u) + 1

{‘Yn,u|>ec*'r2} S ( ) 1{Wan(0;u)+1>ec*7-z}

and Markov’s inequality, we have

3 (1102, —0X,(r8) -
I < -—rye 2 /)Tn Z e ™)K (‘Ynu — Ymu‘
¢ ueN(rd)

ng)

o —(14- 1012, 5 _0.X. (r8

<o U S I RADE (W (0) 4 1) 1y ety
u€EN(rd)

« 2

< 7(0 T7:571)>\+1 e‘(l-‘r@)ri Z €—9~Xu(T2)E ((Wan(g) + 1) 10g1++)\ (Wan(e) + 1))

o u€EN(rd)
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«
7/"I'L

1+M 1‘2 —0-X,, rfL B

u€EN(rd)

where in the last inequality we used Lemma For 1 < ¢ < min{2/||0]],2}, set b := e“*l)(l*'w”%/m/2 €
(1,e) and ¢, := Inb. Using Markov’s inequality, Lemma [2.2 the conditional independence of Y,

nu’
and the fact that [V, ,|¢ < ec*(e_l)’”2|Yn’u| < e (W, (9, u) + 1), we have
4 2
1T < %Tséefé(1+@)rgﬂ3<‘ Z e O Xulrh)y? Z‘E«g)
ueN(rg

< 3! 2 —5(1+W)7«5 —00-X.,(19) v |
S e 2/ Z e n E(|Yn7u‘ ‘]—"r%)

ueN(rd)
< 3" o o1 101%), 00K (r0) car® ,
< gt 2 )T Z e n’e "E<Wan(¢9,u)+1’]—}§l>

ueN(rd)
< Tflabfmgef(uw)rgbrg Z efee-xu(rfb% (3.3)

u€EN(rd)

where in the last inequality, we used the identities E <Wan(9; u) + 1‘.7:7“% ) =E(W,,(0)+1) =2,
2 2
e—€(1+@)ﬁi = p=2rn (H'e Eali "n and e®* = b. Therefore, by (3 , we get
IT S rleb W, (£6). (3.4)

Now taking expectation with respect to P in (3.1)), and using (3.2)) and (3.4)), we get that

P(|rse —aHrn § Xy, )

ueEN(r))
Tgnﬂ oy —rd o 7(1+7”9H2)7"5 —6-X (r‘s) Eva €
NW_'_/F” b ”+]P) Tne 2 n Z [ u nE(Yn,u‘fr;SL) ‘ > § . (35)
n

uEN(rd)

By Markov’s inequality and the fact that E (7,17“’]-}%) = —-E (Yn,ul{ly \>ecwi}‘]:7“ﬁ)’ the third
term in right-hand side of (3.5) is bounded from above by ’

3 a, — ey rd 79Xu

ZTe (1+5-) E( Z (|Ynu]1{|y |>ec”n}‘fa)>
ueN(rd)

< 20 (erd) PR (W, (6) + 1) oght (14 W4, 0))) S 75 (7)™

where in the last inequality we used Lemma Plugging the upper bound above into (3.5) and
recalling 7, = n%, we get
»o)

o — (141812 ) 0%, (1)
r,e 2 /T g e Y

n=1 u€EN(rd)
o~ (_ranf lorg—r8 A+1)6
5 (it o)
n=1 n

17



which is summable since A\d — a > k(1 + 3). This completes the proof of (i).
(ii) By the Markov property and Lemma

2
_ e_(1+%)rfl Z 6—9‘Xu(7’g)]P>_9 (Xf(rn — 7“2) +0r,+ye€ An) |y:Xu(7‘5)'

Therefore,

where

Ynu::e*ﬂ*%)(“ﬂﬁ) > o0 (Xo(rn)=Xu(19))

VEN (rn)uv

— 1o <Brn—r§§ +y -+ € A”) }y:X“(rg)'

X, (rp) +0rneAn}

By the branching property, we see that, conditioned on F,s, {Ynu : u € N (r9)} is a family of
centered independent random variables. Furthermore, it holds that

Yyl <0900 3 0 (Rl Xa)
VEN (1n):uv
= W?”n—r%(e;u) + 1.

