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Abstract

Let N(t) be the collection of particles alive at time t in a branching Brownian motion in Rd,
and for u ∈ N(t), let Xu(t) be the position of particle u at time t. For θ ∈ Rd, we define the
additive measures of the branching Brownian motion by

µθ
t (dx) := e−(1+

∥θ∥2
2 )t

∑
u∈N(t)

e−θ·Xu(t)δ(Xu(t)+θt)(dx).

In this paper, under some conditions on the offspring distribution, we give asymptotic expansions
of arbitrary order for µθ

t ((a,b]) and µθ
t ((−∞,a]) for θ ∈ Rd with ∥θ∥ <

√
2. These expansions

sharpen the asymptotic results of Asmussen and Kaplan (1976) and Kang (1999), and are analogs
of the expansions in Gao and Liu (2021) and Révész, Rosen and Shi (2005) for branching Wiener
processes (a particular class of branching random walks) corresponding to θ = 0.
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1 Introduction and main results

1.1 Introduction

A branching random walk in Rd is a discrete-time Markov process which can be defined as follows:
at time 0, there is a particle at 0 ∈ Rd; at time 1, this particle is replaced by a random number
of particle distributed according to a point process L; at time 2, each individual, of generation 1,
if located at x ∈ Rd, is replaced by a point process x + Lx, where Lx is an independent copy of
L. This procedure goes on. We use Zn to denote the point process formed by the positions of the
particles of generation n.

Biggins [5] studied the Lp convergence of the additive martingale

Wn(θ) :=
1

m(θ)n

∫
e−θ·xZn(dx),

where m(θ) := E
(∫

e−θ·xZ1(dx)
)
. He used the Lp convergence of the additive martingale to study

the asymptotic behavior of Zn(nc + I) for fixed c and bounded interval I. To describe Biggins’
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result, we introduce the following additive measure µZ,θ
n of the branching random walk, which is a

shifted version of the measure introduced before Theorem 4 in [5]:

µZ,θ
n (A) := m(θ)−n

∫
e−θ·y1A(y − cθn)Zn(dy), A ∈ B(Rd), (1.1)

with (cθ)i := m(θ)−1E
(∫

xie
−θ·xZ1(dx)

)
. [5, Theroem 4] implies that, in the weak disorder regime

(i.e., − logm(θ) < −θ · ▽m(θ)/m(θ)), if there exists γ > 1 such that E(W1(θ)
γ) < ∞, then for

x ∈ Rd and h > 0, as n → ∞,

nd/2µZ,θ
n (x+ Ih) −→

(2h)dW∞(θ)

(2πdet(Σθ))d/2
, a.s.

where W∞(θ) := limn→∞Wn(θ), Ih = [−h, h]d and

(Σθ)i,j = m(θ)−1E
(∫

(xi − (cθ)i)(xj − (cθ)j)e
−θ·xZ1(dx)

)
, i, j ∈ {1, ..., d}.

In the case d = 1, Pain proved that, see [15, (1.14)], in the weak disorder regime, if there exists
γ > 1 such that E(W1(θ)

γ) < ∞, then for any b ∈ R, as n → ∞,

µZ,θ
n

(
(−∞, bΣθ

√
n]
)
→ W∞(θ)Φ(b) in probability,

where Φ(b) := 1√
2π

∫ b
−∞ e−z2/2dz.

For the case θ = 0, there are many further asymptotic results. In the case when d = 1 and the
point process L is given by L =

∑B
i=1 δXi , where Xi are iid with common distribution G and B is

an independent N-valued random variable with P(B = k) = pk and µ :=
∑

k kpk > 1, Asmussen
and Kaplan [2, 3] proved that if G has mean 0, variance 1 and

∑∞
k=2 k(log k)

1+εpk < ∞ for some
ε > 0, then conditioned on survival, for any b ∈ R,

µZ,0
n ((−∞, b

√
n])

n→∞−→ W∞(0)Φ(b), a.s. (1.2)

They also proved that if G has finite 3rd moment and
∑∞

k=2 k(log k)
3/2+εpk < ∞ for some ε > 0,

then, for any a < b ∈ R, conditioned on survival,
√
2πnµZ,0

n ([a, b])
n→∞−→ (b− a)W∞(0), a.s. (1.3)

Gao and Liu [10] gave first and second order expansions of µZ,0
n ((−∞, b

√
n]). A third order ex-

pansion was proved by Gao and Liu [9, 11], where branching random walks in (time) random
environment were studied. They also conjectured the form of asymptotic expansion of arbitrary
order for µZ,0

n ((−∞, b
√
n]). For general branching random walks, results similar to (1.2) and (1.3)

were proved in Biggins [4].
When the point process L is given by L =

∑B
i=1 δXi where X1,X2, ... are independent d-

dimensional standard normal random variables and B is an independent N-valued random variable
with P(B = k) = pk and µ :=

∑
k kpk > 1, Zn is called a supercritical branching Wiener process.

Révész [17] first proved the analogs of (1.2) and (1.3) for branching Wiener processes, then Chen
[6] studied the corresponding convergence rates. Gao and Liu [8] proved that, for each m ∈ N,
when

∑∞
k=1 k(log k)

1+λpk < ∞ for some λ > 3max{(m + 1), dm}, there exist random variables
{Va, |a| ≤ m} such that for each t ∈ Rd,

1

µn
Zn((−∞, t

√
n]) = Φd(t)V0 +

m∑
ℓ=1

(−1)ℓ

nℓ/2

∑
|a|=ℓ

DaΦd(t)

a!
Va + o(n−m/2), a.s.
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where for a = (a1, ..., ad), |a| = a1 + ...+ ad, a! = a1! · · · ad!, Φd(t) is the distribution function of a
d-dimensional standard normal random vector and DaΦd(t) := ∂a1

t1
...∂ad

td
Φd(t). For the local limit

theorem (1.3), Révész, Rosen and Shi [18] proved that, when
∑∞

k=1 k
2pk < ∞, for any bounded

Borel set A ⊂ Rd,

(2πn)d/2
1

µn
Zn(A) =

m∑
ℓ=0

(−1)ℓ

(2n)ℓ

∑
|a|=ℓ

1

a!

∑
b≤2a

Cb
2a(−1)|b|Mb(A)V2a−b + o(n−m), a.s., (1.4)

where b ≤ 2a means that bi ≤ 2ai for all 1 ≤ i ≤ d, Cb
2a := Cb1

2a1
· · ·Cbd

2ad
and Mb(A) :=∫

A xb11 · · ·xbdd dx1...dxd.
For the lattice case, analogs of (1.2) and (1.3) can be found in [7, 12], and an asymptotic

expansion similar to (1.4) for Zn({k}) was given by Grübel and Kabluchko[12].
In this paper, we are concerned with branching Brownian motions in Rd. A branching Brownian

motion in Rd is a continuous-time Markov process defined as follows: initially there is a particle
at 0 ∈ Rd, it moves according to a d-dimensional standard Brownian motion and its lifetime is an
exponential random variable of parameter 1, independent of the spatial motion. At the end of its
lifetime, it produces k offspring with probability pk for k ∈ N and the offspring move independently
according to a d-dimensional standard Brownian motion from the death location of their parent,
and repeat their parent’s behavior independently. This procedure goes on. We will use P to denote
the law of branching Brownian motion and E to denote the corresponding expectation. Without
loss of generality, we assume that

∞∑
k=0

kpk = 2.

Let N(t) be the set of particles alive at time t and for u ∈ N(t), we use Xu(t) to denote the position
of particle u at time t. Define

Zt :=
∑

u∈N(t)

δXu(t).

For θ = (θ1, ..., θd) ∈ Rd,

Wt(θ) := e−(1+
∥θ∥2
2

)t
∑

u∈N(t)

e−θ·Xu(t)

is a non-negative martingale and is called the additive martingale of the branching Brownian
motion. When θ is the zero vector, Wt(θ) reduces to e−tZt(Rd). It is well-known that (for d = 1,
see Kyprianou[14]), for each θ ∈ Rd, Wt(θ) converges to a non-trivial limit W∞(θ) if and only if
∥θ∥ <

√
2 and

∞∑
k=1

k(log k)pk < ∞. (1.5)

From now on, we will only consider θ ∈ Rd with ∥θ∥ <
√
2. For any set A ⊂ R and a ∈ R, we

use |A| to denote the Lebesgue measure of A and aA := {ax : x ∈ A}. Asmussen and Kaplan [3,
Part 5] proved that when d = 1, under the assumption

∑∞
k=1 k

2pk < ∞, for any Borel set B with
|∂B| = 0, as t → ∞,

e−tZt

(√
tB
)
−→ W∞(0)√

2π

∫
B
e−z2/2dz, P-a.s. (1.6)
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and that for any bounded Borel set B with |∂B| = 0, as t → ∞,

√
2πte−tZt (B) −→ |B|W∞(0), P-a.s.

Kang [13, Theorem 1] weakened the moment condition and proved that (1.6) holds with B =
(−∞, b] under condition (1.5).

Similar to (1.1), we define the additive measure µθ
t of branching Brownian motion as

µθ
t (dx) := e−(1+

∥θ∥2
2

)t
∑

u∈N(t)

e−θ·Xu(t)δ(Xu(t)+θt)(dx).

The aim of this paper is to prove asymptotic expansions of arbitrary order for µθ
t for θ ∈ Rd with

∥θ∥ <
√
2, see Theorems 1.1 and 1.2 below. These expansions sharpen the asymptotic results of

[3, 13, Part 5] mentioned above. The asymptotic expansions of [8, 18] are for the additive measure
µZ,0
n of branching Wiener processes, while the asymptotic expansions of Theorems 1.1 and 1.2 are

for the additive measure µθ
t of branching Brownian motions with θ not necessarily 0.

One might expect that the asymptotic expansions for branching Wiener processes, when con-
sidered along {tn = nδ, n ∈ N}, can be used to used to get the expansions of this paper by letting
δ → 0. However, it seems that this idea does not work due to two different reasons. One of the
reasons is that values along {nδ, n ∈ N} are not good enough to control the behavior between the
time intervals [tn, tn+1]. Another reason is that {Znδ : n ∈ N} is not a branching Wiener process
since in Zδ =

∑
u∈N(δ) δXu(δ), for u, v ∈ N(δ), u ̸= v, Xu(δ) and Xv(δ) are not independent.

1.2 Notation

We list here some notation that will be used repeatedly below. Throughout this paper, N =
{0, 1, . . . }. Recall that N(t) is the set of the particles alive at time t and that for u ∈ N(t), Xu(t)
is the position of u. For u ∈ N(t), we use du and Ou to denote the death time and the offspring
number of u respectively. For v and u, we will use v < u to denote that v is an ancestor of u. The
notation v ≤ u means that v = u or v < u.

