Math 561 Final Exam, Spring 2024

Due 05/06/2024
You should finish this final on your own. No collaboration is allowed.

1. (20 points) Let Y_{1}, Y_{2}, \ldots be iid positive random variables with $E\left(Y_{1}\right)=\mu$ and $\operatorname{Var}\left(Y_{1}\right)=$ $\sigma^{2} \in(0, \infty)$. Let $S_{n}=Y_{1}+\cdots+Y_{n}$ and $N_{t}=\sup \left\{m: S_{m} \leq t\right\}$. Using Exercise 3.4.6 to to prove that, as $t \uparrow \infty$,

$$
\frac{\mu N_{t}-t}{\sigma \sqrt{t / \mu}}
$$

converges weakly to a standard normal random variable.
2. (20 points) Suppose that ξ_{1}, ξ_{2}, \ldots are independent and identically distributed random variables, and $S_{n}=\xi_{1}+\cdots+\xi_{n}$ for all $n \geq 1$. Assume that ξ_{1} is not constant and that

$$
\varphi(\theta)=E \exp \left(\theta \xi_{1}\right)<\infty, \quad \theta \in(-\delta, \delta)
$$

for some $\delta>0$. Let $\psi(\theta)=\log \varphi(\theta)$. Show that (i) $X_{n}^{\theta}=\exp \left(\theta S_{n}-n \psi(\theta)\right)$ is martingale; (ii) ψ is strictly convex on $(-\delta, \delta)$ and (iii) $E \sqrt{X_{n}^{\theta}} \rightarrow 0$ and $X_{n}^{\theta} \rightarrow 0$ a.s.
3. (20 points) Let S_{n} be an asymmetric simple random walk with $p \geq \frac{1}{2}$. Let $T_{1}=\inf \{n$: $\left.S_{n}=1\right\}$. (i) Use the martingale from the previous problem to prove that if $\theta>0$, then $1=e^{\theta} E\left(\varphi(\theta)^{-T_{1}}\right)$, where $\varphi(\theta)=p e^{\theta}+q e^{-\theta}$ and $q=1-p$. (ii) Set $p e^{\theta}+q e^{-\theta}=\frac{1}{s}$ and then solve for $x=e^{-\theta}$ to get

$$
E\left(s^{T_{1}}\right)=\frac{1-\sqrt{1-4 p q s^{2}}}{2 q s}
$$

4. (20 points) Suppose that X_{1}, X_{2}, \cdots are independent non-negative random variables with $E\left[X_{n}\right]=1\left(\right.$ and $\left.P\left(X_{n}=1\right)<1\right)$ for all $n \geq 1$. Define $M_{0}=1$ and for $n \geq 1$, let

$$
M_{n}=X_{1} X_{2} \cdots X_{n}
$$

Show that M_{n} is a non-negative martingale, and so $M_{\infty}=\lim _{n} M_{n}$ exists almost surely. Let $a_{n}=E\left[X_{n}^{1 / 2}\right]$. Prove the following statements are equivalent:
(i) $E\left[M_{\infty}\right]=1$;
(ii) $M_{n} \rightarrow M_{\infty}$ in L^{1};
(iii) $\left\{M_{n}, n \geq 1\right\}$ is uniformly integrable;
(iv) $\prod_{n=1}^{\infty} a_{n}>0$;
(v) $\sum_{n=1}^{\infty}\left(1-a_{n}\right)<\infty$.

Prove also that if one of the 5 statements above fails to hold, then $P\left(M_{\infty}=0\right)=1$.
5. (20 points) Suppose that X_{1}, X_{2}, \cdots are independent standard normal random variables and that, for each $n>1, S_{n}=\sum_{k=1}^{n} X_{k}$. (a) Show that for any number $\theta, e^{\theta S_{n}}$ is a submartingale and then use this to show that, for any $c>0$ and positive integer n,

$$
P\left(\sup _{1 \leq k \leq n} S_{k}>c\right) \leq e^{-\frac{c^{2}}{2 n}}
$$

(b) Use (a) and the Borel-Cantelli lemma to show that

$$
\limsup _{n \rightarrow \infty} \frac{S_{n}}{\sqrt{2 n \log \log n}} \leq 1
$$

almost surely.
(c) Use the second Borel-Cantelli lemma to show that

$$
\limsup _{n \rightarrow \infty} \frac{S_{n}}{\sqrt{2 n \log \log n}} \geq 1
$$

almost surely.

