8th Homework Set - Solutions

Chapter 6

Problem 6.11 Let A be the number of people buying an ordinary set, B the number of people buying a plasma set, and C the number of people who are just browsing. Then $P\{A=2, B=1, C=2\}=\frac{5!}{2!1!2!} 0.45^{2} \cdot 0.15 \cdot 0.4^{2}=$ 0.1458 .

Problem 6.13 Let X be uniform on $(-15,15)$, and let Y be uniform on $(-30,30)$. Nobody waits longer than five minutes if $|Y-X|<5$.

$$
\begin{aligned}
P\{|Y-X|<5\} & =P\{-5<Y-X<5\} \\
& =P\{X-5<Y<X+5\} \\
& =\int_{-15}^{15} \int_{x-5}^{x+5} \frac{1}{30 \cdot 60} d y d x \\
& =\frac{30 \cdot 10}{30 \cdot 60}=\frac{1}{6}
\end{aligned}
$$

The probability that the man arrives first is $P\{X<Y\}=\frac{1}{2}$ by symmetry.

Problem 6.14 Let X, Y be uniform random variables on $(0, L)$. Let $Z=|Y-X|$. We want to find $E[Z]$. First, find $F_{Z}(a)$, for $a \geq 0$. We have $F_{Z}(a)=$ $P\{Z \leq a\}=P\{|Y-X| \leq a\}=P\{-a \leq Y-X \leq a\}=\frac{2 a L-a^{2}}{L^{2}}$. using geometric considerations. Hence, $f_{Z}(x)=\frac{2 L-2 x}{L^{2}}$ if $0 \leq a \leq L$. Hence,

$$
\begin{aligned}
E[Z] & =\int_{0}^{L} x \cdot \frac{2 L-2 x}{L^{2}} d x \\
& =\left.\frac{2}{L^{2}}\left(\frac{L x^{2}}{2}-\frac{x^{3}}{3}\right)\right|_{0} ^{L} \\
& =\frac{L}{3}
\end{aligned}
$$

Problem 6.18 Let X be uniform on $\left(0, \frac{L}{2}\right)$ and let Y be uniform on $\left(\frac{L}{2}, L\right)$. We want
to find $P\left\{Y-X>\frac{L}{3}\right\}$.

$$
\begin{aligned}
P\left\{Y-X>\frac{L}{3}\right\} & =P\left\{Y<\frac{L}{2}+\frac{L}{3}, X<Y-\frac{L}{3}\right\}+P\left\{Y>\frac{L}{2}+\frac{L}{3}\right\} \\
& =\int_{\frac{L}{2}}^{\frac{5 L}{6}} \int_{0}^{y-\frac{L}{3}} \frac{4}{L^{2}} d x d y+\int_{\frac{5 L}{6}}^{\frac{L}{2}} \frac{2}{L} d y \\
& =\frac{4}{9}+\frac{1}{3}=\frac{7}{9} .
\end{aligned}
$$

Problem 6.20 If the joint density function of X and Y is

$$
f(x, y)=\left\{\begin{array}{l}
x e^{-(x+y)} \quad x>0, y>0 \\
0 \quad \text { otherwise }
\end{array}\right.
$$

then $f(x, y)=f_{X}(x) f_{Y}(y)$, where $f_{X}(x)=x e^{-x}$ for $x>0$, and $f_{Y}(y)=$ e^{-y} for $y>0$ (0 otherwise), so that X and Y are independent.
If

$$
f(x, y)= \begin{cases}2 & 0<x<y, 0<y<1 \\ 0 & \text { otherwise }\end{cases}
$$

then X and Y are not independent because the nonzero values of f are located in a triangular domain.

