9th Homework Set - Solutions

Chapter 6

Problem 6.48 Let X_{1}, \ldots, X_{5} be independent exponential random variables with parameter λ.
(a)

$$
\begin{aligned}
P\left(\min \left(X_{1}, \ldots, X_{5}\right) \leq a\right) & =1-P\left(\min \left(X_{1}, \ldots, X_{5}\right)>a\right) \\
& =1-P\left(X_{1}>a, \ldots, X_{5}>a\right) \\
& =1-P\left(X_{1}>a\right) \cdots P\left(X_{5}>a\right) \\
& =\left\{\begin{array}{cc}
1-\left(e^{-\lambda a}\right)^{5} & a>0 \\
0 & \text { otherwise } .
\end{array}\right.
\end{aligned}
$$

(b)

$$
\begin{aligned}
P\left(\max \left(X_{1}, \ldots, X_{5}\right) \leq a\right) & =P\left(X_{1} \leq a, \ldots, X_{5} \leq a\right) \\
& =P\left(X_{1} \leq a\right) \cdots P\left(X_{5} \leq a\right) \\
& =\left\{\begin{array}{cc}
\left(1-e^{-\lambda a}\right)^{5} \quad a>0 \\
0 \quad \text { otherwise } .
\end{array}\right.
\end{aligned}
$$

Chapter 7

Problem 7.5 If (X, Y) is the location of the accident, then X and Y are uniform random variables on $\left(-\frac{3}{2}, \frac{3}{2}\right)$. Let $D=|X|+|Y|$. Then

$$
\begin{aligned}
E[D] & =E[|X|]+E[|Y|]=2 E[|X|] \\
& =2 \int_{-\frac{3}{2}}^{\frac{3}{2}} \frac{|x|}{3} d x=\frac{4}{3} \int_{0}^{\frac{3}{2}} x d x \\
& =\frac{4}{3} \cdot \frac{9}{8}=\frac{3}{2} .
\end{aligned}
$$

Problem 7.6 Let X_{i} be the outcome of the i-th roll of the die, for $i=1, \ldots, 10$, and note that $E\left[X_{i}\right]=\frac{7}{2}$. Let $X=X_{1}+\cdots+X_{10}$. Now $E[X]=$ $E\left[X_{1}\right]+\cdots+E\left[X_{10}\right]=10 E\left[X_{1}\right]=35$.

Problem 7.7 (a) Let X_{i} be one if both A and B choose the i-th object, for $i=$ $1, \ldots, 10$. Then $E\left[X_{i}\right]=P\left(X_{i}=1\right)=\left(\frac{3}{10}\right)^{2}=\frac{9}{100}$. Now, the expected number of objects chosen by both A and B is $E\left[X_{1}\right]+$ $\cdots+E\left[X_{10}\right]=10 E\left[X_{1}\right]=0.9$.
(b) Let Y_{i} be one if neither A nor B choose the i-th object. Then $E\left[Y_{i}\right]=P\left(Y_{i}=1\right)=\left(\frac{7}{10}\right)^{2}=\frac{49}{100}$, so that $E\left[Y_{1}+\cdots+Y_{10}\right]=$ $10 E\left[Y_{1}\right]=4.9$.
(c) Let Z_{i} be one if either A or B (but not both) chooses the i th object. Then $E\left[Z_{i}\right]=P\left(Z_{i}=1\right)=2 \frac{3}{10} \frac{7}{10}=\frac{21}{50}$. Now, $E\left[Z_{1}+\cdots+Z_{10}\right]=10 E\left[Z_{1}\right]=\frac{21}{5}=4.2$.

Problem 7.8 Following the hint, let X_{1} be one if the i-th arrival sits at a previously unoccupied table. Then $E\left[X_{i}\right]=P\left(X_{i}=1\right)=(1-p)^{i-1}$, so that

$$
E\left[X_{1}+\cdots+X_{N}\right]=\sum_{i=1}^{N}(1-p)^{i-1}=\frac{1-(1-p)^{N}}{1-(1-p)}=\frac{1-(1-p)^{N}}{p}
$$

Problem 7.11 Let X_{i} be one if the i-th outcome differs from the $(i-1)$-th outcome, for $i=2, \ldots, n$. We have $E\left[X_{i}\right]=P\left(X_{i}=1\right)=2 p(1-p)$, so that $E\left[X_{2}+\cdots+X_{n}\right]=2(n-1) p(1-p)$.