Therefore, the second result is valid by (i) by taking = 1/« and a,, = r, — 3. O

Now we treat the case s € [rp, rnt1). We will take 6 = 1/2,8 = 1/k and « = m/2 for m € N.
Then the condition Ad — a > k(1 + ) is equivalent to A > m + 2(k + 1).

Lemma 3.2 For b € R?, let b, := by/s or by :=b. For any given m € N, assume that k > m + 2
and that (L1.7) holds for some X > m +2(k + 1). Define ks := \/ry, for s € [rp,mn+1). Then for any
b € RY,

S—00

smﬂ\ug((—oo,bs])—E[u‘;((—oo,bs])\fks] 2RO Pog.s.

Proof: Step 1: In this step, we prove that almost surely,

n—oo

sup 5™/ |E [ (=00, b)) |Fi| ~E 4, (—o0,br, | A =F 0. (36)

i <8<Trp41
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By the Markov property and Lemma we see that
E [4f (=00, b]) [ 7, |

— g_(l‘*'@)\/ﬁ Z e_e'xu(m)ﬂo (Bsf\/ﬁ +y+0yrn < bé‘) ‘

weN (/) YR
0 S X g (bs — Oy/Tn — Xu(\/ﬁ)>
¢ s —/Im ’
ueN (\/Tn) "
Thus, for s € [ry, 7n41), it holds that
/2B [ ((=o0,b) |7 | ~E [uf, ((=o0.b,.)) |7
< r;nﬁe* 1+H@H W Z o~ 0-Xu(Vrn)
uEN (\/n)
b, — 0/r, — Xu(\/Tn b,, — 0/, — Xu(y/Tn
x’q)d( VTn (‘ﬁ))—%( VTn (\ﬁ))(
S — \/a T'n — \/ﬁ
/ (1+|\9H Won Z o0 Xu R(u, 5).
uEN(y/Tn)

Note that, on the event U?:1{|(Xu(,/rn))j + 0;\/rn| > \/n}, we use the trivial upper-bound
SUp,, <s<r,,, 2(u,s) < 2. Using Lemma and the fact that {X¢(t) + 0t,P~?} is a d-dimensional
standard Brownian motion, we have

m/2 _(1+\|9H Wi —0-Xu(\/Tn)
e E(Y e UL (1K)l S R, )
" uEN (/) e

1/4
<22r337ﬁ o (Ui {IB1);] > ri/1}) < 2a11g (! Bo1) Z e
which implies that P-almost surely,

m/2 — 1+H9” Tn 70-Xu Tn §—Q0
Tni1€ DS VL (a0l B 8) =3 0. (3.7)
weN (/)

On the other hand, on the event ﬁ?:1{|(XU(\/rn))j +0;\/rn] < \/Tn}, in the case by = by/s, using
the trivial inequality

d d
1
|Pg(a) E )| < == la; — byl

we get that, uniformly for s € [r,rn41),

i( Vi M

. V2r \/s—\/ﬁ \/rn—\/ﬁ

| Xulyrn))j + 05y/Tl 1 1
V2 5 — —
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Vs =V = - \/ﬁ!
V8= VIy/Tn =/

BN R ) Vi
SN NN e

1 [s(rp — \/Tn) — Tn(s — \/Tn) Tn 1
< rn‘ VTn - VT } € :é/:(rnﬂ —Tn) S a('f’n_i_l — ).