For a = (a1, ..., ad) ∈ Rd, define (a)j := aj and (−∞,a] := (−∞, a1] × · · · × (−∞, ad]. For
a,b ∈ Rd, we use a < b (a ≤ b) to denote that (a)j < (b)j ((a)j < (b)j ) for all 1 ≤ j ≤ d. For
a,b ∈ Rd with a < b, define (a,b] := (a1, b1] × · · · × (ad, bd]. The definition of [a,b] is similar.
For k = (k1, ..., kd) ∈ Nd, set |k| := k1 + ... + kd and k! := k1! · · · kd!. For a function f on Rd,
x ∈ Rd and k ∈ Nd, let Dkf(x) := ∂k1

x1
...∂kd

xd
f(x). We also use the notation ϕ(y) := 1√

2π
e−y2/2 and

Φd(x) :=
∏d

j=1

∫ xj

−∞ ϕ(z)dz. Sometimes we write Φ(y) for Φ1(y).

1.3 Main results

We will assume that

∞∑
k=1

k(log k)1+λpk < ∞ (1.7)

for appropriate λ > 0. Let Hk be the k-th order Hermite polynomial: H0(x) := 1 and for k ≥ 1,

Hk(x) :=

[k/2]∑
j=0

k!(−1)j

2jj!(k − 2j)!
xk−2j .
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It is well known that if {(Bt)t≥0,Π0} is a standard Brownian motion, then for any k ≥ 0,
{tk/2Hk(Bt/

√
t), σ(Bs : s ≤ t), Π0} is a martingale. Now for k ∈ Nd and θ ∈ Rd with ∥θ∥ <

√
2,

we define

M
(k,θ)
t := e−(1+

∥θ∥2
2

)t
∑

u∈N(t)

e−θ·Xu(t)t|k|/2
d∏

j=1

Hkj

((Xu(t))j + θjt√
t

)
, t ≥ 0.

Note that M
(0,θ)
t = Wt(θ). We will prove in Proposition 2.6 below that if (1.7) holds for λ large

enough, M
(k,θ)
t will converges almost surely and in L1 to a limit M

(k,θ)
∞ . Here are the main results

of this paper:

Theorem 1.1 Suppose θ ∈ Rd with ∥θ∥ <
√
2. For any given m ∈ N, if (1.7) holds for some

λ > max {3m+ 8, d(3m+ 5)}, then for any b ∈ Rd, P-almost surely, as s → ∞,

µθ
s

(
(−∞,b

√
s]
)
=

∑
k:|k|≤m

(−1)|k|

k!

1

s|k|/2
DkΦd(b)M

(k,θ)
∞ + o(s−m/2)

=
m∑
ℓ=0

(−1)ℓ

sℓ/2

∑
k:|k|=ℓ

DkΦd(b)

k!
M (k,θ)

∞ + o(s−m/2).

Theorem 1.2 Suppose θ ∈ Rd with ∥θ∥ <
√
2. For any given m ∈ N, if (1.7) holds for some

λ > max{d(3m+ 5), 3m+ 3d+ 8}, then for any a,b ∈ Rd with a < b, P-almost surely, as s → ∞,

sd/2µθ
s((a,b])

=
m∑
ℓ=0

1

sℓ/2

ℓ∑
j=0

(−1)j
∑

k:|k|=j

M
(k,θ)
∞
k!

∑
i:|i|=ℓ−j

Dk+i+1Φd(0)

i!

∫
[a,b]

d∏
j=1

z
ij
j dz1...dzd + o(s−m/2),

where 1 := (1, ..., 1).

Remark 1.3 Note that we only dealt with the case that the branching rate is 1 and the mean
number of offspring is 2 in the two theorems above. In the general case when the branching rate
is β > 0 and the mean number of offspring is µ > 1, one can use the same argument to prove
the following counterpart of Theorem 1.1: Suppose θ ∈ Rd with ∥θ∥ <

√
2β(µ− 1). For any given

m ∈ N, if (1.7) holds for some λ > max {3m+ 8, d(3m+ 5)}, then for any b ∈ Rd, P-almost surely,
as s → ∞,

µθ
s

(
(−∞,b

√
s]
)
:= e−(β(µ−1)+

∥θ∥2
2

)t
∑

u∈N(t)

e−θ·Xu(t)1(−∞,b
√
s] (Xu(t) + θt)

=

m∑
ℓ=0

(−1)ℓ

sℓ/2

∑
k:|k|=ℓ

DkΦd(b)

k!
M (k,θ)

∞ + o(s−m/2),

with M
(k,θ)
∞ given by

M (k,θ)
∞ := lim

t→∞
e−(β(µ−1)+

∥θ∥2
2

)t
∑

u∈N(t)

e−θ·Xu(t)t|k|/2
d∏

j=1

Hkj

((Xu(t))j + θjt√
t

)
. (1.8)
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In the general case, the counterpart of Theorem 1.2 is as follows: Suppose θ ∈ Rd with ∥θ∥ <√
2β(µ− 1). For any given m ∈ N, if (1.7) holds for some λ > max{d(3m+5), 3m+3d+8}, then

for any a,b ∈ Rd with a < b, P-almost surely, as s → ∞,

sd/2µθ
s((a,b]) = e−(β(µ−1)+

∥θ∥2
2

)t
∑

u∈N(t)

e−θ·Xu(t)1(a,b] (Xu(t) + θt)

=
m∑
ℓ=0

1

sℓ/2

ℓ∑
j=0

(−1)j
∑

k:|k|=j

M
(k,θ)
∞
k!

∑
i:|i|=ℓ−j

Dk+i+1Φd(0)

i!

∫
[a,b]

d∏
j=1

z
ij
j dz1...dzd + o(s−m/2),

with M
(k,θ)
∞ given in (1.8).

Remark 1.4 One could also consider asymptotic expansions for the additive measure µZ,θ
n for

branching random walks. Using the tools established in [9], it is possible to get fixed order expan-
sions. However, getting asymptotic expansions of arbitrary order may be difficult.

We end this section with a few words about the strategy of the proofs and the organization of
the paper. In Section 2, we introduce the spine decomposition and gather some useful facts. We

also study the convergence rate of the martingales M
(k,θ)
t and moments of the additive martingale

Wt(θ). In Section 3, we prove Theorems 1.1 and 1.2. To prove Theorem 1.1, we choose a sequence
of discrete time rn = n1/κ for some κ > 1. To control the behavior of particles alive in (rn, rn+1),
we need rn+1 − rn → 0. This is the reason we do not choose rn = nδ. We prove in Lemma 3.1

that µθ
rn

(
(−∞,b

√
rn]
)
≈ E

[
µθ
rn

(
(−∞,b

√
rn]
) ∣∣F√

rn

]
, where Ft is the σ-field generated by the

branching Brownian motion up to time t. To deal with s ∈ (rn, rn+1), we adapt some ideas from
from [3, Lemma 8] and [13, paragraph below (13)]. We prove in Lemma 3.2 that, for s ∈ (rn, rn+1),

µθ
s ((−∞,b

√
s]) ≈ E

[
µθ
s ((−∞,b

√
s])
∣∣F√

rn

]
. We complete the proof of Theorem 1.1 by using a

series of identities proved in [8]. The proof of Theorem 1.2 is similar.

2 Preliminaries

2.1 Spine decomposition

Define

dP−θ

dP

∣∣∣∣
Ft

:= Wt(θ). (2.1)

Then under P−θ, the evolution of our branching Brownian motion can be described as follows (spine
decomposition) (see [14] for the case d = 1 or see [16] for a more general case):

(i) there is an initial marked particle at 0 ∈ Rd which moves according to the law of {Bt−θt,Π0},
where {Bt,Π0} is a d-dimensional standard Brownian motion;

(ii) the branching rate of this marked particle is 2;
(iii) when the marked particle dies at site y, it gives birth to L̂ children with P−θ(L̂ = k) =

kpk/2;
(iv) one of these children is uniformly selected and marked, and the marked child evolves as its

parent independently and the other children evolve independently with law Py, where Py denotes
the law of a branching Brownian motion starting at y.

6



Let di be the i-th splitting time of the spine and Oi be the number of children produced by the
spine at time di. According to the spine decomposition, it is easy to see that {di : i ≥ 1} are the
atoms for a Poisson point process with rate 2, {Oi : i ≥ 1} are iid with common law L̂ given by
P−θ(L̂ = k) = kpk/2, and that {di : i ≥ 1} and {Oi : i ≥ 1} and Xξ are independent. This fact will
be used repeatedly.

We use ξt and Xξ(t) to denote the marked particle at time t and the position of this marked
particle respectively. By [16, Theorem 2.11], we have that, for u ∈ N(t),

P−θ
(
ξt = u

∣∣Ft

)
=

e−θ·Xu(t)∑
u∈N(t) e

−θ·Xu(t)
=

e−(1+
∥θ∥2
2

)te−θ·Xu(t)

Wt(θ)
. (2.2)

Using (2.2), we can get the following many-to-one formula.

Lemma 2.1 For any t > 0 and u ∈ N(t), let H(u, t) be a non-negative Ft-measurable random
variable. Then

E
( ∑

u∈N(t)

H(u, t)
)
= e(1+

∥θ∥2
2

)tE−θ
(
eθ·Xξ(t)H(ξt, t)

)
.

Proof: Combining (2.1) and (2.2), we get

E

 ∑
u∈N(t)

H(u, t)

 = E−θ

 ∑
u∈N(t)

H(u, t)

Wt(θ)


= E−θ

 ∑
u∈N(t)

H(u, t)e(1+
∥θ∥2
2

)teθ·Xu(t)P−θ
(
ξt = u

∣∣Ft

)
= e(1+

∥θ∥2
2

)tE−θ

E−θ

 ∑
u∈N(t)

1{ξt=u}H(u, t)eθ·Xu(t)
∣∣Ft


= e(1+

∥θ∥2
2

)tE−θ

H(ξt, t)e
θ·Xξ(t)

∑
u∈N(t)

1{ξt=u}

 = e(1+
∥θ∥2
2

)tE−θ
(
eθ·Xξ(t)H(ξt, t)

)
.

2

2.2 Some useful facts

In this subsection, we gather some useful facts that will be used later.

Lemma 2.2 (i) Let ℓ ∈ [1, 2] be a fixed constant. Then for any finite family of independent centered
random variables {Xi : i = 1, . . . , n} with E|Xi|ℓ < ∞ for all i = 1, . . . , n, it holds that

E
∣∣ n∑
i=1

Xi

∣∣ℓ ≤ 2
n∑

i=1

E|Xi|ℓ.

(ii) For any ℓ ∈ [1, 2] and any random variable X with E|X|2 < ∞,

E |X − EX|ℓ ≲ E|X|ℓ ≤ (EX2)ℓ/2.

