4
Random Walks

Let X, X3, ...be iid. taking values in R? and let S, = X; + -+ X,,. S, is
a random walk. In the previous chapter, we were primarily concerned with
the distribution of S,. In this one, we will look at properties of the sequence
Si(w), S>(w), . . . For example, does the last sequence return to (or near) O infinitely
often? The first section introduces stopping times, a concept that will be very
important in this and the next two chapters. After the first section is completed, the
remaining three can be read in any order or skipped without much loss. The second
section is not starred since it contains some basic facts about random walks.

4.1 Stopping Times

Most of the results in this section are valid for i.i.d. X’s taking values in some nice
measurable space (S, S) and will be proved in that generality. For several reasons,
it is convenient to use the special probability space from the proof of Kolmogorov’s
extension theorem:

Q= {{w;, @, ...): w; €S}

F=8x85x...
P=puxpux... w is the distribution of X;
Xp(w) = w,

So, throughout this section, we will suppose (without loss of generality) that our
random variables are constructed on this special space.

Before taking up our main topic, we will prove a 0-1 law that, in the i.i.d. case,
generalizes Kolmogorov’s. To state the new 0-1 law, we need two definitions. A
finite permutation of N = {1, 2, ...} is a map 7 from N onto N so that w(i} # {
for only finitely many i. If 7 is a finite permutation of N and w € SN, we define
(Fw); = wg(). In words, the coordinates of w are rearranged according to 7. Since
X;(®) = w;, this is the same as rearranging the random variables. An event A is
permutable if 7 'A = {w : mw € A} is equal to A for any finite permutation 7,
or in other words, if its occurrence is not affected by rearranging finitely many of
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180 Random Walks

the random variables. The collection of permutable events is a o-field. It is called
the exchangeable o -field and denoted by £.

To see the reason for interest in permutable events, suppose S = R and let
Sa(w) = X (@) + - - - + X,(w). Two examples of permutable events are

(i) {w: Sy{w) € Bio}
(ii) {w : limsup,,_, o, Su(w)/c, = 1}

In each case, the event is permutable because S,(w) = S, (7 w) for large n, The list
of examples can be enlarged considerably by observing:

(iii) All events in the tail o-field 7 are permutable.

To see this, observe that if A € 6(X,4+1, Xa42, .. .), then the occurrence of A is
unaffected by a permutation of X, ..., X,. (i) shows that the converse of (iii)
is false. The next result shows that for an i.i.d. sequence, there is no difference
between £ and 7. They are both trivial.

Theorem 4.1.1. Hewitt-Savage 0-1 law. If X, X,,...are i.i.d and A € £ then
P(A) e (0, 1}.

Proof. Let A € £. As in the proof of Kolmogorov’s 0-1 law, we will show that A
is independent of itself, that is, P(A) = P(A N A) = P(A)P(A)so P(A) € {0, 1}.
Let A, € 0(Xy, ..., X)) so that

(a) P(A,AA)—> O

Here AAB = (A — B) U(B — A)is the symmetric ditference. The existence of the
A,’s is proved in part ii of Lemma A.2.1. A, can be written as {w : (wy, ..., w,) €
B,} with B, € §". Let

j+n ifl<j<n
a(j)=1{j-n ifn+l1<j<2n

J ifj>2n+1
Observing that 2 is the identity (so we don’t have to worry about whether to write
7 or 7 ~1) and the coordinates are i.i.d. (so the permuted coordinates are} gives
(b) Plw:we AyAA)= Plw:mw € A,AA)
Now {w: mw € A} = {w : w € A}, since A is permutable, and

{w:rwe Ay} ={w: (W41, ..., w) € By}

If we use A, to denote the last event then we have
(c) w:7we A AA) = (w:w e A,AA)}
Combining (b} and (c) gives
(d) P(A,AA) = P(A,AA)
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It is easy to see that
[P(B) — P(C)| < |P(BAC)

so (d) implies P(A,), P(A]) = P(A). Now A—-C C(A—- B)U(B — () and,
with a similar inequality for C — A, implies AAC C (AAB)U (BAC). The last
inequality, (d), and (a) imply

P(A,AA) < P(A,AAY+ P(AAA) — O
The last result implies
0 < P(A,) — P(A,NA)
< P(A,UA)) = P(A,NA,) = P(A,A4;) > 0
so P(A, N Al) = P(A). But A, and A, are independent, so
P(A, N A) = P(A,)P(A)) - P(A)

This shows P(A) = P(A)? and proves Theorem 4.1.1. [ |

A typical application of Theorem 4.1.1 is

Theorem 4.1,2. For a random walk on R, there are only four possibilities, one of
which has probability 1.
(i) S, =0 foralln.
(if) S, — oo.
(iii) 8, - —oo.
(iv) —oo = liminf §, < limsup §, = co.

Proof. Theorem 4.1.1 implies limsup S, is a constant ¢ € [—00, c0]. Let S, =
Sp+1 — X\ Since S, has the same distribution as S, it follows that ¢ = ¢ — X;.
If ¢ is finite, subtracting ¢ from both sides we conclude X; = 0 and (i} occurs.

Turning the last statement around, we see that if X # 0, then ¢ = —00 or 00.
The same analysis applies to the liminf. Discarding the impossible combination
limsup §, = —o0 and liminf S, = 400, we have proved the result. [ |

Exercise 4.1.1. Symmetric random walk. Let X,, X5,...€ R be iid. with a
distribution that is symmetric about O and nondegenerate (i.e., P(X; =0) < 1).
Show that we are in case (iv) of Theorem 4.1.2.

Exercise 4.1.2. Let X, X, ...be iid. with EX; =0 and EX? = 02 € (0, o0).
Use the central limit theorem to conclude that we are in case (iv) of Theorem 4.1.2.
Later in Exercise 4.1.1! you will show that EX; =0 and P(X; =0) < 1 is
sufficient,
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The special case in which P(X; = 1) = P(X; = -1) =1 /2 is called simple ran-
dom walk. Since a simple random walk cannot skip over any integers, it follows
from either exercise above that with probability 1 it visits every integer infinitely
many times.