In the case by = b, we have

Kyl L )
m \/S_ﬁ \/rn_ n
5 ‘S_TTL’ _‘_\/*‘\/S_\/» \/T” m‘
VS =V Tn — (Vs — /Tn +\/Th — \/Tn) NN N
5 W(rnJrl - ’l“n) + ;/377;(7“"+1 - rn) 5 Tln(""n+1 - Tn)-

Thus in both cases, we have that

/ — (14 1012y o —0Xu(y/)
vy VIl a (Ku(ym,+0,viml<ymyy | SWP R(u,s)

UEN(r) Tn§5<’f‘n+1
m/2 1
S TnJZl (Tn+1 =)W (0). (3.8)

We claim that right-hand side of (3.8]) goes to 0 almost surely as s — oo. In fact,

P2 L s = 1) S Py — ) = n2EC (g )l

By the mean value theorem, the right-hand side above is equal to

n(72+m)/(2n)§fl+% < p(m—2x)/(2r)

Since K > m + 2, the claim is valid. Combining this with (3.7) and (3.8]), we get (3.6).
Step 2: In this step, we prove that

§m/? "0, P-as. (3.9)

2 (=00, by]) = 4l (=00, by, ])

sup
Tn §5<Tn+1

Once we get (3.9), we can combine (3.6) and Lemma (i) (with A, = (—o0,b,,| and § = 1/2)
to get the assertion of the lemma.

To prove (3.9), we first prove that

liminf inf  s™/2 (M (=00, by]) — . ((foo,brn])> >0, Pas. (3.10)

n—oo 1y §S<’I“n+1

Define €, := \/Tp+1 — . For u € N(ry), let G, be the event that u does not split before r,,1 and
that max,e(y, r.0) 1 Xu(s) = Xu(rn)|| < \/Tnen. Then

P(Gu|frn) = e_(rn+1—rn)H0( <max IB,|| < W&z) — o (rnt1— T")Ho(maXHB | < \/E)

STn41—Tn
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Recalling that 1 := (1,...,1), it holds that

—(141e12 s —0-Xy (7 —0- 8)—Xqy(r
(oo, b)) = e UH7)s R 7 70Xl R 7 PO OLEOTX Ty () pesha)

uEN () vEN(s):u<v
lle)?
—(14+ r —1|6 TnEn *exu Tn
> e~ (s o= lflly Z e ( )1{Xu(rn)+9rn§brnfamﬁrnlfHGH(rn+177‘n)1}1Gu
0 2
R e T ol [ [NV $ e Xulrn)

X 14X ()0 <Bry —en /T 1= 0] (rrss —r)1} (L — P (G| Fry))

lle)2

R R L ST Y
uEN (rp)
X 11X o (1) 4070 <y —2nJird— [0 (s —r) 1} P (G| Fr) = T+ 11 (3.11)

For I, we will apply Lemma [3.1] (i) with o = m/2, § =1,a, = 0,8 =0 and
Yo = 1Ko ()0 by, —n /im0l (rsr )1} (10 = P (G| Fry)) -

It is easy to see that |V, .| < 2, i1 —7 — 0 and /rpe, S VRE=8)/5 — 0. Since A > m+2(k+1),
we have

sup 212300, P-as. (3.12)

TnSs<rn+l
If we can prove that

n—oo

sup  s"/? ‘II—,ufn ((—=o0,b,,])| — 0, P-as., (3.13)

Tn S5<Tn+l

then (3.10) will follow from (3.11]), (3.12]) and (3.13). Now we prove (3.13)). Since k > m + 2, we

have 12 (rpy1 — 1) < n~IHmED/(2%) 5 0 Thus,

S =P (Gl Fr,)| < (= e ) i (max B | > /)

< r;nﬁ(rnﬂ — )+ rzlﬁe_\/ﬁ — 0.
Hence,
llo)I2
5m/2 €(1+ 2 )(Tn+1_rn)e||0“m€nll - ,ufn ((_oo7b7'n - €n\/a1 - ||9H(rn+1 - Tn)l])‘

< W, (0) (r;nﬁ(rnﬂ — ) + rfﬂfe_ T") i 0, P-as. (3.14)
2 2
Note that 0 < ALY (1 =) 16l Tren T < W, (0), O ) O(rp41 —Tn) =

1+ o(rﬁmm), and that elf/lVreen = 1 4 O(\/rp\/Tnst —7Tn) = 14+ O/ 1/2) =1 + o(r;m/Q) by
the assumption that k > m + 2. Therefore, (3.14]) implies that

s™IT — 1 (00, by, — eny/Tnl — [|0]|(ras1 — 70)1])| =370,  P-as. (3.15)
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Now we put A, = (—o0,b,,]\ (—00,by, —eny/Tnl — [|0|(Tn41 — rn)1] C u;ﬁzlcn,j where C), j :=