Proof: For (i), see [19, Theorem 2]. (ii) follows easily from Jensen’s inequality. 2
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Lemma 2.3 For any ρ ∈ (0, 1), b, x ∈ R, it holds that

Φ

(
b− ρx√
1− ρ2

)
= Φ(b)− ϕ(b)

∞∑
k=1

ρk

k!
Hk−1(b)Hk(x).

Proof: See [8, Lemma 4.2.]. 2

To prove Theorem 1.1, we will define rn := n
1
κ for some κ > 1. For s ∈ [rn, rn+1), applying

Lemma 2.3 with ρ =
√√

rn/s and x = r
−1/4
n y, we get that for any b, y ∈ R,

Φ
( b

√
s− y√

s−√
rn

)
= Φ(b)− ϕ(b)

∞∑
k=1

1

k!

1

sk/2
Hk−1(b)

(
rk/4n Hk

( y

r
1/4
n

))
. (2.3)

Recall that (see [8, (4.1)]) for any k ≥ 1 and x ∈ R,

|Hk(x)| ≤ 2
√
k!ex

2/4. (2.4)

Lemma 2.4 For a given m ∈ N, let κ = m+ 3 and rn = n1/κ. Let K > 0 be a fixed constant and
J be an integer such that J > 2m+Kκ. For any b, y ∈ R and s ∈ [rn, rn+1), it holds that

Φ
( b

√
s− y√

s−√
rn

)
= Φ(b)− ϕ(b)

J∑
k=1

1

k!

1

sk/2
Hk−1(b)

(
rk/4n Hk

( y

r
1/4
n

))
+ εm,y,b,s,

and that

sup
{
sm/2 |εm,y,b,s| : s ∈ [rn, rn+1), |y| ≤

√
K
√
rn log n, b ∈ R

}
n→∞−→ 0.

Proof: It follows from (2.4) that there exists a constant C such that for all b ∈ R, n ≥ 2,
s ∈ [rn, rn+1), |y| ≤

√
K
√
rn log n and k ≥ m,

sm/2 1

k!

1

sk/2
(ϕ(b) |Hk−1(b)|)

∣∣∣rk/4n Hk

( y

r
1/4
n

)∣∣∣ ≤ C
nk/(4κ)

n(k−m)/(2κ)
nK/4.

Combining this with (2.3), we get that for J > 2m + Kκ, n ≥ 2, s ∈ [rn, rn+1), b ∈ R and
|y| ≤

√
K
√
rn log n,

sm/2 |εm,y,b,s| ≤ C

∞∑
k=J+1

n−(k−2m−Kκ)/(4κ) ≲ n−(J+1−2m−Kκ)/(4κ).

Thus the assertions of the lemma are valid. 2

Now we give a result of similar flavor which will be used to prove Theorem 1.2. Taking derivative
with respect to b in Lemma 2.3, and using the fact that

dk

dbk
Φ(b) = (−1)k−1Hk−1(b)ϕ(b),

we get that

1√
1− ρ2

ϕ
( b− ρx√

1− ρ2

)
= ϕ(b) + ϕ(b)

∞∑
k=1

ρk

k!
Hk(b)Hk(x). (2.5)
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Now letting ρ =
√√

rn/s, b = z/
√
s and x = r

−1/4
n y in (2.5), we get that for any z, y ∈ R,

√
s√

s−√
rn

ϕ
( z − y√

s−√
rn

)
= ϕ

( z√
s

)(
1 +

∞∑
k=1

1

k!

1

sk/2
Hk

( z√
s

)
rk/4n Hk

( y

r
1/4
n

))
.

The proof of the following result is similar to that of Lemma 2.4, we omit the details.

Lemma 2.5 For a given m ∈ N, let κ = m+ 3 and rn = n1/κ. Let K > 0 be a fixed constant and
J be an integer such that J > 2m +Kκ. For any a < b ∈ R, y, z ∈ R and s ∈ [rn, rn+1), it holds
that

√
s√

s−√
rn

ϕ
( z − y√

s−√
rn

)
= ϕ

( z√
s

)(
1 +

J∑
k=1

1

k!

1

sk/2
Hk

( z√
s

)
rk/4n Hk

( y

r
1/4
n

))
+ εm,y,z,s,

and that

sup
{
sm/2 |εm,y,z,s| : s ∈ [rn, rn+1), z ∈ [a, b], |y| ≤

√
K
√
rn log n

}
n→∞−→ 0.

2.3 Convergence rate for the martingales

Proposition 2.6 For any θ ∈ Rd with ∥θ∥ <
√
2 and k ∈ Nd, {M (k,θ)

t , t ≥ 0; P} is a martingale. If

(1.7) holds for some λ > |k|/2, then M
(k,θ)
t converges to a limit M

(k,θ)
∞ P-a.s. and in L1. Moreover,

for any η ∈ (0, λ− |k|/2), as t → ∞,

M
(k,θ)
t −M (k,θ)

∞ = o(t−(λ−|k|/2)+η), P-a.s.

Proof: By Lemma 2.1, it is easy to see that {M (k,θ)
t , t ≥ 0; P} is a martingale.

Now we fix k ∈ Nd and assume (1.7) holds for some λ > |k|/2. We first look at the case when
t → ∞ along integers. Let t = n ∈ N. Recall that N(n + 1) is the set of particles alive at time
n + 1. For u ∈ N(n + 1), define Bn,u to be the event that, for all v < u with dv ∈ (n, n + 1), it
holds that Ov ≤ ec0n, where c0 > 0 is a small constant to be determined later. Set

M
(k,θ),B
n+1 := e−(1+

∥θ∥2
2

)(n+1)

×
∑

u∈N(n+1)

e−θ·Xu(n+1)(n+ 1)|k|/2
d∏

j=1

Hkj

((Xu(n+ 1))j + θj(n+ 1)
√
n+ 1

)
1Bn,u .

Since |Hk(x)| ≲ |x|k + 1 for all x ∈ R and (|x|+ |y|)k ≲ |x|k + |y|k for all x, y ∈ R, we have

(n+ 1)k/2
∣∣∣Hk

( x+ z√
n+ 1

)∣∣∣ ≲ (|x|+ |z|)k + (n+ 1)k/2 ≲ |x|k + |z|k + nk/2,

which implies that for all j ∈ {1, ..., d},

(n+ 1)kj/2
∣∣∣Hkj

((Xu(n+ 1))j + θj(n+ 1)√
n+ 1

)∣∣∣
≲ |(Xu(n))j + θjn|kj + nkj/2 + |(Xu(n+ 1))j − (Xu(n))j + θj |kj . (2.6)
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Therefore,∣∣∣M (k,θ)
n+1 −M

(k,θ),B
n+1

∣∣∣ ≤ e−(1+
∥θ∥2
2

)(n+1)

×
∑

u∈N(n+1)

e−θ·Xu(n+1)
∣∣∣(n+ 1)|k|/2

d∏
j=1

Hkj

((Xu(n+ 1))j + θj(n+ 1)
√
n+ 1

)∣∣∣1(Bn,u)c

≲ e−(1+
∥θ∥2
2

)(n+1)
∑

u∈N(n)

e−θ·Xu(n)
∑

v∈N(n+1):u≤v

e−θ·(Xv(n+1)−Xu(n))

×
d∏

j=1

(
|(Xu(n))j + θjn|kj + nkj/2 + |(Xv(n+ 1))j − (Xu(n))j + θj |kj

)
1(Bn,v)c .

By the branching property and the Markov property, we get that

E
(∣∣∣M (k,θ)

n+1 −M
(k,θ),B
n+1

∣∣∣ ∣∣Fn

)
≲ e−(1+

∥θ∥2
2

)n
∑

u∈N(n)

e−θ·Xu(n)

× E
(
e−(1+

∥θ∥2
2

)
∑

v∈N(1)

e−θ·Xv(1)
d∏

j=1

(
|(Xv(1))j + θj |kj + yj

)
1(Dn,v)c

)∣∣∣
yj=|(Xu(n))j+θjn|kj+nkj/2

=: e−(1+
∥θ∥2
2

)n
∑

u∈N(n)

e−θ·Xu(n)F (y)
∣∣∣
yj=|(Xu(n))j+θjn|kj+nkj/2

, (2.7)

where, for v ∈ N(1), Dn,v denotes the event that, for all w < v, it holds that Ow ≤ ec0n. Recall
that di is the i-th splitting time of the spine and Oi is the number of children produced by the
spine at time di. Define Dn,ξ1 to be the event that, for all i with di < 1, it holds that Oi ≤ ec0n.
By Lemma 2.1,

F (y) = E−θ
( d∏

j=1

(
|(Xξ(1))j + θj |kj + yj

)
1(Dn,ξ1

)c

)
.

Using the independence of {di : i ≥ 1}, {Oi : i ≥ 1} and Xξ, we have that Dn,ξ1 is independent of
Xξ, which implies that for yj ≥ 1,

F (y) =
d∏

j=1

(
Π0(|B1|kj ) + yj

)
P−θ

(
Dc

n,ξ1

)
≤

d∏
j=1

(
Π0(|B1|kj ) + yj

)
E−θ

( ∑
i:di≤1

1{Oi>ec0n}
)

≲
( d∏
j=1

yj
)
P−θ(L̂ > ec0n) ≲

( d∏
j=1

yj
)
P−θ(L̂ > ec0n) ≲

∏d
j=1 yj

n1+λ
, (2.8)

here in the first equality, we also used the fact that {Xξ(t) + θt,P−θ} is a d-dimensional standard

Brownian motion, and in the last inequality, we used E−θ(log1+λ
+ L̂) < ∞ (which follows from (1.7)).