Problem 7.18 Let X_{i} be one if the i-th card is a match, for $i=1, \ldots, 52$, and let $X=X_{1}+\cdots+X_{52}$. Then $P\left(X_{i}=1\right)=\frac{1}{13}$, so that $E[X]=52 E\left[X_{1}\right]=$ $\frac{52}{13}=4$.

Problem 7.19 (a) If X is the number of insects caught before a type 1 catch, then $(X+1)$ is geometric with parameter P_{1}, so that $E[X]=\frac{1}{P_{1}}-1$.
(b) Let Y_{i} be one if an insect of type i is caught before an insect of type 1, for $i=2, \ldots, r$. Then $Y=Y_{2}+\cdots+Y_{r}$ is the number of insects caught before an insect of type 1 . We have $E\left[Y_{i}\right]=$ $P\left(Y_{i}=1\right)=\frac{P_{i}}{P_{i}+P_{1}}$, so that

$$
E[Y]=\sum_{i=2}^{r} \frac{P_{i}}{P_{i}+P_{1}} .
$$

Problem 7.21 (a) Let X be the number of days of the year that are birthdays of exactly 3 people. For $i=1, \ldots, 365$, let $X_{i}=1$ if the i-day is
the birthday of eaxctly 3 people and $X_{i}=0$ otherwise. Then $X=\sum_{i=1}^{365} X_{i}$. Since for each i,

$$
E X_{i}=P\left(X_{i}=1\right)=\binom{100}{3}\left(\frac{1}{365}\right)^{3}\left(\frac{364}{365}\right)^{97}
$$

we get that

$$
E X=365\binom{100}{3}\left(\frac{1}{365}\right)^{3}\left(\frac{364}{365}\right)^{97} .
$$

(b) Let Y be the number of distinct birthdays. For $i=1, \ldots, 365$, let $Y_{i}=1$ if the i-day is someone's birthday and $Y_{i}=0$ otherwise. Then $Y=\sum_{i=1}^{365} Y_{i}$. Since for each i,

$$
E Y_{i}=P\left(Y_{i}=1\right)=1-P\left(Y_{i}=0\right)=1-\left(\frac{364}{365}\right)^{100},
$$

we get that

$$
E Y=365\left[1-\left(\frac{364}{365}\right)^{100}\right]
$$

Problem 7.30 Note that $E\left[X^{2}\right]=E\left[Y^{2}\right]=\operatorname{Var}(X)+E[X]^{2}=\sigma^{2}+\mu^{2}$. Now we conclude that

$$
E\left[(X-Y)^{2}\right]=E\left[X^{2}\right]-2 E[X] E[Y]+E\left[Y^{2}\right]=2 \sigma^{2}
$$

using the fact that X and Y are independent.
Problem 7.31 Let X_{i} be the outcome of the i-th roll of the die, for $i=1, \ldots, 10$. Then $\operatorname{Var}\left(X_{i}\right)=\frac{35}{12}$, so that

$$
\operatorname{Var}\left(X_{1}+\cdots+X_{10}\right)=10 \cdot \frac{35}{12}=\frac{175}{6} .
$$

Problem 7.33 (a)

$$
E\left[(2+X)^{2}\right]=4+4 E[X]+E\left[X^{2}\right]=8+\operatorname{Var}(X)+E[X]^{2}=14
$$

(b)

$$
\operatorname{Var}(4+3 X)=9 \operatorname{Var}(X)=45
$$

Problem 7.38 We have

$$
\begin{aligned}
E[X Y] & =\int_{0}^{\infty} \int_{0}^{x} 2 y e^{-2 x} d y d x=\int_{0}^{\infty} x^{2} e^{-2 x} d x=\frac{1}{4}, \\
E[X] & =\int_{0}^{\infty} \int_{0}^{x} 2 e^{-2 x} d y d x=\int_{0}^{\infty} 2 x e^{-2 x} d x=\frac{1}{2}, \quad \text { and } \\
E[Y] & =\int_{0}^{\infty} \int_{0}^{x} \frac{2 y}{x} e^{-2 x} d y d x=\int_{0}^{\infty} x e^{-2 x} d x=\frac{1}{4} .
\end{aligned}
$$

Hence,

$$
\operatorname{Cov}(X, Y)=\frac{1}{4}-\frac{1}{2} \cdot \frac{1}{4}=\frac{1}{8}
$$