{x=(z1,....,zq) 1 zj € (by,); — en/Tn — |0]|(rns1 — ), (b, );]}. Then by Lemma and the

inequality IIo (B; +y € Cy, ;) < %ﬁﬂ%ml—m)’ we obtain that

R [l (An) |F ]

2
= r?/2e_(l+@)\/ﬁ Z e 0 XulVrn)p—f (Xe(rn —/Tn) +y +0rn € Ap) ly—x. (/)

uEN (/)
d 2
<3 rmi2em (VI S X (Brn_\/ﬁ +y 40y € cn,j) ly=Xo (/)
J=1 uEN (\/rn)
m/2 0 B
< AW, (0) (En v + 1001 = 7)) sovep
27(rn, — \/Tn)

Here the last assertion about the limit being 0 follows from the following argument:
m/2
" (Eny/Tn + 101 (rngr — 7)) p2e — m (26) \/(n +1)Us — pl/s < plmtl=m)/28)
21 (rn — \/Tn) ~on ~

Using Lemma (i), we immediately get that r,, / Zan (A,) — 0, P-almost surely. Then by (3.15)),
we conclude that (3.13) holds.
Applying similar arguments for the interval (bg, +00), we can also get

liminf  inf  s™/2 (ug((bs,+oo))—u9 ((brn,—i—oo))) >0, P-as. (3.16)

n—00 T <s<rni1 T
Using Proposition with k = 0 and n = 2(k + 1), and the assumption A\ > m + 2(k + 1), we get

lim sup "2

n—00 Tn §5<Tn+l

Now we prove (3.9)) follows from (3.10)), (3.16)) and (3.17)). Indeed, for any £ > 0, (3.10)), (3.16) and
(3.17) imply that one can find a random time N such that for all n > N and r, < s < 741,

1 (]Rd> — ol (Rd)‘ = lim sup s™2|W(0) — W, (0)] = 0.(3.17)

=00 pp <s5<rpt1

s (/2 (=00, ba]) = 18, (=00, by, ) > —,

572 (1 (s, +09)) = pif, ((by,,,+00))) > —= and s™/?

2 () -8, ()] <=
Thus,

572 (1 (=00, bu]) = 4l ((~00,br,]))

= 52 (ul (RY) — s (RY)) = 5772 (1 ((bs, +00)) = ), ((br,, +00)) < 22,
Hence we have that when n > N and 7, < s < 741,

s/ 11l (=00, by]) = i, (=00, by, ])| < 2¢,

which implies (3.9). O
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For any given m € N, we will take x := m + 3 in the remainder of this section. It follows from
Lemma that, if (1.7]) holds for some A > m + 2(k + 1) = 3m + 8, then P-almost surely for all
$ € [rn, rny1) and by = by/s,

e (o0, by/s)) = E 4 (o0, b)) |7, | +o(s™/2)
S SNy ee-xu<m>q,d(bx/5 —Oy/Tn — Xu(\/ﬁ))
WEN (Vi) S~/
+ o(s™™?). (3.18)

Note that, for any a < b, (a,b] = H] 1(aj,b;] can be expressed in terms H?:l E; where E; €
{(—00, aj], (—o0, b;]} using a finite number of set theoretic operations. Thus, applying Lemma
to H?:l E;, we get that, if (1.7) holds for some A > 3(m + d) + 8 = 3m + 3d + 8, then

W ((a,b]) = o(s~(mD/2) 4 o=+ VI § 0 Xu(m)
ueN(Y)

— 0/ — (Xu(yT0));
H \/5—7/% T )dzj. (3.19)