By (2.7) and (2.8), we have

E
(∣∣∣M (k,θ)

n+1 −M
(k,θ),B
n+1

∣∣∣ ∣∣Fn

)
≲ e−(1+

∥θ∥2
2

)n
∑

u∈N(n)

e−θ·Xu(n)

∏d
j=1

(
|(Xu(n))j + θjn|kj + nkj/2

)
n1+λ

.
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Taking expectation with respect to P, by Lemma 2.1, we obtain that

E
(∣∣∣M (k,θ)

n+1 −M
(k,θ),B
n+1

∣∣∣) ≲
1

n1+λ

d∏
j=1

Π0

(
|Bn|kj + nkj/2

)
≲

n|k|/2

n1+λ
. (2.9)

On the other hand, by the branching property,

M
(k,θ),B
n+1 = e−(1+

∥θ∥2
2

)n
∑

u∈N(n)

e−θ·Xu(n)Jn,u,

where

Jn,u :=
∑

v∈N(n+1):u≤v

e−θ·(Xv(n+1)−Xu(n))(n+ 1)|k|/2
d∏

j=1

Hkj

((Xv(n+ 1))j + θj(n+ 1)√
n+ 1

)
1Bn,v

are independent given Fn. For any fixed 1 < ℓ < min{2/∥θ∥2, 2}, Applying Lemma 2.2 (i) to the
finite family {Jn,u − E(Jn,u

∣∣Fn) : u ∈ N(n)} and Lemma 2.2 (ii) to Jn,u, together with (2.6), we
get that

E
(∣∣∣M (k,θ),B

n+1 − E
(
M

(k,θ),B
n+1

∣∣Fn

)∣∣∣ℓ∣∣Fn

)
≲ e−ℓ(1+

∥θ∥2
2

)n
∑

u∈N(n)

e−ℓθ·Xu(n) (Mn,u)
ℓ/2 , (2.10)

where Mn,u is given by

Mn,u := E
(
e−2(1+

∥θ∥2
2

)
( ∑

v∈N(1)

e−θ·Xv(1)Sv(y, 1)1Dn,v

)2)∣∣∣
yj=|(Xu(n))j+θjn|kj+nkj/2

with Sv(y, r) :=
∏d

j=1

(
|(Xv(r))j + θjr|kj + yj

)
. Set

Tn,u := Su(y, 1)1Dn,ue
−(1+

∥θ∥2
2

)
∑

v∈N(1)

e−θ·Xv(1)Sv(y, 1)1Dn,v .

By Lemma 2.1, we have

Mn,u = e−(1+
∥θ∥2
2

)E
( ∑

u∈N(1)

e−θ·Xu(1)Tn,u

)∣∣∣
yj=|(Xu(n))j+θjn|kj+nkj/2

= E−θ (Tn,ξ1)
∣∣∣
yj=|(Xu(n))j+θjn|kj+nkj/2

= E−θ
(
1Dn,ξ1

Sξ1(y, 1)e
−(1+

∥θ∥2
2

)
∑

v∈N(1)

e−θ·Xv(1)Sv(y, 1)1Dn,v

)∣∣∣
yj=|(Xu(n))j+θjn|kj+nkj/2

≤ E−θ
(
1Dn,ξ1

Sξ1(y, 1)e
−(1+

∥θ∥2
2

)
∑

v∈N(1)

e−θ·Xv(1)Sv(y, 1)
)∣∣∣

yj=|(Xu(n))j+θjn|kj+nkj/2
. (2.11)

Conditioned on G := σ(Xξ, di, Oi : i ≥ 1), by the branching property, on the set Dn,ξ1 ,

e−(1+
∥θ∥2
2

)E−θ
( ∑

v∈N(1)

e−θ·Xv(1)Sv(y, 1)
∣∣G)
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=
∑
i:di≤1

(Oi − 1)e−(1+
∥θ∥2
2

)die−θ·Xξ(di)Π0

( d∏
j=1

(
|(B1−di)j + zj |kj + yj

))∣∣∣
zj=(Xξ(di))j+θjdi

≲ ec0n
∑
i:di≤1

e−θ·Xξ(di)
d∏

j=1

(
yj + |(Xξ(di))j + θjdi|kj

)
= ec0n

∑
i:di≤1

e−θ·Xξ(di)Sξdi
(y, di), (2.12)

where in the first equality we also used Lemma 2.1. Plugging (2.12) into (2.11), noting that Xξ

and di are independent, we get that

E−θ
(
1Dn,ξ1

Sξ1(y, 1)e
−(1+

∥θ∥2
2

)
∑

v∈N(1)

e−θ·Xv(1)Sv(y, 1)
∣∣Xξ

)
≲ Sξ1(y, 1)e

c0nE−θ
( ∑

i:di≤1

e−θ·Xξ(di)Sξdi
(y, di)

∣∣Xξ

)
= 2Sξ1(y, 1)e

c0n

∫ 1

0
e−θ·Xξ(s)Sξs(y, s)ds

≲ ec0n
d∏

j=1

{(
yj + sup

s<1
|(Xξ(s))j + θjs|kj

)2

e∥θ∥ sups<1 |(Xξ(s))j+θjs|

}
. (2.13)

Since {Xξ(s) + θs,P−θ} is a d-dimensional standard Brownian motion, combining with (2.11) and
(2.13), we conclude that

Mn,u ≲ ec0n
d∏

j=1

Π0

((
yj + sup

s<1
|(Bs)j |kj

)2
e∥θ∥ sups<1 |(Bs)j |

)∣∣∣
yj=|(Xu(n))j+θjn|kj+nkj/2

≲
d∏

j=1

(
|(Xu(n))j + θjn|kj + nkj/2

)2
ec0n. (2.14)

Plugging (2.14) into (2.10), we conclude that

E
( ∣∣∣M (k,θ),B

n+1 − E
(
M

(k,θ),B
n+1

∣∣Fn

)∣∣∣ℓ ∣∣Fn

)
≲ ec0ℓn/2e−ℓ(1+

∥θ∥2
2

)n
∑

u∈N(n)

e−ℓθ·Xu(n)
d∏

j=1

(
|(Xu(n))j + θjn|kj + nkj/2

)ℓ
= e−((ℓ−1)(1−∥θ∥2ℓ/2)−c0ℓ/2)ne−(1+ℓ2∥θ∥2/2)n

×
∑

u∈N(n)

e−ℓθ·Xu(n)
d∏

j=1

(
|(Xu(n))j + θjn|kj + nkj/2

)ℓ
. (2.15)

Choose c0 > 0 small so that c0ℓ/2 < (ℓ−1)(1−∥θ∥2ℓ/2) and set c1 := (ℓ−1)(1−∥θ∥2ℓ/2)−c0ℓ/2 > 0.
Taking expectation with respect to P in (2.15), by Lemma 2.1 with θ replaced to ℓθ, we get that

E
(∣∣∣M (k,θ),B

n+1 − E
(
M

(k,θ),B
n+1

∣∣Fn

)∣∣∣ℓ)

≲ e−c1n
d∏

j=1

Π0

(
|(Bn)j − (ℓ− 1)θjn|kj + nkj/2

)ℓ
≲

(
n|k|/2

n1+λ

)ℓ

. (2.16)
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Now combining (2.9) and (2.16), using the inequality:

E (|X − E(X|F)|) ≤ E (|X − Y |) + E (|Y − E(Y |F)|) + E
(∣∣E (X − Y

∣∣F)∣∣)
≤ 2E (|X − Y |) + E

(
|Y − E(Y |F)|ℓ

)1/ℓ
,

and the fact that M
(k,θ)
n = E

(
M

(k,θ)
n+1

∣∣Fn

)
, we get that

E
(∣∣∣M (k,θ)

n+1 −M (k,θ)
n

∣∣∣) ≤ 2E
(∣∣∣M (k,θ)

n+1 −M
(k,θ),B
n+1

∣∣∣)
+ E

(∣∣∣M (k,θ),B
n+1 − E

(
M

(k,θ),B
n+1

∣∣Fn

)∣∣∣ℓ)1/ℓ

≲
n|k|/2

n1+λ
. (2.17)

Since λ > |k|/2, we have
∑∞

n=1 E
(∣∣∣M (k,θ)

n+1 −M
(k,θ)
n

∣∣∣) < ∞, which implies that M
(k,θ)
n converges to

a limit M
(k,θ)
∞ P-almost surely and in L1. Therefore, M

(k,θ)
n = E

(
M

(k,θ)
∞

∣∣Fn

)
, n ≥ 1.

For s ∈ (n, n + 1), M
(k,θ)
s = E

(
M

(k,θ)
n+1

∣∣Fs

)
= E

(
M

(k,θ)
∞

∣∣Fs

)
, thus the second assertion of the

proposition is valid.
Now we prove the last assertion of the proposition. For any η ∈ (0, λ− |k|/2), by (2.17),

∞∑
n=1

n−|k|/2+λ−ηE
(∣∣∣M (k,θ)

n+1 −M (k,θ)
n

∣∣∣) ≲
∞∑
n=1

1

n1+η
< ∞,

which implies that

∞∑
n=1

nλ−|k|/2−η
(
M

(k,θ)
n+1 −M (k,θ)

n

)
converges a.s.

Thus nλ−|k|/2−η
(
M

(k,θ)
n −M

(k,θ)
∞

)
n→∞−→ 0, P-a.s. (see for example [1, Lemma 2]). For s ∈ [n, n+1],

by Doob’s inequality, for any ε > 0,

∞∑
n=1

P
(
n−|k|/2+λ−η sup

n≤s≤n+1

∣∣∣M (k,θ)
s −M (k,θ)

n

∣∣∣ > ε
)

≤ 1

ε

∞∑
n=1

n−|k|/2+λ−ηE
(∣∣∣M (k,θ)

n+1 −M (k,θ)
n

∣∣∣) < ∞.

Therefore, n−|k|/2+λ−η supn≤s≤n+1

∣∣∣M (k,θ)
s −M

(k,θ)
n

∣∣∣ n→∞−→ 0,P-a.s. Hence P-almost surely,

sup
n≤s≤n+1

s−|k|/2+λ−η
∣∣∣M (k,θ)

s −M (k,θ)
∞

∣∣∣
≤ (n+ 1)−|k|/2+λ−η sup

n≤s≤n+1

∣∣∣M (k,θ)
s −M (k,θ)

n

∣∣∣+ (n+ 1)−|k|/2+λ−η
∣∣∣M (k,θ)

n −M (k,θ)
∞

∣∣∣
n→∞−→ 0,

which completes the proof of the last assertion of the proposition. 2
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2.4 Moment estimate for the additive martingale

In this subsection, we give an upper bound for Wt(θ) which will be used later.

Lemma 2.7 Suppose θ ∈ Rd with ∥θ∥ <
√
2. If (1.7) holds for some λ > 0, then there exists a

constant Cθ,λ such that for all t > 0,

E
(
(Wt(θ) + 1) log1+λ(Wt(θ) + 1)

)
≤ Cθ,λ(t+ 1).