Problem 7.39 We have

$$
\begin{aligned}
\operatorname{Cov}\left(Y_{n}, Y_{n}\right) & =\operatorname{Var}\left(Y_{n}\right)=3 \sigma^{2}, \\
\operatorname{Cov}\left(Y_{n}, Y_{n+1}\right) & =\operatorname{Cov}\left(X_{n}+X_{n+1}+X_{n+2}, X_{n+1}+X_{n+2}+X_{n+3}\right) \\
& =\operatorname{Cov}\left(X_{n+1}+X_{n+2}, X_{n+1}+X_{n+2}\right) \\
& =\operatorname{Var}\left(X_{n+1}+X_{n+2}\right)=2 \sigma^{2}, \\
\operatorname{Cov}\left(Y_{n}, Y_{n+2}\right) & =\operatorname{Cov}\left(X_{n}+X_{n+1}+X_{n+2}, X_{n+2}+X_{n+3}+X_{n+4}\right) \\
& =\operatorname{Cov}\left(X_{n+2}, X_{n+2}\right)=\operatorname{Var}\left(X_{n+2}\right)=\sigma^{2}, \quad \text { and } \\
\operatorname{Cov}\left(Y_{n}, Y_{n+j}\right) & =0 \quad \text { if } j \geq 3 .
\end{aligned}
$$

Problem 7.41 the number of carp is a hypergeometric random variable, so that we have

$$
E[X]=\frac{20 \cdot 30}{100}=6
$$

and

$$
\operatorname{Var}(X)=\frac{20 \cdot 80}{99} \cdot \frac{3}{10} \cdot \frac{7}{10}=\frac{112}{33}
$$

Problem 7.42 (a) Let X_{i} be one if the i-th pair consists of a man and a women, and zero otherwise. Then the sum $X_{1}+\cdots+X_{10}$ is the number of pairs that consist of a man and a woman.
We have $E\left[X_{i}\right]=P\left(X_{i}=1\right)=2 \cdot \frac{10 \cdot 10}{20 \cdot 19}=\frac{10}{19}$, so that

$$
E\left[X_{1}+\cdots+X_{10}\right]=\frac{100}{19}
$$

Now, we have $\operatorname{Var}\left(X_{i}\right)=E\left[X_{i}^{2}\right]-E\left[X_{i}\right]^{2}=\frac{10}{19}-\frac{100}{361}=\frac{90}{361}$, and $\operatorname{Cov}\left(X_{i}, X_{j}\right)=E\left[X_{i} X_{j}\right]-E\left[X_{i}\right] E\left[X_{j}\right]=\frac{10}{19} \cdot \frac{9}{17}-\frac{100}{361}=\frac{10}{6137}$ if $i \neq j$, so that

$$
\operatorname{Var}\left(X_{1}+\cdots+X_{10}\right)=\frac{900}{361}+10 \cdot 9 \cdot \frac{10}{6137}=\frac{16200}{6137}=2.6397
$$

(b) Let Y_{i} be one if the i-th couple are paired together. $E\left[Y_{i}\right]=$ $P\left(Y_{i}=1\right)=\frac{2 \cdot 10 \cdot 18!}{20!}=\frac{1}{19}$, so that

$$
E\left[Y_{1}+\cdots+Y_{10}\right]=\frac{10}{19}
$$

We have $\operatorname{Var}\left(Y_{i}\right)=E\left[Y_{i}^{2}\right]-E\left[Y_{i}\right]^{2}=\frac{1}{19}-\frac{1}{361}=\frac{18}{361} \quad$ and $E\left[Y_{i} Y_{j}\right]=\frac{8\binom{10}{2} \cdot 16!}{20!}=\frac{1}{323}$, so that $\operatorname{Cov}\left(Y_{i}, Y_{j}\right)=\frac{1}{323}-\frac{1}{361}=\frac{2}{6137}$, so that

$$
E\left[Y_{1}+\cdots+Y_{10}\right]=\frac{10}{19}
$$

We have $\operatorname{Var}\left(Y_{i}\right)=E\left[Y_{i}^{2}\right]-E\left[Y_{i}\right]^{2}=\frac{1}{19}-\frac{1}{361}=\frac{18}{361}$ and $E\left[Y_{i} Y_{j}\right]=$ $\frac{8\binom{10}{2} \cdot 16!}{20!}=\frac{1}{323}$, so that

$$
\operatorname{Var}\left(Y_{1}+\cdots+Y_{10}\right)=\frac{180}{361}+90 \cdot \frac{2}{6137}=\frac{3240}{6137} .
$$