LetF, = o(Xi, ..., X,) = the information known at time n. A random variable
N taking values in {1, 2, ...} U {00} is said to be a stopping time or an optional
random variable if for every n < 0o, {N = n} € F,. If we think of §, as giving
the (logarithm of the) price of a stock at time 7, and N as the time we sell it, then
the last definition says that the decision to sell at time n must be based on the
information known at that time. The last interpretation gives one explanation for
the second name. N is a time at which we can exercise an option to buy a stock.
Chung prefers the second name because N is “usually rather a momentary pause
after which the process proceeds again: time marches on!”

The canonical example of a stopping time is N = inf{n : §, € A}, the hitting
time of A. To check that this is a stopping time, we observe that

[N—n}={S|4::A",...,S,,_] CAC,S,,EA}GE,

Two concrete examples of hitting times that have appeared above are
Example 4.1.1. N = inf{k : |Sx| > x} from the proof of Theorem 2.5.2.

Example 4.1.2. Ifthe X; > Oand N, = sup{n : S, < t} is the random variable that
first appeared in Example 2.4.1, then Ny 4+ 1 = inf{n : §, > t} is a stopping time.

The next result allows us to construct new examples from the old ones.

Exercise 4.1.3. If S and T are stopping times, then S A T and § v T are stopping
times. Since constant times are stopping times, it follows that S An and § v n are
stopping times.

Exercise 4.1.4. Suppose S and T are stopping times. Is § + T a stopping time?
Give a proof or a counterexample. .

Associated with each stopping time N is a o-field F = the information known
at time N. Formally, Fy is the collection of sets A that have AN {N =n} € F,
for all n < oo, that is, when N = n, A must be measurable with respect to the
information known at time n. Trivial but important examples of sets in Fy are
{N < n}, thatis, N is measurable with respect to Fy.

Exercise 4.1.5. Show that if ¥, € F, and N is a stopping time, Yy € Fy. As a
corollary of this result, we see thatif f : § — Rismeasurable, T, = 3, ., f(Xn),
and M, = maxu<p Ty, then Ty and My € Fy. Animportant special caseis $ = R,

flx)=x.
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Exercise 4.1.6. Show that if M < N are stopping times, then Fy C Fx.

Exercise 4.1.7. Show thatif . < M and A € F, then

L onA

N =
M on A

is a stopping time

Our first result about Fpy is

Theorem4.1.3. Let Xy, X5, ... beiid., F, = o(X,,..., X,)and N be astopping
time with P(N < 00) > 0. Conditional on {N < oo}, {Xn4n,n = 1} is indepen-
dent of Fy and has the same distribution as the original sequence.

Proof. By Theorem A.1.5, it is enough to show that if A € Fy and B; € § for
1 < j <k,then

k
P(A,N < 00, Xn4j € Bj, 1 < j k)= P(AN{N < oo)) [ [ m(B;)
j=l

where u(B) = P(X; € B). The method (“divide and conquer”) is one that we will
see many times below. We break things down according to the value of N in order
to replace N by n and reduce to the case of a fixed time.

P(A,N=n,XNU-£:'B;-,l5j_’~:k)-P(A,N=n,X,,+jEBj,1Sjsk)

k
= P(AN(N =n) [ (B
j=1

since A N {N = n) € F, and that o-field is independent of X1, ..., Xptk. Sum-
ming over n now gives the desired result. [ |

To delve further into properties of stopping times, we recall that we have sup-
posed €2 = S™ and define the shift 9 : @ — Q by

Bw)n)=whn+1) n=12,...

In words, we drop the first coordinate and shift the others one place to the left.
The iterates of 6 are defined by composition. Let 8! = 8, and for k > 2, let 6% =
8 o 851, Clearly, (@*w)(n) = w(n + k), n = 1,2, ... To extend the last definition
to stopping times, we let

6"w on{N =n}
A on {N = co}

Nw =

Here A is an extra point that we add to . According to the only joke in Blumenthal

and Getoor (1968), A is a “cemetery or heaven depending upon your point of view.
Seriously, A is a convenience in making definitions like the next one.
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Example 4.1.3. Returns to 0. For a concrete example of the use of &, suppose
S = R9 and let

T(w) = inf{n w0 + -+ w, = 0}

where inf @ = oo, and we set T(A) = 00, If we let 73(w) = T(w) + (67 w), then
on |t < o0},

187 w) = inf{n : (@ W) + - + @7 w), = 0}
= inf{n Wyl Wy = 0}
)+ 1@ 'w)y=inflm >t .0+ -+ oy =0}

So 75 is the time of the second visit to 0 (and thanks to the conventions 8%°w = A
and 7(A) = co, this is true for all w). The last computation generalizes easily to
show that if we let

tu(w) = Tn. l(w) + r(gr" la))

then 1, is the time of the nth visit to 0.

If we have any stopping time T, we can define its iterates by 7o = 0 and
Ty(w) = Th-1(@)+ TO™'w) forn>1
If we assume P = @ X i X ...then
P(T,, < 00) = P(T < oo)" 4.1.1)
Proof. We will prove this by induction. The result is trivial when n = 1. Suppose
now that it is valid for n — 1. Applying Theorem 4.1.3 to N = T,_,, we see

that T(#7) < oo is independent of 7, < 0o and has the same probability as
T < 00,50

P(T;, < 00) = P(T,_y < 00, T(6™'w) < 00)
= P(T,_; < c0)P(T < 00) = P(T < o)

by the induction hypothesis. [ ]
Letting t, = T(67"), we can extend Theorem 4.1.3 to

Theorem 4.1.4. Suppose P(T < oo} = 1. Then the “random vectors”

‘/ﬂ :(tthT, |+|""!XT)

L}

are independent and identically distributed.

