Math 561 Midterm Test

1. (25 points) Suppose that X_{1}, X_{2}, \ldots are uncorrelated random variables with $\mathbb{E}\left(X_{j}\right)=\mu_{j}$ and $\operatorname{Var}\left(X_{j}\right) / j \rightarrow 0$ as $j \rightarrow \infty$. Let $S_{n}=X_{1}+\cdots+X_{n}$ and $\nu_{n}=\mathbb{E}\left(S_{n}\right) / n$. Show that as $n \rightarrow \infty$,

$$
\frac{S_{n}}{n}-\nu_{n} \rightarrow 0, \quad \text { in probability }
$$

2. (25 points) Suppose that X_{1}, X_{2}, \ldots are independent random variables. For all positive integers $m<n$, let $S_{m, n}=X_{m+1}+\cdots+X_{n}$. Show that, for any $a>0$,

$$
\mathbb{P}\left(\max _{m<j \leq n}\left|S_{m, j}\right|>2 a\right) \min _{m<k \leq n} P\left(\left|S_{k, n}\right| \leq a\right) \leq P\left(\left|S_{m, n}\right|>a\right) .
$$

3. (25 points) Suppose that X_{1}, X_{2}, \ldots are independent and identically distributed random variables with

$$
\mathbb{P}\left(X_{1}=2^{j}\right)=2^{-j}, \quad j=1,2, \ldots
$$

Use the second Borel-Cantelli lemma to show that

$$
\limsup _{n \rightarrow \infty} \frac{X_{n}}{n \log _{2} n}=\infty
$$

almost surely.
4. (25 points) Suppose that X_{1}, X_{2}, \ldots are uncorrelated and identically distributed random variables with $\mathbb{E}\left(X_{1}\right)=0$ and $\mathbb{E}\left(X_{1}^{4}\right)<\infty$. Let $S_{n}=X_{1}+\cdots+X_{n}$. Use the Borel-Cantelli lemma to prove that S_{n} / n converges to 0 almost surely.