Proof: Since EWt(θ) = 1, it suffices to prove that there exists a constant Cθ,λ such that for all

t > 0, E
(
Wt(θ) log

1+λ
+ (Wt(θ))

)
≤ Cθ,λ(t + 1). By using an projection argument, we can easily

reduce to the one dimensional case. So we will only deal with the case d = 1. By (2.1), we have

E
(
(Wt(θ)) log

1+λ
+ (Wt(θ))

)
= E−θ

(
log1+λ

+ (Wt(θ))
)
. Using the spine decomposition, we have

Wt(θ) = e−(1+ θ2

2
)te−θXξ(t) +

∑
i:di≤t

e−(1+ θ2

2
)die−θXξ(di)

Oi−1∑
j=1

W i,j
t−di

,

here di, Oi are the i-th fission time and the number of offspring of the spine at time di respectively.
Given all the information G about the spine, (W i,j

t−di
)j≥1 are independent with the same law as

Wt−di(θ) under P.
Using elementary analysis one can easily show that there exists A = Aλ > 1 such that for any

x, y > A,

log1+λ
+ (x+ y) ≤ log1+λ

+ (x) + log1+λ
+ (y). (2.18)

We set

K1 := e−(1+ θ2

2
)te−θXξ(t),

K2 :=
∑
i:di≤t

e−(1+ θ2

2
)die−θXξ(di)

Oi−1∑
j=1

W i,j
t−di

1{
e−(1+ θ2

2 )die
−θXξ(di)

∑Oi−1
j=1 W i,j

t−di
≤A
} ≤ A

∑
i:di≤t

1,

K3 :=
∑
i:di≤t

e−(1+ θ2

2
)die−θXξ(di)

Oi−1∑
j=1

W i,j
t−di

1{
e−(1+ θ2

2 )die
−θXξ(di)

∑Oi−1
j=1 W i,j

t−di
>A
}.

Note that log1+λ
+ (x + y + z) ≤ log1+λ

+ (3x) + log1+λ
+ (3y) + log1+λ

+ (3z), log1+λ
+ (xy) ≤ (log+ x +

log+ y)1+λ ≲ log1+λ
+ (x) + log1+λ

+ (y) and log1+λ
+ (x) ≲ x. By (2.18), we have

log1+λ
+ (Wt(θ)) = log1+λ

+ (K1 +K2 +K3) ≤ log1+λ
+ (3K1) + log1+λ

+ (3K2) + log1+λ
+ (3K3)

≲ 1 + log1+λ
+ (K1) +

( ∑
i:di≤t

1
)
+
∑
i:di≤t

log1+λ
+

(
e−(1+ θ2

2
)die−θXξ(di)

Oi−1∑
j=1

W i,j
t−di

)
≲ 1 + log1+λ

+ (K1) +
( ∑

i:di≤t

1 + log1+λ
+

(
e−(1+ θ2

2
)die−θXξ(di)

))

+
∑
i:di≤t

log1+λ
+

(Oi−1∑
j=1

W i,j
t−di

)
. (2.19)
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Put γ := 1 − θ2/2 > 0. Recalling that {Xξ(t) + θt,P−θ} is a standard Brownian motion and
{di : i ≥ 1} are the atoms of a Poisson point process with rate 2 independent of Xξ, we have

E−θ
(
log1+λ

+ (K1) +
( ∑
i:di≤t

1 + log1+λ
+

(
e−(1+ θ2

2
)die−θXξ(di)

)))
= E−θ

(
log1+λ

+ (K1) + 2

∫ t

0

(
1 + log1+λ

+

(
e−(1+ θ2

2
)se−θXξ(s)

)
ds
))

≲ Π0

(
(−θBt − γt)1+λ

+ +

∫ t

0

(
1 + (−θBs − γs)1+λ

+

)
ds
)
≲ t+ 1, (2.20)

where the last inequality follows from the following estimate:

Π0

(
(−θBs − γs)1+λ

+

)
= s(1+λ)/2Π0

( (
|θ|B1 − γ

√
s
)1+λ

1{|θ|B1>γ
√
s}
)

≤ γ1+λ(s+ 1)1+λe−γ
√
sΠ0

(
(|θ||B1|+ 1) e|θ|B1

)
≲ 1.

For the last term on the right-hand side of (2.19), conditioned on {di, Oi : i ≥ 1}, we get

E−θ
( ∑

i:di≤t

log1+λ
+

(Oi−1∑
j=1

W i,j
t−di

)∣∣di, Oi, i ≥ 1
)

≲
∑
i:di≤t

log1+λ
+ (Oi − 1) +

∑
i:di≤t

E−θ
(
log1+λ

+

(
max

j≤Oi−1
W i,j

t−di

)∣∣di, Oi, i ≥ 1
)
. (2.21)

Note that

E−θ
(
log1+λ

+

(
max

j≤Oi−1
W i,j

t−di

)∣∣di, Oi, i ≥ 1
)

= (1 + λ)

∫ ∞

0
yλP−θ

(
max

j≤Oi−1
W i,j

t−di
> ey

∣∣∣∣di, Oi, i ≥ 1
)
dy

= (1 + λ)

∫ ∞

0
yλ
(
1−

Oi−1∏
j=1

(
1− P−θ

(
W i,j

t−di
> ey

∣∣di, Oi, i ≥ 1
)))

dy

≲
∫ ∞

0
yλ
(
1−

(
1− e−y

)Oi−1 )
dy, (2.22)

where in the inequality we used Markov’s inequality. When Oi − 1 ≥ ey/2 (which is equivalent to

y ≤ 2 log(Oi − 1)), we have yλ
(
1− (1− e−y)

Oi−1
)
≲ logλ(Oi − 1); when Oi − 1 < ey/2, by the

inequality (1− x)n ≥ 1− nx, we get

yλ
(
1−

(
1− e−y

)Oi−1 ) ≤ yλ(Oi − 1)e−y ≤ yλe−y/2.

Thus, by (2.22),

E−θ
(
log1+λ

+

(
max

j≤Oi−1
W i,j

t−di

)∣∣di, Oi, i ≥ 1
)
≲ log1+λ

+ (Oi − 1) + 1.

Plugging this back to (2.21) and taking expectation with respect to P−θ, we conclude that

E−θ
( ∑

i:di≤t

log1+λ
+

(Oi−1∑
j=1

W i,j
t−di

))
≲ E−θ

( ∑
i:di≤t

(
log1+λ

+ (Oi − 1) + 1
))

≲ t+ 1. (2.23)

Combining (2.19), (2.20) and (2.23), we get the desired result. 2
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3 Proof of the main results

Let κ > 1 be fixed. Define

rn := n
1
κ , n ∈ N

Lemma 3.1 For any given α, β > 0 and δ ∈ (0, 1], assume that (1.7) holds for λ with λδ − α >
κ(1 + β).

(i) For each n, let an ≤ nβ and {Yn,u : u ∈ N(rδn)} be a family of random variables such

that E
(
Yn,u

∣∣Frδn

)
= 0, and conditioned on Frδn

, Yn,u, u ∈ N(rδn), are independent. If |Yn,u| ≤

Wan(θ;u) + 1 for all n and u ∈ N(rδn), with
(
Wan(θ;u),P(·

∣∣Frδn
)
)
being a copy of Wan(θ), then

rαne
−(1+

∥θ∥2
2

)rδn
∑

u∈N(rδn)

e−θ·Xu(rδn)Yn,u
n→∞−→ 0, a.s.

(ii) Consequently, if λδ − α > κ+ 1, then for any sequence {An} of Borel sets in Rd,

rαn

∣∣∣µθ
rn (An)− E

[
µθ
rn (An)

∣∣Frδn

]∣∣∣ n→∞−→ 0, a.s.

Proof: (i) Define

Y n,u := Yn,u1{|Yn,u|≤ec∗r
δ
n}, Y ′

n,u = Y n,u − E
(
Y n,u

∣∣Frδn

)
,

where c∗ > 0 is a constant to be chosen later. Then for any ε > 0,

P
(∣∣∣rαne−(1+

∥θ∥2
2

)rδn
∑

u∈N(rδn)

e−θ·Xu(rδn)Yn,u

∣∣∣ > ε
∣∣∣Frδn

)
≤ P

(∣∣∣rαne−(1+
∥θ∥2
2

)rδn
∑

u∈N(rδn)

e−θ·Xu(rδn)
(
Yn,u − Y n,u

) ∣∣∣ > ε

3

∣∣∣Frδn

)
+ P

(
rαne

−(1+
∥θ∥2
2

)rδn

∣∣∣ ∑
u∈N(rδn)

e−θ·Xu(rδn)Y ′
n,u

∣∣∣ > ε

3

∣∣∣Frδn

)
+ 1{

rαne
−(1+

∥θ∥2
2 )rδn

∣∣∣∑
u∈N(rδn)

e−θ·Xu(rδn)E
(
Y n,u

∣∣F
rδn

)∣∣∣> ε
3

} =: I + II + III. (3.1)

Using the inequality

|Yn,u − Y n,u| = |Yn,u|1{|Yn,u|>ec∗r
δ
n} ≤ (Wan(θ;u) + 1) 1{

Wan (θ;u)+1>ec∗r
δ
n

}
and Markov’s inequality, we have

I ≤ 3

ε
rαne

−(1+
∥θ∥2
2

)rδn
∑

u∈N(rδn)

e−θ·Xu(rδn)E
(∣∣Yn,u − Y n,u

∣∣ ∣∣∣Frδn

)
≲ rαne

−(1+
∥θ∥2
2

)rδn
∑

u∈N(rδn)

e−θ·Xu(rδn)E
(
(Wan(θ) + 1) 1{Wan (θ)+1>ec∗r

δ
n}

)
≤ rαn

(c∗rδn)
λ+1

e−(1+
∥θ∥2
2

)rδn
∑

u∈N(rδn)

e−θ·Xu(rδn)E
(
(Wan(θ) + 1) log1+λ

+ (Wan(θ) + 1)
)
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≲
rαn

(c∗rδn)
λ+1

e−(1+
∥θ∥2
2

)rδn
∑

u∈N(rδn)

e−θ·Xu(rδn)nβ, (3.2)

where in the last inequality we used Lemma 2.7. For 1 < ℓ < min{2/∥θ∥2, 2}, set b := e(ℓ−1)(1−∥θ∥2ℓ/2)/2 ∈
(1, e) and c∗ := ln b. Using Markov’s inequality, Lemma 2.2, the conditional independence of Y ′

n,u,

and the fact that |Y n,u|ℓ ≤ ec∗(ℓ−1)rδn |Yn,u| ≤ ec∗r
δ
n (Wan(θ;u) + 1) , we have

II ≤ 3ℓ

εℓ
rαℓn e−ℓ(1+

∥θ∥2
2

)rδnE
(∣∣∣ ∑

u∈N(rδn)

e−θ·Xu(rδn)Y ′
n,u

∣∣∣ℓ∣∣∣Frδn

)
≲

3ℓ

εℓ
rℓαn e−ℓ(1+

∥θ∥2
2

)rδn
∑

u∈N(rδn)

e−ℓθ·Xu(rδn)E
(∣∣Y n,u

∣∣ℓ ∣∣Frδn

)
≤ 3ℓ

εℓ
rℓαn e−ℓ(1+

∥θ∥2
2

)rδn
∑

u∈N(rδn)

e−ℓθ·Xu(rδn)ec∗r
δ
nE
(
Wan(θ;u) + 1

∣∣Frδn

)
≲ rℓαn b−2rδne−(1+

ℓ2∥θ∥2
2

)rδnbr
δ
n

∑
u∈N(rδn)

e−ℓθ·Xu(rδn), (3.3)

where in the last inequality, we used the identities E
(
Wan(θ;u) + 1

∣∣Frδn

)
= E (Wan(θ) + 1) = 2,

e−ℓ(1+
∥θ∥2
2

)rδn = b−2rδne−(1+
ℓ2∥θ∥2

2
)rδn , and ec∗ = b. Therefore, by (3.3), we get

II ≲ rℓαn b−rδnWrδn
(ℓθ). (3.4)