Proof of Theorem 1.1} Let m € N and assume ([1.7) holds for some A > max {3m + 8,d(3m + 5)}.
Recall that r,, = n'/* and k = m+3. Put K := m/k+3. Combining Lemma sup,crd Pa(z) =1
and the fact that {(X¢(t) + 60t);>0, P~} is a d-dimensional standard Brownian motion, we get that

oo

Z m/2E< H_H@H W Z 6—9~Xu(ﬁ)
ueN(y/Tn)
1 by's — 0y/rn — Xu(y/Tn)
8 rn<zli€n+1 (I)d< S — m >1{U?_1{|(Xu(m))j+9jﬁ>\/K\/7Tnlogn}}>
<an/2” ZH()( (B m)j ]>\/K\/Elogn>
= dan/(%)Ho (|(B1)1| > \/Klogn) < an/(%)n_K/Q < 00, (3.20)
n=2 n=1

where in the last inequality we used the fact that Io(|(B1)1] > =) < e~7"/2. Therefore, P-almost
surely,

m _ W Tn - u
Tn/Qe (145 =)V Z e 0% {u {\ VTn))j+0; \/77|>\/m}}

uEN({/Tn)
b - 0 n - Xu n n—o0
X sup @d( Vs OVT (V" )) 3, (3.21)
rp <S<Tn+1 S—4/Tn

Since A > 3m + 8, by (3.18) and (3.21)), for any 6 € R? with [|0]| < v2,b € R? and s € [ry, 711,

2
1l (=00, by/s]) = o(s™™/2) 4 e 0H 5V §° o0 Xu(ymm)
ueN (y/Tn)

23



‘D <b\/§—0\/ﬁ—xu(\/m)1
‘ s— Vi (0, {0l <R rTog |}

Put J := 6m + 10. Then J > 2m + Kx =3m + 3k = 6m + 9. By Lemma we get that for any
0 € R with [|0]] < v/2,b € R? and s € [rp, Tni1),

(/2 4 o~ (112 —0-Xu(y/)
ols™ ) e 2 Mo {10k (v +0, i< y/BrmToen}) )

ueN (y/Tn)
d To11 X)) i + 05/
X H ((I)(b]) — (ﬁ(b])ZEWHk,l(bj) ((\/a)k/Z H,, <( (@3/]4"‘ ]W)) +€m7u757j)
j=1 k=1 n
By N B8 L) i —0-X.u (/)
_0(8 2)—}—@ 1+ rue%ﬁ)e 0-X rl{ﬂle{l(xu(\/ﬁ))fr@j\/ﬁ\ﬁ /7K\/r710gn}}
d T X, N
><H(<I>(bj>—<z>(bj>2k— s Hi 1<b)((m)k/2ﬂk(( (\ml)/j */F))) (3.22)
j=1 k=1

where €mu,sj = Emyb,sly=0, P (Xu(yn));, b=b;- L0 justify the last equality, we first apply Lemma
- 2.4)to get that, for each u € N(\/r,), as s — oo, P-almost surely,
§m/2— (145 )/ S ety
uEN (\/Tn)

<Ww 0 m/2 mou,s,j|1 0.
< Wym(O)x s oup saplemunilling | {1k (i) 4o, mley/Rmioan) )

{nd_ {IXu (V) +05 viml <K logn } } [Em .51

Then note that by and |Hy ()| < |2|¥+1, on the set ﬁ;-lzl {|Xu(/T0))j + 0j3/Tn| < /K+\/rnlogn},
J
11 Xu(y/Tn))j + 054/Tn
9067) — 6(0) Y g i o) () (T Oy
k=1 k! Tn

+0;/rn 1 J/2
s+ L4 ® ) <1 %

k=1Tn

|Qu.j| ==

Combining the two displays above, we get that, on the set ﬂ 1 { ‘ i+ 0, /rn‘ <V K,/rylog n}

b/ — O/ — d
@ W vy H@w ;g|c2v,e\em,u,s,j|

<d i1
R R (RN EN v s
which implies (3.22)).