Proof. Tt is clear from Theorem <4.1.3 that V, and V) have the same distribution.
The independence follows from Theorem 4.1.3 and induction since Vy, ..., V, | €
-7: (Tn—l)- |
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Example 4.1.4. Ladder variables. Let o(w) = inf{n : o + - - - + w, > O} where
inf@ = o0, and set ®(A) = 00. Let ¢y = 0 and let

o (w) = o y(w) + (8™ w)

for k > 1. At time ay, the random walk is at a record high value.
The next three exercises investigate these times.

Exercise 4.1.8. (i) If P(o < 00) < 1 then P(sup §, < 00) = 1.
(ii) If P(x < 00) = 1, then P(sup S, = 00) = 1.

Exercise 4,1,9. Let 8 = inf{n : S, < 0}. Prove that the four possibilities in The-
orem <.1.2 correspond to the four combinations of P(¢ < o0) < 1 or =1, and
P(B<oo)<lor=1.

Exercise 4.1.10. Let So =0, 8 = inf{n > 1: §, < 0} and

A:, == {0 z Sm; Sl = Sm: ---aSm—l = th Sm < Sm-r-ls ey Sm < Sn}

(i) Show 1 =3 " _  P(A") =Y _o Pla > m)P(B > n—m).
(ii) Letn — oo and conclude Ea = 1/P(B = c0).

Exercise 4.1.11. (i) Combine the last exercise with the proof of (ii} in Exercise
4.1.% to conclude thatif EX; = 0, then P(8 = 00) = 0. (ii) Show that if we assume
in addition that P(X; = 0) < |, then P(8 = o0) = 0, and Exercise 4.1.9 implies
we are in case (iv) of Theorem 4.1.2.

A famous result about stopping times for random walks is:

Theorem 4.1.5. Wald’s equation, Let X, X1, ...be i.id with E{X|| <oco. If N
is a stopping time with EN < o0, then ESy = EX|\EN.

Proof. First suppose the X; = 0.

(s u) og n
ESy = fSNdP = ZfS,,I{N=,,,dP = ZZ/XmllN_,,]dP

n=I =] m=1

Since the X; > 0, we can interchange the order of summation (i.e., use Fubini’s
theorem) to conclude that the last expression

oo o0 o
= Z: Zj. erzl[Nzn}dP = Z[ XmllNZmldP
m=I1 n=m m=1
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Now {N = m) ={N <m — 1} € F,,~; and is independent of X, so the last
expression

[+
= Z EX,P(N >m)=EX,EN

m=l

To prove the result in general, we run the last argument backwards. If we have
EN < oothen

o0 o0 oo
00> S EXul PN zm =33 [ Knllen dP

m=1 m=1 n=m

The last formula shows that the double sum converges absolutely in one order, so
Fubini’s theorem gives

[e ol o] 0 n
ZZ[X,NI{N=,r}dP =ZEme1|N=n]dP

m=I1n=m n=1 m=l

Using the independence of {N = m} € Fp,—; and Xy, and rewriting the last identity,
it follows that

o0
ZEX",P(N > m) = ESy

m=1

Since the left-hand side is EN E X/, the proof is complete. 2

Exercise 4.1.12. Let X, X3, ...be i.i.d. uniform on (0,1), let §, = X; +--- +
X,, and let T = inf{n : §, > 1}. Show that P(T > n) = 1/n!, so ET = e and
EST = 8/2.

Example 4.1.5. Simple random walk. Let X1, X, ...beiid. with P(X; = 1) =
1/2and P(X; = —1) = 1/2. Leta < 0 < b be integers and let N = inf{n : §, ¢
(a, b)}. To apply Theorem 4.1.5, we have to check that EN < ¢0. To do this, we
observe that if x € (a, b), then

P(x + Sp-a ¢ (@, b)) 2 2707

since b — a steps of size +1 in a row will take us out of the interval. Iterating the
last inequality, it follows that

P(N > n(b—a) < (1 —27¢9)
so EN < oo. Applying Theorem <.1.5 now gives ESy = 0 or
bP(Sy =b)+aP(Sy=a)=0
Since P(Sy = b) + P(Sy = a) = 1, it follows that (b — a)P(Sy = b) = —a, so

a
P(SN—b)—m P(SN_a)::b—a
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Letting 7, = inf{n : S, = a}, we can write the last conclusion as

fora <0 <b (4.1.2)

b
P(T, <Tp) = P

—a
Setting » = M and letting M — 00 gives
P(T; <00) =2 P(T, < Ty) — 1
for all a < 0. From symmetry (and the fact that 7y = 0), it follows that
P(T, <oo)y=1 forallx eZ (4.1.3)

Qur final fact about T, is that ET, = oo for x # 0. To prove this, note that if
ET, < oo then Theorem 4.1.5 would imply

x=ES; =EX\ET, =0
In Section 4.3, we will compute the distribution of T} and show that

P(Ty >0 ~Ct™\?

Exercise 4.1.13. Asymmetric simple random walk. Let X, X, ...bei.i.d. with
PXy=D)=p>1/2and PX,=—1)=1~-p,and let §, = X1 + -+ X,.
Letow = inf{m : Sy, > O} and B = inf{n : §, < O}
(i) Use Exercise 4.1.9 to conclude that P(a¢ < o0) =l and P(8 < o0) < 1.
(i) If ¥ = inf S,,, then P(Y < —k) = P(B < oo)t.
(iii} Apply Wald’s equation to o An and let n — o0 to get Ea = 1/EX, =
1/(2p — 1). Comparing with Exercise 4.1.10) shows P(8 =o00) =2p — 1.

Exercise 4.1.14. An optimal stopping problem. Let X,, n > | be i.i.d. with
EX} < oo and let

Y, = max X, —cn
l<m=<n

That is, we are looking for a large value of X, but we have to pay c > 0 for each
observation. (i) Let T = inf{n : X,, > a}, p = P(X, > a), and compute EY7.
(i) Let o (possibly < 0) be the unique solution of E(X, — a)t = c. Show that
EYr = a in this case and use the inequality

n
Y, <a+ ) (Xp—a) —c)
m=1
forn > 1 to conclude thatif T > 1is a stopping time with E7 < oo,then EY, < a.
The analysis above assumes that you have to play at least once. If the optimal & < 0,
then you shouldn’t play at all.