Now taking expectation with respect to P in (3.1), and using (3.2) and (3.4), we get that

P
(∣∣∣rαne−(1+

∥θ∥2
2

)rδn
∑

u∈N(rδn)

e−θ·Xu(rδn)Yn,u

∣∣∣ > ε
)

≲
rαnn

β

(rδn)
λ+1

+ rℓαn b−rδn + P

rαne
−(1+

∥θ∥2
2

)rδn

∣∣∣ ∑
u∈N(rδn)

e−θ·Xu(rδn)E
(
Y n,u

∣∣Frδn

) ∣∣∣ > ε

3

 . (3.5)

By Markov’s inequality and the fact that E
(
Y n,u

∣∣Frδn

)
= −E

(
Yn,u1{|Yn,u|>ec∗r

δ
n}

∣∣Frδn

)
, the third

term in right-hand side of (3.5) is bounded from above by

3

ε
rαne

−(1+
∥θ∥2
2

)rδnE
( ∑

u∈N(rδn)

e−θ·Xu(rδn)E
(
|Yn,u|1{|Yn,u|>ec∗r

δ
n

}∣∣Frδn

))
≤ 3

ε
rαn(c∗r

δ
n)

−λ−1E
(
(Wan(θ) + 1) logλ+1

+ (1 +Wan(θ))
)
≲ rαn(r

δ
n)

−λ−1nβ,

where in the last inequality we used Lemma 2.7. Plugging the upper bound above into (3.5) and

recalling rn = n
1
κ , we get

∞∑
n=1

P
(∣∣∣rαne−(1+

∥θ∥2
2

)rδn
∑

u∈N(rδn)

e−θ·Xu(rδn)Yn,u

∣∣∣ > ε
)

≲
∞∑
n=1

( rαnn
β

(rδn)
λ+1

+ rℓαn b−rδn + r−((λ+1)δ−α−κβ)
n

)
,
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which is summable since λδ − α > κ(1 + β). This completes the proof of (i).
(ii) By the Markov property and Lemma 2.1,

E
[
µθ
rn (An)

∣∣Frδn

]
= e−(1+

∥θ∥2
2

)rδn
∑

u∈N(rδn)

e−θ·Xu(rδn)P−θ
(
Xξ(rn − rδn) + θrn + y ∈ An

) ∣∣
y=Xu(rδn)

.

Since {Xξ(t) + θt,P−θ} is a d-dimensional standard Brownian motion, we have

E
[
µθ
rn (An)

∣∣Frδn

]
= e−(1+

∥θ∥2
2

)rδn
∑

u∈N(rδn)

e−θ·Xu(rδn)Π0

(
Brn−rδn

+ y + θrδn ∈ An

) ∣∣
y=Xu(rδn)

.

Therefore,

µθ
rn (An)− E

[
µθ
rn (An)

∣∣Frδn

]
=: e−(1+

∥θ∥2
2

)rδn
∑

u∈N(rδn)

e−θ·Xu(rδn)Yn,u,

where

Yn,u := e−(1+
∥θ∥2
2

)(rn−rδn)
∑

v∈N(rn):u≤v

e−θ·(Xv(rn)−Xu(rδn))1{Xv(rn)+θrn∈An}

−Π0

(
Brn−rδn

+ y + θrδn ∈ An

) ∣∣
y=Xu(rδn)

.

By the branching property, we see that, conditioned on Frδn
, {Yn,u : u ∈ N(rδn)} is a family of

centered independent random variables. Furthermore, it holds that

|Yn,u| ≤ e−(1+
∥θ∥2
2

)(rn−rδn)
∑

v∈N(rn):u≤v

e−θ·(Xv(rn)−Xu(rδn)) + 1

= Wrn−rδn
(θ;u) + 1.

Therefore, the second result is valid by (i) by taking β = 1/κ and an = rn − rδn. 2

Now we treat the case s ∈ [rn, rn+1). We will take δ = 1/2, β = 1/κ and α = m/2 for m ∈ N.
Then the condition λδ − α > κ(1 + β) is equivalent to λ > m+ 2(κ+ 1).

Lemma 3.2 For b ∈ Rd, let bs := b
√
s or bs := b. For any given m ∈ N, assume that κ > m+2

and that (1.7) holds for some λ > m+ 2(κ+ 1). Define ks :=
√
rn for s ∈ [rn, rn+1). Then for any

b ∈ Rd,

sm/2
∣∣∣µθ

s ((−∞,bs])− E
[
µθ
s ((−∞,bs])

∣∣Fks

]∣∣∣ s→∞−→ 0, P-a.s.

Proof: Step 1: In this step, we prove that almost surely,

sup
rn≤s<rn+1

sm/2
∣∣∣E [µθ

s ((−∞,bs])
∣∣Fks

]
− E

[
µθ
rn ((−∞,brn ])

∣∣Fks

]∣∣∣ n→∞−→ 0. (3.6)
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By the Markov property and Lemma 2.1, we see that

E
[
µθ
s ((−∞,bs])

∣∣Fks

]
= e−(1+

∥θ∥2
2

)
√
rn

∑
u∈N(

√
rn)

e−θ·Xu(
√
rn)Π0

(
Bs−√

rn + y + θ
√
rn ≤ bs

) ∣∣∣
y=Xu(

√
rn)

= e−(1+
∥θ∥2
2

)
√
rn

∑
u∈N(

√
rn)

e−θ·Xu(
√
rn)Φd

(bs − θ
√
rn −Xu(

√
rn)√

s−√
rn

)
,

Thus, for s ∈ [rn, rn+1), it holds that

sm/2
∣∣∣E [µθ

s ((−∞, bs])
∣∣Fks

]
− E

[
µθ
rn ((−∞, brn ])

∣∣Fks

]∣∣∣
≤ r

m/2
n+1e

−(1+
∥θ∥2
2

)
√
rn

∑
u∈N(

√
rn)

e−θ·Xu(
√
rn)

×
∣∣∣Φd

(bs − θ
√
rn −Xu(

√
rn)√

s−√
rn

)
− Φd

(brn − θ
√
rn −Xu(

√
rn)√

rn −√
rn

)∣∣∣
=: r

m/2
n+1e

−(1+
∥θ∥2
2

)
√
rn

∑
u∈N(

√
rn)

e−θ·Xu(
√
rn)R(u, s).

Note that, on the event ∪d
j=1{|(Xu(

√
rn))j + θj

√
rn| >

√
rn}, we use the trivial upper-bound

suprn≤s<rn+1
R(u, s) ≤ 2. Using Lemma 2.1 and the fact that {Xξ(t) + θt,P−θ} is a d-dimensional

standard Brownian motion, we have

∞∑
n=1

r
m/2
n+1e

−(1+
∥θ∥2
2

)
√
rnE
( ∑

u∈N(
√
rn)

e−θ·Xu(
√
rn)1{∪d

j=1{|(Xu(
√
rn))j+θj

√
rn|>

√
rn}} sup

rn≤s<rn+1

R(u, s)
)

≤ 2
∞∑
n=1

r
m/2
n+1Π0

(
∪d
j=1

{
|(B1)j | > r1/4n

})
≤ 2dΠ0(e

|(B1)1|)
∞∑
n=1

r
m/2
n+1e

−r
1/4
n < ∞,

which implies that P-almost surely,

r
m/2
n+1e

−(1+
∥θ∥2
2

)
√
rn

∑
u∈N(

√
rn)

e−θ·Xu(
√
rn)1{∪d

j=1{|(Xu(
√
rn))j+θj

√
rn|>

√
rn}}R(u, s)

s→∞−→ 0. (3.7)

On the other hand, on the event ∩d
j=1{|(Xu(

√
rn))j + θj

√
rn| ≤

√
rn}, in the case bs = b

√
s, using

the trivial inequality

|Φd(a)− Φd(b)| ≤
d∑

j=1

|Φ(aj)− Φ(bj)| ≤
1√
2π

d∑
j=1

|aj − bj |,

we get that, uniformly for s ∈ [rnrn+1),

R(u, s) ≤
d∑

j=1

(
|bj |√
2π

∣∣∣∣∣
√
s√

s−√
rn

−
√
rn√

rn −√
rn

∣∣∣∣∣
+

|(Xu(
√
rn))j + θj

√
rn|√

2π

∣∣∣∣∣ 1√
s−√

rn
− 1√

rn −√
rn

∣∣∣∣∣
)
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≲

∣∣√s(rn −√
rn)−

√
rn(s−

√
rn)
∣∣√

s−√
rn
√
rn −√

rn
+
√
rn

∣∣√s−√
rn −

√
rn −√

rn
∣∣√

s−√
rn
√

rn −√
rn

≲
1

rn

∣∣s(rn −√
rn)− rn(s−

√
rn)
∣∣

rn
+

√
rn

r
3/2
n

(rn+1 − rn) ≲
1

rn
(rn+1 − rn).

In the case bs = b, we have

R(u, s) ≤
d∑

j=1

(
|bj |√
2π

∣∣∣∣∣ 1√
s−√

rn
− 1√

rn −√
rn

∣∣∣∣∣
+

|(Xu(
√
rn))j + θj

√
rn|√

2π

∣∣∣∣∣ 1√
s−√

rn
− 1√

rn −√
rn

∣∣∣∣∣
)

≲
|s− rn|√

s−√
rn
√
rn −√

rn
(√

s−√
rn +

√
rn −√

rn
) +√

rn

∣∣√s−√
rn −

√
rn −√

rn
∣∣√

s−√
rn
√
rn −√

rn

≲
1

r
3/2
n

(rn+1 − rn) +

√
rn

r
3/2
n

(rn+1 − rn) ≲
1

rn
(rn+1 − rn).

Thus in both cases, we have that

r
m/2
n+1e

−(1+
∥θ∥2
2

)
√
rn

∑
u∈N(

√
rn)

e−θ·Xu(
√
rn)1{∩d

j=1{|(Xu(
√
rn))j+θj

√
rn|≤

√
rn}} sup

rn≤s<rn+1

R(u, s)

≲ r
m/2
n+1

1

rn
(rn+1 − rn)W√

rn(θ). (3.8)

We claim that right-hand side of (3.8) goes to 0 almost surely as s → ∞. In fact,

r
m/2
n+1

1

rn
(rn+1 − rn) ≲ r(−2+m)/2

n (rn+1 − rn) = n(−2+m)/(2κ)
(
(n+ 1)1/κ − n1/κ

)
.