Let ¢ € (0,1) be small enough so that K(1 —¢) > m/k + 2. For any k € N¢ with 1 < |[k| < J,
using the inequality |Hy(z)| < 1+ |z|* first and then Lemma we get

i 2R sup

T <8<Tn41

e RN S I
ueN (\/Tn)
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d kj/

)i +0;\/Tn
x 1{u 1K ()45 m\>\/xmlogn}} H k /2 ( 711/4 ’ )‘
B )|

N Z w2 H0<21{| (B ) |>\/K\/ﬁlogn} H k,/4 (1 + \ﬁ ))

d oo
_ 22:2?1 2m—1k])/( 4H)H0( (1) |>\/Tgn}H< +|(B1)g z))

J n
5H0<(1+|B1\ ) (1—€)|B1? /2)Zn2m e/ (4k) y —(1=€) K/2 < Z —(R+1)/(48) < o0 (3.23)

n=2

Thus we have that P-almost surely,

DN et Xl

lim »)" m/2 sup

n—00 P <s<rnt1 N {0t {I(Xu (V7)) 405 /il > /K i logn } }
i) /2
(Xu(yTn))j +05v/Tn
X H - /2 ( T1/34 Jf)‘ ~0. (3.24)

Combining (3.22) and (3.24]), we get

18 ((—o00, by/s]) = o(s™™/?) + e—(1+W)\/ﬁ Z o0 Xu(v/)

ueN(yrn)
d J | -
X 1_[1 (kzzo (—kl!)k;ﬂi?@(bj)((\/a)k/z Hk((Xu(\/ﬁr)}}]4Jr 9]\/71)))

Since A > |J1|/2 = d(3m + 5), it follows from Proposition that for any k € N¢ with m + 1 <
k| < |71, s~I2M 9 = o(s=m/2). Thus

9 _ G . (k.0) —m)2
s (=00, bv/s]) = k-% T8|k|/2D (I)d(b)M\/ﬁ +o(s ).

Take n > 0 sufficient small so that A > 377” + n. Then by Proposition for any k € N¢ with
0 < k| <m,

Mf}ﬁ) — MK = o OKl/D/2H0/2y (r;m/%zz/zf(xfm/m/ﬂnm) — o(r™/2)

)

which implies that as s — oo,

0 _ (M1 k,0 —m/2
115 ((—o0, by/s]) —k.%; 1 3|k|/2D () MK 4 o(s7™/?), P-as.

Therefore, the assertion of the theorem is valid under the assumption A > max {3m + 8,d(3m + 5)}.
|
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Proof of Theorem Let m € N and assume ((1.7)) holds for some A > max{d(3m+5),3m+
3d + 8}. Recall that r, = n'/* and kK = m + 3. Put K := m/k + 3 and define

Ys,n,u = e_e'X“(V Tn

: —0;/7n — (Xuly/™));
11 \/—7/ N )iz

Since A > 3m + 3d + 8, by (3.19), for any § € R? with ||0]| < V2, any a,b € R? with a < b and
$ € [rpyTnt1), P-almost surely, as s — oo,

2
s210 ((a,b]) = e~ a+295) v Z Ysnu + o(s —m/2y, (3.25)
uEN (y/rn)

Noticing that 0 < sup,, <s<p, ., Ysnu < e~ 0-Xu(yrn) Hd (bj—a;)y/Tnt1 < e 9Xu(v7) and using

>~ j=1 o
(3-20)), we get

ﬁ

o0

)2 -+
;T” E(rngsslfﬁme o uez%mYs’n’ﬂ{ui_l{|<xu<ﬁ>>j+ejm|>\/f<mlogn}})

< dan/(Q")HO <|(B\/ﬁ)1| > \/K\/ﬁlogn> < 0.
n=2

Therefore, P-almost surely,

2, (4 102 =
s > Yonal [V (im0, VR vmogn}}

uEN(/Tn)
By , for s € [rn, rn+1),
s?f ((a, b))
= v Y Yol +o(s™™?). (3.26)
e [, (| (X (7)) +05 /il <y /R i Togn } }
Using Lemma on the set ﬂd 1{‘ )i +0; \/E‘ < \/m} for J = 6m + 10,
CR Zj—9j\/ﬁ—(Xu(\/Fn))j)dZ,
m aj VS —Tnp J
N A WA I 2 (Xu(\/Pn))j + 054/
= - ———H e k/4H “ neJ J - j m,u,s,j
/ gb(ﬁﬂék!s’“ () (T ) )
J b
N L L P E Y g (g gy (FKeT))i + 05T |
_kz;)k‘!skﬂ(/aj ¢<\/§)Hk<\/§>dz)rn Hk( /1 > + Emyus, g
where
Tm/?