Theorem 4.1.6. Wald’s second equation. Ler X, X7, ...be i.id with EX, =0
and EX? = o < 0o, If T is a stopping time with ET < 00, then ES? = o*ET.
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Proof. Using the definitions and then taking expected value
S%An = S%A(n—l) + 2XySn-1 + X:za)l(Tzn)
ES%,, = ESf -1+ o?P(T > n)

since EX, = Oand X,, is independent of S, and 1(7>,y € F,_1.[The expectation
of S,_1 X, exists since both random variables are in L2.] From the last equality and
induction we get
"
ES},, =0) P(T=m)

=1

E(Stan = Sraml =0 ) PT zn)

k=m+1
The second equality follows from the first applied to X471, Xm+2, - - .. The second
equality implies that Sr,., is a Cauchy sequence in L2, so letting n — 00 in the
first, it follows that ES? = ¢?ET. ]

Example 4.1.6. Simple random walk, II. Continuing Example 4.1.5 we investi-
gate N = inf(S, ¢ (a, b)}. We have shown that EN < 00. Since 0% = 1, it follows
from Theorem 4.1.6 and (4.1.2) that

Iy

EN:Es§,=a2b_a =

= —ab

Ifb=Landa=—L,EN = L2

An amusing consequence of Theorem 4.1.6 is
Theorem 4.1.7. Ler Xy, X2,...be iid. with EX, =0 and EX2 =1, and let
T. =inf{n > 1:1|8,| > cn'/?}.

ET, <00 forc< |1
=00 forc>1

Proof. One half of this is easy. If ET. < oo then, the previous exercise implies
ET. = E(S%) > ¢®ET,, a contradiction if ¢ > 1. To prove the other direction,
we let T = T, An and observe $2_, < ¢*(z — 1), so using the Cauchy-Schwarz
inequality

Etv=ES?=ES* | 4+ 2E(S,1X)+ EX? < c*Et +2c(Ev EX)'/? + EX?

To complete the proof now, we will show

Lemma 4.1.8. If T is a siopping time with ET = 00, then

EX%, /E(T An)— 0
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Theorem 4.1.7 follows, forife < 1 — c?and n is large, we willhave Et < (ct+¢)
E 1, a contradiction.

Proof. We begin by writing

i
E(X2,)=EX2,: X2, <e(TAn)+ Y EXLET An=j,X}>¢))
j=l

The first term is < € E(T A n). To bound the second, choose N > 1 so that for
n>N

H
Y E(X}% X3 > €j) < ne
j=1
This is possible since the dominated convergence theorem implies E(X s Xf >
€j) — 0as j — co. For the first part of the sum, we use a trivial bound

N
Y EXLET An=j,X}>¢)) < NEX]
j=1

To bound the remainder of the sum, we note (i) X2 > 0; (ii) {T An > j}is€ F;_
and hence is independent of Xfl( X2=ej) (iii) use some trivial arithmetic, (iv} use
Fubini’s theorem and enlarge the range of j, (v) use the choice of N and a trivial
inequality

n n
N EXETAn=j,X3>ej) < ) EX5ET An > j, X} > €))

=N j=N
] H oo
=Y P(TAnz HEX:LXi>¢j)= Y > P(T An=REX}:X]>¢€))
J=N J=N k=}
ook [o]
<Y Y PT An=kEX}LX3>€j) < ) ekP(T An=k) < €E(T An)
k=N j=I k=N

Combining our estimates shows

EX%  <2¢E(T An)+NEX?

TAn

Letting n — oo and noting E(T A n) — oo, we have

limsup EXZ,, /E(T An) < 2

n— 00

where ¢ is arbitrary. |

4,2 Recurrence

Throughout this section, S, will be a random walk, that is, $, = X1 +--- + X,
where X, X5, ...are i.i.d.,, and we will investigate the question mentioned at the
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beginning of the chapter. Does the sequence S;(w), S2(w), ... return to (or near) 0
infinitely often? The answer to the last question is either Yes or No, and the random
walk is called recurrent or transient accordingly. We begin with some definitions
that formulate the question precisely and a result that establishes a dichotomy
between the two cases.

The number x € R¥ is said to be a recurrent value for the random walk S, if for
every € > 0, P(||S, — x|| < € i.0.) = 1. Here ||x|| = sup |x;|. The reader will see
the reason for this choice of norm in the proof of Lemma 4.2.5. The Hewitt-Savage
0-1 law, Theorem 4. 1.1, implies that if the last probability is < 1, it is 0. Our first
result shows that to know the set of recurrent values, it is enough to check x = 0.
A number x is said to be a possible value of the random walk if for any € > 0,
there is an » so that P(}| S, — x|l <€) > 0.

Theorem 4.2.1. The set V of recurrent values is either @ or a closed subgroup of
RY. In the second case, V = U, the set of possible values.

Proof. Suppose V # @. It is clear that V* is open, so V is closed. To prove that V
is a group, we will first show that

(x)ifxeldand y € Vtheny — x € V.

This statement has been formulated so that once it is established, the result follows
easily. Let

Ps.n(2) = P(ISy — zll = 8 forall n > m)

If y—x ¢ V, there is an ¢ > O and m > 1 so that pa m(y — x) > 0. Since x € U,
there is a k so that P(||Sy — x]| < €} > 0. Since

P(ISy = Sk = (y —x}|| = 2¢eforalln = k+m) = prem(y — x)

and is independent of {||S; — x|l < €}, it follows that

Pemik(¥) = P(ISk — x|l < €)paem(y —x) >0

contradicting y € V,soy —x € V.