By the mean value theorem, the right-hand side above is equal to

n(−2+m)/(2κ)ξ−1+ 1
κ ≲ n(m−2κ)/(2κ).

Since κ > m+ 2, the claim is valid. Combining this with (3.7) and (3.8), we get (3.6).
Step 2: In this step, we prove that

sup
rn≤s<rn+1

sm/2
∣∣∣µθ

s ((−∞,bs])− µθ
rn ((−∞,brn ])

∣∣∣ n→∞−→ 0, P-a.s. (3.9)

Once we get (3.9), we can combine (3.6) and Lemma 3.1 (ii) (with An = (−∞,brn ] and δ = 1/2)
to get the assertion of the lemma.

To prove (3.9), we first prove that

lim inf
n→∞

inf
rn≤s<rn+1

sm/2
(
µθ
s ((−∞,bs])− µθ

rn ((−∞,brn ])
)
≥ 0, P-a.s. (3.10)

Define εn :=
√
rn+1 − rn. For u ∈ N(rn), let Gu be the event that u does not split before rn+1 and

that maxs∈(rn,rn+1) ∥Xu(s)−Xu(rn)∥ ≤ √
rnεn. Then

P
(
Gu

∣∣Frn

)
= e−(rn+1−rn)Π0

(
max

r≤rn+1−rn
∥Br∥ ≤

√
rnεn

)
= e−(rn+1−rn)Π0

(
max
r≤1

∥Br∥ ≤
√
rn

)
.
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Recalling that 1 := (1, ..., 1), it holds that

µθ
s ((−∞,bs]) = e−(1+

∥θ∥2
2

)s
∑

u∈N(rn)

e−θ·Xu(rn)
∑

v∈N(s):u≤v

e−θ·(Xv(s)−Xu(rn))1{Xv(s)+θs≤bs}

≥ e−(1+
∥θ∥2
2

)rn+1e−∥θ∥√rnεn
∑

u∈N(rn)

e−θ·Xu(rn)1{Xu(rn)+θrn≤brn−εn
√
rn1−∥θ∥(rn+1−rn)1}1Gu

= e−(1+
∥θ∥2
2

)rn+1−∥θ∥√rnεn
∑

u∈N(rn)

e−θ·Xu(rn)

× 1{Xu(rn)+θrn≤brn−εn
√
rn1−∥θ∥(rn+1−rn)1}

(
1Gu − P

(
Gu

∣∣Frn

))
+ e−(1+

∥θ∥2
2

)rn+1−∥θ∥√rnεn
∑

u∈N(rn)

e−θ·Xu(rn)

× 1{Xu(rn)+θrn≤brn−εn
√
rn1−∥θ∥(rn+1−rn)1}P

(
Gu

∣∣Frn

)
=: I + II. (3.11)

For I, we will apply Lemma 3.1 (i) with α = m/2, δ = 1, an = 0, β = 0 and

Yn,u := 1{Xu(rn)+θrn≤brn−εn
√
rn1−∥θ∥(rn+1−rn)1}

(
1Gu − P

(
Gu

∣∣Frn

))
.

It is easy to see that |Yn,u| ≤ 2, rn+1−rn → 0 and
√
rnεn ≲

√
n(2−κ)/κ → 0. Since λ > m+2(κ+1),

we have

sup
rn≤s<rn+1

sm/2|I| n→∞−→ 0, P-a.s. (3.12)

If we can prove that

sup
rn≤s<rn+1

sm/2
∣∣∣II − µθ

rn ((−∞,brn ])
∣∣∣ n→∞−→ 0, P-a.s., (3.13)

then (3.10) will follow from (3.11), (3.12) and (3.13). Now we prove (3.13). Since κ > m + 2, we

have r
m/2
n (rn+1 − rn) ≲ n−1+(m+2)/(2κ) → 0. Thus,

sm/2
∣∣1− P

(
Gu

∣∣Frn

)∣∣ ≤ r
m/2
n+1(1− e−(rn+1−rn)) + r

m/2
n+1Π0

(
max
r≤1

∥Br∥ >
√
rn

)
≲ r

m/2
n+1(rn+1 − rn) + r

m/2
n+1e

−√
rn → 0.

Hence,

sm/2

∣∣∣∣e(1+ ∥θ∥2
2

)(rn+1−rn)e∥θ∥
√
rnεnII − µθ

rn ((−∞,brn − εn
√
rn1− ∥θ∥(rn+1 − rn)1])

∣∣∣∣
≲ Wrn(θ)

(
r
m/2
n+1(rn+1 − rn) + r

m/2
n+1e

−√
rn
)

s→∞−→ 0, P-a.s. (3.14)

Note that 0 ≤ e(1+
∥θ∥2
2

)(rn+1−rn)e∥θ∥
√
rnεnII ≤ Wrn(θ), e

(1+
∥θ∥2
2

)(rn+1−rn) = 1 + O(rn+1 − rn) =

1 + o(r
−m/2
n ), and that e∥θ∥

√
rnεn = 1 + O(

√
rn
√
rn+1 − rn) = 1 + O(n1/κ−1/2) = 1 + o(r

−m/2
n ) by

the assumption that κ > m+ 2. Therefore, (3.14) implies that

sm/2
∣∣∣II − µθ

rn ((−∞,brn − εn
√
rn1− ∥θ∥(rn+1 − rn)1])

∣∣∣ s→∞−→ 0, P-a.s. (3.15)
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Now we put An = (−∞,brn ] \ (−∞,brn − εn
√
rn1 − ∥θ∥(rn+1 − rn)1] ⊂ ∪d

j=1Cn,j where Cn,j :={
x = (x1, ..., xd) : xj ∈ ((brn)j − εn

√
rn − ∥θ∥(rn+1 − rn), (brn)j ]

}
. Then by Lemma 2.1 and the

inequality Π0 (Bt + y ∈ Cn,j) ≤ εn
√
rn+∥θ∥(rn+1−rn)√

2πt
, we obtain that

rm/2
n E

[
µθ
rn (An)

∣∣F√
rn

]
= rm/2

n e−(1+
∥θ∥2
2

)
√
rn

∑
u∈N(

√
rn)

e−θ·Xu(
√
rn)P−θ (Xξ(rn −

√
rn) + y + θrn ∈ An) |y=Xu(

√
rn)

≤
d∑

j=1

rm/2
n e−(1+

∥θ∥2
2

)
√
rn

∑
u∈N(

√
rn)

e−θ·Xu(
√
rn)Π0

(
Brn−

√
rn + y + θ

√
rn ∈ Cn,j

)
|y=Xu(

√
rn)

≤ dW√
rn(θ)

r
m/2
n

(
εn
√
rn + ∥θ∥(rn+1 − rn)

)√
2π(rn −√

rn)

s→∞−→ 0.

Here the last assertion about the limit being 0 follows from the following argument:

r
m/2
n

(
εn
√
rn + ∥θ∥(rn+1 − rn)

)√
2π(rn −√

rn)
≲ rm/2

n εn = nm/(2κ)
√
(n+ 1)1/κ − n1/κ ≲ n(m+1−κ)/(2κ) → 0.

Using Lemma 3.1 (ii), we immediately get that r
m/2
n µθ

rn(An) → 0, P-almost surely. Then by (3.15),
we conclude that (3.13) holds.

Applying similar arguments for the interval (bs,+∞), we can also get

lim inf
n→∞

inf
rn≤s<rn+1

sm/2
(
µθ
s ((bs,+∞))− µθ

rn ((brn ,+∞))
)
≥ 0, P-a.s. (3.16)

Using Proposition 2.6 with k = 0 and η = 2(κ+ 1), and the assumption λ > m+ 2(κ+ 1), we get

lim
n→∞

sup
rn≤s<rn+1

sm/2
∣∣∣µθ

s

(
Rd
)
− µθ

rn

(
Rd
)∣∣∣ = lim

n→∞
sup

rn≤s<rn+1

sm/2 |Ws(θ)−Wrn(θ)| = 0. (3.17)

Now we prove (3.9) follows from (3.10), (3.16) and (3.17). Indeed, for any ε > 0, (3.10), (3.16) and
(3.17) imply that one can find a random time N such that for all n > N and rn ≤ s < rn+1,

sm/2
(
µm/2
s ((−∞,bs])− µθ

rn ((−∞,brn ])
)
> −ε,

sm/2
(
µθ
s ((bs,+∞))− µθ

rn ((brn ,+∞))
)
> −ε and sm/2

∣∣∣µθ
s

(
Rd
)
− µθ

rn

(
Rd
)∣∣∣ < ε.

Thus,

sm/2
(
µθ
s ((−∞,bs])− µθ

rn ((−∞,brn ])
)

= sm/2
(
µθ
s

(
Rd
)
− µθ

rn

(
Rd
))

− sm/2
(
µθ
s ((bs,+∞))− µθ

rn ((brn ,+∞))
)
< 2ε.

Hence we have that when n > N and rn ≤ s < rn+1,

sm/2
∣∣∣µθ

s ((−∞,bs])− µθ
rn ((−∞,brn ])

∣∣∣ < 2ε,

which implies (3.9). 2
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For any given m ∈ N, we will take κ := m+ 3 in the remainder of this section. It follows from
Lemma 3.2 that, if (1.7) holds for some λ > m + 2(κ + 1) = 3m + 8, then P-almost surely for all
s ∈ [rn, rn+1) and bs = b

√
s,

µθ
s

(
(−∞,b

√
s]
)
= E

[
µθ
s

(
(−∞,b

√
s]
) ∣∣Fks

]
+ o(s−m/2)

= e−(1+
∥θ∥2
2

)
√
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∑
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√
rn)

e−θ·Xu(
√
rn)Φd

(b√s− θ
√
rn −Xu(

√
rn)√

s−√
rn

)
+ o(s−m/2). (3.18)

Note that, for any a < b, (a,b] =
∏d

j=1(aj , bj ] can be expressed in terms
∏d

j=1Ej where Ej ∈
{(−∞, aj ], (−∞, bj ]} using a finite number of set theoretic operations. Thus, applying Lemma 3.2

to
∏d

j=1Ej , we get that, if (1.7) holds for some λ > 3(m+ d) + 8 = 3m+ 3d+ 8, then

µθ
s ((a,b]) = o(s−(m+d)/2) + e−(1+

∥θ∥2
2

)
√
rn

∑
u∈N(

√
rn)

e−θ·Xu(
√
rn)

×
d∏

j=1

1√
s−√

rn

∫ bj

aj

ϕ
(zj − θj

√
rn − (Xu(

√
rn))j√

s− rn

)
dzj . (3.19)