su su su e |1 =0
i se[rn,£+1)j§gueN(3m| s {”?:1{I(Xu(\/ﬁ))jJrej\/EIS\/K\/ﬁlogn}}
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Therefore, using (3.26) and an argument similar to that leading to (3.22f), we get

$219((a,b]) = o(s™™/2) + e~ O+

% Z —0-Xu(\/Tn)
o {1kt 40, vl </ Rfrogn ) )

ueN (\/Tn)
d J j 2 (V) W
8 l_Il{koli's’j/?</aj ¢<ﬁ)H (f)dzﬂ) i/ Hy ((X (\/7;/4+9 \ﬁ)} (3.27)

By Lemma and (3.23)) and the fact that ’ffqb (ﬁ) Hy, (ﬁ) dz) < |b— a|, we have that for any
k € N? with 0 < [k| < J,

o0
SmE sup e 0HEVE ST 0Xum

rn<s<rpi1 WEN () {U {|(Xu(\/ﬁ))j+9j\/ﬁ|>\/m}}
R RV RN V. e AWV YR N
) gzl_ll (/az ¢(%)Hk2 <$>dz£> ske/2 Hk@( 1/4 ) ‘

550:7"?/2%'1{/4“0(1{% A ) |>¢W}}H‘H’%< {/:)K)D

<Zzn2m |k‘)/ HO( {l(Bl) |>\/Tgn}H 1+| Bl)d )) < oQ.

j=1n=2

Thus P-almost surely, as s — o0,

o (A2 S Xl

lim )" m/2 sup

nooo M Cacn v {u K (/7)) 05/ > /K i logn } }
d be 1z 7 (\/ﬁ)ke/2 (Xy (\/ﬁ))é+94\/ﬁ
o A G L G L R e I

Therefore, by (3.27)), since A > 3m + 3d + 8,

d/2 9((3. b]) o 0( m/2) +e (1+“9H2 )T Z efg-xu(\/ﬁ)
ueN (\/Tn)

i u(VTn))j + 0/
xH{ k|sk/2(/ gb(\[)Hk(f)dzJ) Ny <(X (\ﬁ:}j/je f)}

([ o) () as) a2

Since A > max{d(3m + 5),3m + 3d + 8}, using Proposition and argument similar to that used
in the proof of Theorem we get that

U

—m/2

=o(s
kk<J1 j=1

s21f((a, b))
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d b
1 1 J Zj
o (o—m/2 L 2 MED),
=ots+ 5 ]l g (/ ¢(\/§>H’“ (f)dzj> (3:28)
k:|k|<m j=1 J
By Taylor’s expansion, as  — 0,
- Z P0) 5 1 o), (3.29)
j=
Note that ¢(*)(z) = (—=1)¥Hy(2)¢(z) and that, for each 1 < k < m,
™ sk () .
o(z)Hy(x) = (—1)F Z gb%‘()xj + o(z™). (3.30)
= 7

Combining (3.29) and (3.30)), we get

5 e[ o e

> 1)kl a0 (ki) (0) %
_ —m/2 ( / ] L :
B O(S ) * T le...dZd
[k <m kls\kl/Q 0.5] 45 ilslil/2
1)kl pr ) $Ukiti) (0) 2
— —m/2 ( / J 1 :
=o(s )+ E _ ez
Klkjem kls\k|/2 fab] 1+k\< ilglil/2

Therefore, by (3.28]), we conclude that

1)/ f,lf (kj+i) (0) 2%
(-1 1l |i\§2 / Jflgb © 1 dz;...dzg
§ [a,b] ;

k:|k|<m i 1+k|<m

¢(k ‘HJ

mooq L . MC%(,@) H
228472(_1)] Z o Z /aszszl dzg.

£=0 §=0 k:|k|=4 T ilil=t—j
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