To conclude that V is a group when V # @, let g, r € V, and cobserve: (i) taking
x =y =r in (x) shows 0 € V, (ii) taking x = r, y = 0 shows —r € V, and (iii)
taking x = —r, y = g shows g +r € V. To prove that V = If now, observe that if
u € U taking x = u, y = 0 shows —u € V, and since V is a group, it follows that
ueV. |

If V = @, the random walk is said to be transient; otherwise it is called recur-
rent. Before plunging into the technicalities needed to treat a general random walk,
we begin by analyzing the special case Polya considered in 1921. Legend has it
that Polya thought of this problem while wandering around in a park near Ziirich
when he noticed that he kept encountering the same young couple. History does
not record what the young couple thought,
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Example 4.2.1. Simple random walk on Z¢,
P(X; = ;)= P(X; = —e;) = 1/2d

for each of the 4 unit vectors e;. To analyze this case, we begin with a result that
is valid for any random walk. Let 7o = O and 7, = inf{m > 1,_, : §;, = 0} be the
time of the sth return to 0. From (4.1.1), it follows that

P(r, < 00) = P(1)y < o0)"

a fact that leads easily to:

Theorem 4,2.2, For any random walk, the following are equivalent:
(i) P(t) < 00) = 1, (i) P(Sy = 0i.0.) =1, and (iii) 3 _y_o P(Sw = 0) = c0.

Proof. If P(t; < o0) = 1, then P(1, < 00} = 1 forall n and P(S,, =01i.0) =1,
Let

oo oo
V=3 ls.=0 = Y lirs<oo)

m=0 n=0

be the number of visits to 0, counting the visit at time 0. Taking expected value and
using Fubini’s theorem to put the expected value inside the sum:

EV=Y PSy=0=)_ P(n, <)

m=0 n=0
0
=Y Py <o) = :
s 1 — P(‘E] < 00)

The second equality shows that (ii) implies (iii) and, in combination with the last
two, shows that if (i) is false, then (iii} is false (i.e., (iii) implies (i)). [ |

Theorem 4.2.3. Simple random walk is recurrent ind < 2 and transientind > 3.

To steal a joke from Kakutani (UCLA colloquium talk): “A drunk man will even-
tually find his way home, but a drunk bird may get lost forever.”

Proof. Let pgy(m) = P(S, = 0). ps(m) is 0 if m is odd. From Theorem 3.1.3, we
get 01(2n) ~ (wn) "2 as n — oo. This and Theorem # 2.2 gives the result in one
dimension. Our next step is

Simple random walk is recurrent in two dimensions. Note that in order for S5, = 0,
we must for some 0 < m < n have m up steps, m down steps, n — m to the left,
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and n — m to the right, so

- 2n!

P2y =472

e 2m\ = (7 n m 2n2___ 2
=)L ()G ) = () = e

To see the next-to-last equality, consider choosing # students from a class with
n boys and n girls and observe that for some 0 < m < n, you must choose m
boys and n —m girls. Using the asymptotic formula p;(2n) ~ (wn) /2, we get
02(2n) ~ (n)~'. Since 3 n ! = 00, the result follows from Theorem 4.2.2.

m!m!(n —m)! (n — m)!

Remark. For a direct proof of pa(2n) = p,(2n)?, note that if 7,) and T are
independent, one-dimensional random walks, then 7, jumps from x to x + (1, 1),
x + (1, =1), x +(—1, 1), and x + (—1, —=1) with equal probability, so rotating T,

by 45 degrees and dividing by V2 gives S,.

Simple random walk is transient in three dimensions. Intuitively, this holds since
the probability of being back at 0 after 2n steps is ~ cn~>/2, and this is summable.
We will not compute the probability exactly but will get an upper bound of the
right order of magnitude. Again, since the number of steps in the directions te;
must be equal fori =1, 2, 3,

pa(2n) =67

Ik

o 2n) ( N n! )2
=2 (n ;} 3 jlln — j —k)!

2n n!
< 2—2;: n
(n)n}i” Tk — j — k)

where in the last inequality we have used the fact thatif a;; are = O and sumto 1,
then Zj‘k aik < max; x a; . Our last step is to show

(2n)!
(kln — j — k)Y

n!
max 37" < Cn™!
ok jlktn — j— kY —
To do this, we note that (a) if any of the numbers j, k orn — j —k is < [n/3],
increasing the smallest number and decreasing the largest number decreases the
denominator (since x(1 — x) is maximized at 1/2), so the maximum occurs when
all three numbers are as close as possible to n/3; (b) Stirling’s formula implies

n! - n" n 1
jlkln—j =k jikk(n—j —ky=i~% VY jkin—j—k) 2n

Taking j and k within | of n/3 the first term on the right is < C3", and the desired
result follows.
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Simple random walk is transient in d > 3. Let T, = (8], 2, §2), N(0) = 0 and
N(n) =inf{m > N(n — 1) : T,, # Tn@w-n). It is easy to see that Ty, is a three-
dimensional simple random walk. Since Ty, returns infinitely often to 0 with
probability 0 and the first three coordinates are constant in between the N(n), S, is
transient. a

Remark. Let r; = P(S,, = 0 for some n > 1) be the probability that simple ran-
dom walk on Z¢ returns to 0. The last display in the proof of Theorem 4.2.2 implies

S P(So = 0) = ~— @21

Ind =3, P(S3 =0y~ Cn~3% 50 3.2, P(S;, = 0) ~ C'N~!/2, and the series
converges rather slowly. For example, if we want to compute the return probability
to five decimal places, we would need 10'® terms. At the end of the section, we
will give another formula that leads very easily to accurate results.

The rest of this section is devoted to proving the following facts about random
walks:

* S,isrecurrentind = 1 if §,/n — O in probability.
e S, isrecurrentin d = 2if S,/n'/? = a nondegenerate normal distribution.
e S, is transient in d > 3 if it is “truly three-dimensional.”