Proof of Theorem 1.1: Letm ∈ N and assume (1.7) holds for some λ > max {3m+ 8, d(3m+ 5)}.
Recall that rn = n1/κ and κ = m+3. Put K := m/κ+3. Combining Lemma 2.1, supz∈Rd Φd(z) = 1
and the fact that {(Xξ(t)+ θt)t≥0,P−θ} is a d-dimensional standard Brownian motion, we get that

∞∑
n=2

rm/2
n E

(
e−(1+

∥θ∥2
2

)
√
rn

∑
u∈N(

√
rn)

e−θ·Xu(
√
rn)

× sup
rn≤s<rn+1

Φd

(b√s− θ
√
rn −Xu(

√
rn)√

s−√
rn

)
1{∪d

j=1

{
|(Xu(

√
rn))j+θj

√
rn|>

√
K
√
rn logn
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≤

∞∑
n=2

nm/(2κ)
d∑

j=1

Π0

(
|(B√

rn)j | >
√
K
√
rn log n

)

= d

∞∑
n=2

nm/(2κ)Π0

(
|(B1)1| >

√
K log n

)
≲

∞∑
n=1

nm/(2κ)n−K/2 < ∞, (3.20)

where in the last inequality we used the fact that Π0(|(B1)1| > x) ≲ e−x2/2. Therefore, P-almost
surely,

rm/2
n e−(1+

∥θ∥2
2

)
√
rn

∑
u∈N(

√
rn)

e−θ·Xu(
√
rn)1{∪d
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{
|(Xu(

√
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√
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√
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√
rn logn

}}
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rn≤s<rn+1

Φd

(b√s− θ
√
rn −Xu(

√
rn)√

s−√
rn

)
n→∞−→ 0. (3.21)

Since λ > 3m+ 8, by (3.18) and (3.21), for any θ ∈ Rd with ∥θ∥ <
√
2,b ∈ Rd and s ∈ [rn, rn+1),

µθ
s

(
(−∞,b

√
s]
)
= o(s−m/2) + e−(1+

∥θ∥2
2

)
√
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∑
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√
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e−θ·Xu(
√
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× Φd

(b√s− θ
√
rn −Xu(

√
rn)√

s−√
rn

)
1{∩d

j=1

{
|(Xu(

√
rn))j+θj

√
rn|≤

√
K
√
rn logn

}}.
Put J := 6m+ 10. Then J > 2m+Kκ = 3m+ 3κ = 6m+ 9. By Lemma 2.4, we get that for any
θ ∈ Rd with ∥θ∥ <

√
2,b ∈ Rd and s ∈ [rn, rn+1),
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√
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1

sk/2
Hk−1(bj)

(
(
√
rn)

k/2Hk

((Xu(
√
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√
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r
1/4
n
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, (3.22)

where εm,u,s,j = εm,y,b,s|y=θj
√
rn+(Xu(

√
rn))j , b=bj . To justify the last equality, we first apply Lemma

2.4 to get that, for each u ∈ N(
√
rn), as s → ∞, P-almost surely,
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2
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Then note that by (2.4) and |Hk(x)| ≲ |x|k+1, on the set ∩d
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√
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Combining the two displays above, we get that, on the set ∩d
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{∣∣(Xu(
√
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√
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which implies (3.22).

Let ε ∈ (0, 1) be small enough so that K(1− ε) ≥ m/κ+ 2. For any k ∈ Nd with 1 ≤ |k| ≤ J ,
using the inequality |Hk(x)| ≲ 1 + |x|k first and then Lemma 2.1, we get
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Thus we have that P-almost surely,
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Combining (3.22) and (3.24), we get
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Since λ > |J1|/2 = d(3m + 5), it follows from Proposition 2.6 that for any k ∈ Nd with m + 1 ≤
|k| ≤ |J1|, s−|k|/2M
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Take η > 0 sufficient small so that λ > 3m
2 + η. Then by Proposition 2.6, for any k ∈ Nd with

0 ≤ |k| ≤ m,

M
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rn
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which implies that as s → ∞,
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Therefore, the assertion of the theorem is valid under the assumption λ > max {3m+ 8, d(3m+ 5)}.
2
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Proof of Theorem 1.2: Let m ∈ N and assume (1.7) holds for some λ > max{d(3m+5), 3m+
3d+ 8}. Recall that rn = n1/κ and κ = m+ 3. Put K := m/κ+ 3 and define
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√
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Since λ > 3m + 3d + 8, by (3.19), for any θ ∈ Rd with ∥θ∥ <
√
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√
rn))j + θj

√
rn
∣∣ ≤√K

√
rn log n}, for J = 6m+ 10,

√
s√

s−√
rn

∫ bj

aj

ϕ
(zj − θj

√
rn − (Xu(

√
rn))j√

s− rn

)
dzj

=

∫ bj

aj

ϕ

(
zj√
s

)( J∑
k=0

1

k!

1

sk/2
Hk

( zj√
s

)
rk/4n Hk

((Xu(
√
rn))j + θj

√
rn

r
1/4
n

))
dzj + εm,u,s,j

=

J∑
k=0

1

k!

1

sk/2

(∫ bj

aj

ϕ
( zj√

s

)
Hk

( zj√
s

)
dz
)
rk/4n Hk

((Xu(
√
rn))j + θj

√
rn

r
1/4
n

)
+ εm,u,s,j ,

where

r
m/2
n+1 sup

s∈[rn,rn+1)
sup
j≤d

sup
u∈N(

√
rn)

|εm,u,s,j |1{∩d
j=1

{
|(Xu(

√
rn))j+θj

√
rn|≤

√
K
√
rn logn

}} → 0.
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Therefore, using (3.26) and an argument similar to that leading to (3.22), we get

sd/2µθ
s((a,b]) = o(s−m/2) + e−(1+

∥θ∥2
2

)
√
rn

×
∑

u∈N(
√
rn)

e−θ·Xu(
√
rn)1{∩d

j=1

{
|(Xu(

√
rn))j+θj

√
rn|≤

√
K
√
rn logn

}}

×
d∏

j=1

{ J∑
k=0

1

k!

1

sk/2

(∫ bj

aj

ϕ
( zj√

s

)
Hk

( zj√
s

)
dzj

)
rk/4n Hk

((Xu(
√
rn))j + θj

√
rn

r
1/4
n

)}
. (3.27)

By Lemma 2.1 and (3.23) and the fact that
∣∣∣∫ b

a ϕ
(

z√
s

)
Hk

(
z√
s

)
dz
∣∣∣ ≲ |b− a|, we have that for any

k ∈ Nd with 0 ≤ |k| ≤ J ,

∞∑
n=2

rm/2
n E sup

rn≤s<rn+1

∣∣∣e−(1+
∥θ∥2
2

)
√
rn

∑
u∈N(

√
rn)

e−θ·Xu(
√
rn)1{∪d

j=1

{
|(Xu(

√
rn))j+θj

√
rn|>

√
K
√
rn logn

}}

×
d∏

ℓ=1

(∫ bℓ

aℓ

ϕ
( zℓ√

s

)
Hkℓ

( zℓ√
s

)
dzℓ

)(√rn
)kℓ/2

skℓ/2
Hkℓ

((Xu(
√
rn))ℓ + θℓ

√
rn

r
1/4
n

)∣∣∣
≲

∞∑
n=2

rm/2
n r−|k|/4

n Π0

(
1{∪d

j=1{|(B√
rn )j |>

√
K
√
rn logn}}

d∏
ℓ=1

∣∣∣Hkℓ

((B√
rn)ℓ

r
1/4
n

)∣∣∣)
≲

d∑
j=1

∞∑
n=2

n(2m−|k|)/(4κ)Π0

(
1{|(B1)j |>

√
K logn}

d∏
ℓ=1

(
1 + |(B1)ℓ|J

) )
< ∞.

Thus P-almost surely, as s → ∞,

lim
n→∞

rm/2
n sup

rn≤s<rn+1

∣∣∣e−(1+
∥θ∥2
2

)
√
rn

∑
u∈N(

√
rn)

e−θ·Xu(
√
rn)1{∪d

j=1

{
|(Xu(

√
rn))j+θj

√
rn|>

√
K
√
rn logn

}}

×
d∏

ℓ=1

(∫ bℓ

aℓ

ϕ
( zℓ√

s

)
Hkℓ

( zℓ√
s

)
dzℓ

)(√rn
)kℓ/2

skℓ/2
Hkℓ

((Xu(
√
rn))ℓ + θℓ

√
rn

r
1/4
n

)∣∣∣ = 0.

Therefore, by (3.27), since λ > 3m+ 3d+ 8,

sd/2µθ
s((a,b]) = o(s−m/2) + e−(1+

∥θ∥2
2

)
√
rn

∑
u∈N(

√
rn)

e−θ·Xu(
√
rn)

×
d∏

j=1

{ J∑
k=0

1

k!

1

sk/2

(∫ bj

aj

ϕ
( zj√

s

)
Hk

( zj√
s

)
dzj

)
rk/4n Hk

((Xu(
√
rn))j + θj

√
rn

r
1/4
n

)}

= o(s−m/2) +
∑

k:k≤J1

d∏
j=1

1

kj !

1

skj/2

(∫ bj

aj

ϕ
( zj√

s

)
Hkj

( zj√
s

)
dzj

)
M

(k,θ)√
rn

.

Since λ > max{d(3m+ 5), 3m+ 3d+ 8}, using Proposition 2.6 and argument similar to that used
in the proof of Theorem 1.1, we get that

sd/2µθ
s((a,b])
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= o(s−m/2) +
∑

k:|k|≤m

d∏
j=1

1

kj !

1

skj/2

(∫ bj

aj

ϕ
( zj√

s

)
Hkj

( zj√
s

)
dzj

)
M (k,θ)

∞ . (3.28)

By Taylor’s expansion, as x → 0,

ϕ(x) =

m∑
j=0

ϕ(j)(0)

j!
xj + o(xm). (3.29)

Note that ϕ(k)(x) = (−1)kHk(x)ϕ(x) and that, for each 1 ≤ k ≤ m,

ϕ(x)Hk(x) = (−1)k
m∑
j=0

ϕ(k+j)(0)

j!
xj + o(xm). (3.30)

Combining (3.29) and (3.30), we get

∑
k:|k|≤m

d∏
j=1

1

kj !

1

skj/2

(∫ bj

aj

ϕ
( zj√

s

)
Hkj

( zj√
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)
dzj
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M (k,θ)

∞
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∑
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(−1)|k|M
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∫
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∏d
j=1 ϕ

(kj+ij)(0)z
ij
j
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dz1...dzd
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∑
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dz1...dzd.

Therefore, by (3.28), we conclude that

sd/2µθ
s((a,b]) = o(s−m/2) +

∑
k:|k|≤m
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∞
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=
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z
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