To prove the last result, we will give a necessary and sufficient condition for

recurrence.
The first step in deriving these results is to generalize Theorem .22,

Lemma 4.2.4. IfY 22, P(||Sull < €) < 00, then P(||S,]| < € i.0.)=0.

n=I1

IF32, PUISall < €) = oo then P(||S, || < 2¢ o) = 1.

n=

Proof. The first conclusion follows from the Borel-Cantelli lemma. To prove the
second, let F = {||S,]| < € i.0.}. Breaking things down according to the last time

ISall <€,

[o o]
P(F)= Z P(ISnll <€ ISull = € foralln = m <+ 1)

m=0

o0
> 3" P(ISnll < €, 1S, — Smll = 2¢ foralln = m + 1)

m=0

o0
= Z P(||Snl < €)02¢.1

m=0
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where pgx = P(||S, || = 8 for all n > k). Since P(F) < 1, and

Y P(UISull < €) =00

m=0

it follows that pac; = 0. To extend this conclusion to py x with k > 2, let
Ap = {ISull <€ ISall 2 € foralln = m + k)
Since any w can be in at most k of the A,,, repeating the argument above gives

k2 P(An) = ) PUISkll < €)p2e

m=0 m=0

So prex = P(|S,l = 2¢ for all j > k) = 0, and since & is arbitrary, the desired
conclusion follows. a2

Our second step is to show that the convergence or divergence of the sums in
Lemma 4.2 4 is independent of €. The previous proof works for any norm. For the
next one, we need ||l x || = sup; |x;l.

Lemma 4.2.5. Let m be an integer > 2.

> P(ISall < me) < @m)! Y PUUIS/l <€)

n=0 n=0

Proof. We begin by observing

s 2] oo
ST PUISH) < mey < D P(Sy € ke +[0,€))
n=0 n=0 %k

where the inner sum is over k € {—m, ..., m — 1}4.1f we let

Ty = inf{f > 0: S € ke + [0, €)'}

then breaking things down according to the value of T; and using Fubini’s theorem
gives

Z P(S, eke+10,6))=> > P(Sycke+[0,€), Ty =)

n=0 n=0 ¢=0
oo o0
<D Y PUS - Sell <€, T =)

£=0 n=¢
Since {T; = £} and {|| S, — S¢|| < €} are independent, the last sum

=3 PT=m))_ PUS;I <€)< Y P(iS;ll <€)

m=0 j=0 j=0

Since there are (2m) values of k in {—m, ..., m — 1}, the proof is complete. W



4.2 Recurrence 195

Combining Lemmas 4.2.4 and 4.2.5 gives:

Theorem 4.2.6, The convergence (resp. divergence) of >, P(||S,|l < €) for a
single value of € > 0 is sufficient for transience (resp. recurrence).

Ind = 1,if EX; = p # 0, then the strong law of large numbers implies S, /n —
i, 80 |S,| = oo and S, is transient. As a converse, we have

Theorem 4.2.7. Chung-Fuchs theorem. Suppose d = 1. If the weak law of large
numbers holds in the form S, /n — O in probability, then S, is recurrent.

Proof. Let u,(x) = P(|S,;| < x) for x > 0. Lemma 4.2.5 implies

o] 0 Am
(2 5= Y ) = 5 3/ A)

n=0 n=0 n=0

forany A < oosinceu,(x) > Oandisincreasinginx. By hypothesisu,(n/A) — 1,
so letting m — 00 and noticing the right-hand side is A/2 times the average of the

first Am terms

[= o]

Y un(l) > AJ2

n=0

Since A is arbitrary, the sum must be 0o, and the desired conclusion follows from
Theorem 4.2.6. u

Theorem 4.2.8. If S, is a random walk in R? and S,/n'/? = a nondegenerate
normal distribution, then S, is recurrent.

Remark. The conclusion is also true if the limit is degenerate, but in that case the
random walk is essentially one- (or zero)-dimensional, and the result follows from
the Chung-Fuchs theorem.

Proof. Letu(n, m) = P(||S,|| < m). Lemma 4.2.5 implies

Zu(n, 1) > (4m?)™! Zu(n,m)
n=0 n=0

If m/\/n — c, then

uln, m) — n(x)dx
[—c.cl?
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where n(x) is the density of the limiting normal distribution. If we use p(c) to denote
the right-hand side and let n = [9m?), it follows that u([6m?], m) — p(0~ 1), If
we write

m 2Zu(n,m) = fmu([ﬂmz],m)dt?

n=0 0

let m — 00, and use Fatou’s lemma, we get

o0 (5]
liminf (4m?)~' Y utn, m) = 47 f o612y o
0

LR A &
n=0

Since the normal density is positive and continuous at 0,
pe= [ s ~n@)e
[~c.cP

asc — 0. So p(6 /%) ~ 4n(0)/0 as 6 — oo, the integral diverges, and backtrack-
ing to the first inequality in the proof, it follows that 3 '° s u(n, 1) = 00, proving
the result, [ |

We come now to the promised necessary and sufficient condition for recurrence.
Here ¢ = E exp(it - X;) is the ch.f. of one step of the random walk.

Theorem 4.2.9. Let 8 > 0. S, is recurrent if and only if

|
Re ————dy =00
f(--a.a)d 1 —o(y) “

We will prove a weaker result:

Theorem 4.2.10. Let § > 0. S, is recurrent if and only if

1
su Re ————dy =0
, [1) f(-a.s)d 1 = re(y)

Remark. Half of the work needed to get the first result from the second is trivial.

0 < Re b — Re 1

1 —re(y) I —o(y)

so Fatou’s lemma shows that if the integral is infinite, the walk is recurrent. The

other direction is rather difficult: the second result is in Chung and Fuchs (1951),

but a proof of the first result had to wait for Ornstein (1969) and Stone (1969)

to solve the problem independently. Their proofs use a trick to reduce to the case

where the increments have a density and then a second trick to deal with that case,

so we will not give the details here. The reader can consult either of the sources

cited or Port and Stone (1969), where the result is demonstrated for random walks
on Abelian groups.

asr — 1
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Proof. The first ingredient in the solution is the

Lemma 4.2.11. Parseval relation. Let i and v be probability measures on R?
with ch.f's @ and .

[df(t)u(dt)=fqo(x)v(dx)

Proof. Since £'* is bounded, Fubini’s theorem implies

f!lf(t)n(dt)= j/ e u(dx)ulde) = ff ' u(dr)v(dx) = f(ﬂ(x)v(dx) u

Our second ingredient is a little calculus.
Lemma 4.2.12. If |x| < /3 then 1 — cosx > x?/4.
Proof. Tt suffices to prove the result for x > 0. If z < 7/3, thencosz > 1/2

¥
siny=f coszdz =
0

X
l —cosx =f sinydy >
0

which proves the desired result.

(SRR

:\h
[N R
.
>
I
NI

From Example 3.3.5, we see that the density

8_
32|XI when |x| <8,

0 otherwise

has ch.f. 2(l —cos:St)/(St)z. Let pu, denote the distribution of §,. Using
Lemma 4.2.12 (note /3 > 1) and then Lemma 4.2.11, we have

51
PAIS < 1/8) < 4° f 1'[ (gfii' ald)

_ 2 f A 'x' @"(x) dx
{—8,8)

Our next step is to sum from 0 to co. To be able to interchange the sum and the
integral, we first multiply by r", where r < 1:

> 5 — |x] 1
P P(IS < 1/6) < 2"f Ll
n=0 8.8 i=1 8 - ?‘QO(X)
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Symmetry dictates that the integral on the right is real, so we can take the real part
without affecting its value. Letting r 1 1 and using (8 — |x[)/é = 1

S 2Y 1
P(|S,] < 1/8) < (—) su f Re —— dx
g WS <D= {5) s |  Req=om

rel

and using Theorem 4.2.6 gives half of Theorem 4.2.10.

To prove the other direction, we begin by noting that Example 3.3.8 shows that
the density (1 — cos(x/8))/mx?/8 has ch.f. | — |8¢] when |f] < 1/4, O otherwise.
Using 1 > [1%,(1 — |8x;) and then Lemma 4.2.11,

d

PaSI <19z [ T 1xb )
VRV

d
_ 1 —cos(t;/8)
= f E—_th,-z/c? @" (1) dt

Multiplying by " and summing gives

o0

d
1 — cos(t;/8) 1
RPIS, | < 1/8) = g
Y RIS /)>fE 7ii/s  1—re® "

=l

The last integral is real, so its value is unaffected if we integrate only the real part
of the integrand. If we do this and apply Lemma 4.2.12, we get

0
S PRSI < 1/8) 2 (4r8) f e
s8¢ 1 —re@)

n=0

Letting » 1 1 and using Theorem 4.2.6 now completes the proof of Theorem
4.2.10, ]

We will now consider some examples. Our goalind = 1andd = 2 isto convince
you that the conditions in Theorems 4.2.7 and .2 8 are close to the best possible.

d = 1. Consider the symmetric stable laws that have ch.f. ¢(r) = exp(—[t|*). To
avoid using facts that we have not proved, we will obtain our conclusions from
Theorem .2, 11). It is not hard to use that form of the criterion in this case since

1 —re(t) I 1 —exp(—|ti*) asr 11
1 —exp(—|e]*) ~ |¢]* ast — 0
From this, it follows that the corresponding random walk is transient for o < 1
and recurrent for ¢ > 1. The case & > | is covered by Theorem 4.2.7 since these
random walks have mean 0. The result for « = 1 is new because the Cauchy

distribution does not satisfy S,/n —> 0 in probability. The random walks with
o < 1 are interesting because Theorem 4. 1.2 implies (see Exercise 4.1.1)

—o00 = liminf §, < limsup §, = o0

but P(|S,| < M i.0.) =0 forany M < o0.
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Remark. The stable law examples are misleading in one respect. Shepp (1964)
proved that recurrent random walks may have arbitrarily large tails. To be precise,
givenafunctione(x) J Oasx 1 oo, there is arecurrentrandom walk with P(|X,| >
x) > €(x) for large x.

d = 2. Let a <2, and let p(r) = exp(—[t[*) where |t] = (17 + D)2, ¢ is the
characteristic function of a random vector (X, X3) that has two nice properties:

(i) the distribution of (X, X5) is invariant under rotations,
(i) X, and X, have symmetric stable laws with index ¢.

Again, 1 —re(t) | 1 —exp(—|t|*) as r 1 1 and 1 — exp(—|f[*) ~ [¢|* as t — O.
Changing to polar coordinates and noticing

&
211] dxxx <>
0

when 1 — @ > —1 shows that the random walks with ch.f. exp(—|7]%), & < 2 are
transient. When p < «, we have E|X,|? < oo by Exercise 3.7.5, so these examples
show that Theorem 4.2.¥ is reasonably sharp.

d > 3. The integral f(f dx x? ' x 2 < o0, so if arandom walk is recurrentind > 3,
its ch.f. must — 1 faster than #2. In Exercise 3.3.19, we observed that (in one
dimension) if @(r) = 1 + o(r?), then (r) = 1. By considering ¢(r8) where r is
real and @ is a fixed vector, the last conclusion generalizes easily to R, d > 1,
and suggests that once we exclude walks that stay on a plane through 0, no three-

dimensional random walks are recurrent.
A random walk in R? is truly three-dimensional if the distribution of X, has

P(X,-0#0)>0forallg #0.
Theorem 4.2.13. No truly three-dimensional random walk is recurrent.

Proof. We will deduce the result from Theorem 4.2.10. We begin with some
arithmetic, If z is complex, the conjugate of 1 — zis [ — Z, so

1 1—-72 1 Re(l — 2)
= d R =
=z -z M T2 =z

If z=a+ bi with a < |, then using the previous formula and dropping the b?
from the denominator,

1 l—a 1

= -
Rel—z (1—a)+b2" 1l—a

Taking z = r¢(t) and supposing for the second inequality that 0 < Re () < 1,
we have
Re 1 = 1 > |

1 —rp(t) — Re(l —re@)) — Re(l —o(t)

(a)
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The last calculation shows that it is enough to estimate

x - t|?

Re(l — (1) = f{l — cos(x - Hiu(dx) = f pu(dx)
|

x-tl<m /3 4
by Lemma 4.2.12. Writing ¢t = p6 where 8 € § = {x : |x| = 1} gives

2
(b) MU~mw»z%f Ix - 6 (dx)
Jx-@l<nf3p
Fatou’s lemma implies that if we let p — 0 and 8(p) — 8, then
(c) lim inf f Ix - 0(p)|*1uldx) > [ Ix - 02 uldx) > 0
P=0 Jix (o) <n/3p
I claim that this implies that for p < pg
(d) inf f Ix - 0Puldx)=C > 0
9e8 Jix.9)1<n /30

To get the last conclusion, observe that if it is false, then for p = 1/n there isaé,
s0 that

[ | - 9,,|2,u,(dx) <l/n
|x-8,l<nn /3

All the 8, lie in S, a compact set, so if we pick a convergent subsequence, we
contradict (c). Combining (b} and (d) gives

Re (1 — ¢(p8)) > Cp*/4

Using the last result and (a) then changing to polar coordinates, we see that if 8 is
small (so Re@(y) > 0 on (-8, §)9)

[ Re——l——a‘ <fmd "-'fde )
oo 1oren = Ly PP Re (1 — $(00))

l
5C'f d,op"3<00
0

when d > 2, so the desired result follows from Theorem 4.2.10. [ ]

Remark. The analysis becomes much simpler when we consider random walks on
Z¢. The inversion formula given in Exercise 3.3.2 implies

H&szaﬂ”f @"(t)dt
(=m.m)

Multiplying by r* and summing gives

[s.+]

Sres=0=en [ 1

——dt
iy (—m.m) 1 —ro@)
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In the case of simple random walk in d = 3, ¢(1) = % Zj_, cos?; s real.

1 1
7o 4 T—0) when ¢(¢) > 0
|

OEWS]

when ¢(¢) <0

So, using the monotone and bounded convergence theorems

=3} 1 3 ]
Z P(S, =0) = (2;:)“3f (1 —= Zcosx,- dx
n=0 (=) 3 i=l

This integral was first evaluated by Watson in 1939 in terms of elliptic integrals,
which could be found in tables. Glasser and Zucker (1977) showed that it was

(@/32173)[‘(1/24)]“(5,!24)1"(7/24)1“(1 1/24) = 1.516386059137...
so it follows from (4.2.1) that
w3 = (0.340537329544 . ..

For numerical results in 4 < d < 9, see Kondo and Hara (1987).

4.3 Visits to 0, Arcsine Laws*

In the last section, we took a broad look at the recurrence of random walks. In this
section, we will take a deep look at one example: simple random walk (on Z). To
steal a line from Chung, “We shall treat this by combinatorial methods as an antidote
to the analytic skulduggery above.” The developments here follow Chapter III of
Feller, vol. I. To facilitate discussion, we will think of the sequence §,, 52, ..., S,
as being represented by a polygonal line with segments (k — 1, S,_1) — (k, Sk).
A path is a polygonal line that is a possible outcome of simple random walk.
To count the number of paths from (0,0) to (n, x), it is convenient to introduce
a and b defined as follows: a = (n + x)/2 is the number of positive steps in the
path and b = (n — x)/2 is the number of negative steps. Notice that n =a + b
and x =a —b. If —n < x <n and n — x is even, the a and b defined above are
nonnegative integers, and the number of paths from (0,0) to (n, x) is

Ny, = (") @3.1)
(43

Otherwise, the number of paths is 0.

Theorem 4.3.1. Reflection principle. If x, y > 0, then the number of paths from
(0, x) to (n, y) that are 0 at some time is equal to the number of paths from (0, —x)

to(n,y).
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(n, y)

0, x)

AN
©, —x)\MK\/

Figure 4.1, Reflection principle.

Proof. Suppose (0, so), (1, 1), ..., (n,sn) is a path from (0, x)to (n, y). Let K =
inf{k : s, = 0}. Let 5, = —s¢ for k < K, s5; = 5 for K <k <n. Then (k, 57,
0 < k < n,is a path from (0, —x) to (n, y). Conversely, if (0, 1), (1, ), ..., ()
is a path from (0, —x) to (n, y), then it must cross 0. Let X = inf{k : ¢, = 0}. Let
f=—-nfork <K,y =y forK <k =< n.Then(k, £;),0 < k < n, is a path from
(0, —x) to (n, ) that is O at time K. The last two observations set up a one-to-
one correspondence between the two classes of paths, so their numbers must be
equal. ]

From Theorem 4.3.1 we get a result first proved in 1878.

Theorem 4.3.2. Ballot theorem. Suppose that in an election candidate A gets «
votes, and candidate B gets B votes where B < «. The probability that throughout
the counting A always leads B is (@ — B)/{a + B).

Proof. Let x = a — B, n = a + B. Clearly, there are as many such outcomes as
there are paths from (1,1) to (n, x) that are never 0. The reflection principle implies
that the number of paths from (1,1) to (n, x) that are 0 at some time the number of
paths from (1,—1) to (n, x), so by (4.3.1) the number of paths from (1,1) to (n, x)
that are never 0 is

n—1 -1
Nn—l.x—l - Nn Lx+l = ( ) - ( )
o — 1 o

_ n- 1 (n— 1!
T e-Din—-a) aln—a-1)
__a—(n—a) n! _a—ﬁ
B n aln—a)! o+
since n = a + B, this proves the desired result. B

Using the ballot theorem, we can compute the distribution of the time to hit 0
for simple random walk.

Lemma 4.3.3. P(51 #0,..., 8, #0)= P($2, =0).