Problem 6.21 (a) Check: $\int_{0}^{1} \int_{0}^{1-y} 24 x y d x d y=\int_{0}^{1} 12(1-y)^{2} y d y=12 \int_{0}^{1} y-2 y^{2}+$ $y^{3} d y=6 y^{2}-8 y^{3}+\left.3 y^{4}\right|_{0} ^{1}=6-8+3=1$.
(b) First, find $f_{X}(x)=\int_{0}^{1-x} 24 x y d y=12 x(1-x)^{2}$. Now, $E[X]=$ $\int_{0}^{1} 12 x^{2}(1-x)^{2} d x=4 x^{2}-6 x^{3}+\left.\frac{12}{5} x^{5}\right|_{0} ^{1}=4-6+\frac{12}{5}=\frac{2}{5}$.
(c) $E[Y]=E[X]=\frac{2}{5}$ by symmetry.

Problem 6.22 Let X and Y be jointly continuous with density function

$$
f(x, y)=\left\{\begin{array}{l}
x+y \quad 0<x<1,0<y<1 \\
0 \quad \text { otherwise } .
\end{array}\right.
$$

(a) X and Y are not independent, since $f(x, y)$ is clearly not a product of functions of x and y.
(b) $f_{X}(x)=\int_{0}^{1} x+y d y=x+\left.\frac{y^{2}}{2}\right|_{0} ^{1}=x+\frac{1}{2}$.
(c) $P\{X+Y<1\}=\int_{0}^{1} \int_{0}^{1-y} x+y d x d y=\int_{0}^{1} \frac{(1-y)^{2}}{2}+y(1-y) d y=$ $\frac{1}{2} \int_{0}^{1} 1-y^{2} d y=\frac{1}{2}\left(1-\frac{1}{3}\right)=\frac{1}{3}$.

Problem 6.23 Let X and Y be jointly distributed with density function

$$
f(x, y)=\left\{\begin{array}{l}
12 x y(1-x) \quad 0<x<1,0<y<1 \\
0 \quad \text { otherwise } .
\end{array}\right.
$$

First, compute $f_{X}(x)=\int_{0}^{1} 12 x y(1-x) d y=6 x(1-x)$ and $f_{Y}(y)=$ $\int_{0}^{1} 12 x y(1-x) d y=2 y$.
(a) Clearly, $f(x, y)=f_{X}(x) f_{Y}(y)$, so that X and Y are independent.
(b) $E[X]=\int_{0}^{1} 6 x^{2}(1-x) d x=2 x^{3}-\left.\frac{3}{2} x^{4}\right|_{0} ^{1}=\frac{1}{2}$.
(c) $E[Y]=\int_{0}^{1} 2 y^{2} d y=\left.\frac{2}{3} y^{3}\right|_{0} ^{1}=\frac{2}{3}$.
(d) First, find $E\left[X^{2}\right]=\int_{0}^{1} 6 x^{3}(1-x) d x=\frac{3}{2} x^{4}-\left.\frac{6}{5} x^{5}\right|_{0} ^{1}=\frac{3}{10}$. Now, $\operatorname{Var}(X)=E\left[X^{2}\right]-E X^{2}=\frac{3}{10}-\frac{1}{4}=\frac{1}{20}$.
(e) First, find $E\left[Y^{2}\right]=\int_{0}^{1} 2 y^{3} d y=\left.\frac{1}{2} y^{4}\right|_{0} ^{1}=\frac{1}{2}$. Now, $\operatorname{Var}(X)=$ $\frac{1}{2}-\frac{4}{9}=\frac{1}{18}$.

Problem 6.27 Let X_{1}, X_{2} be exponential random variables with parameter λ_{1}, λ_{2}. Let $Z=\frac{X_{1}}{X_{2}}$. Note that $F_{Z}(a)=0$ if $a \leq 0$. Compute $F_{Z}(a)$ for $a>0$:

$$
\begin{aligned}
F_{Z}(a) & =P\{Z \leq a\}=P\left\{X_{1} \leq a X_{2}\right\} \\
& =\lambda_{1} \lambda_{2} \int_{0}^{\infty} \int_{0}^{a y} e^{-\lambda_{1} x-\lambda_{2} y} d x d y \\
& =\frac{\lambda_{1} a}{\lambda_{1} a+\lambda_{2}},
\end{aligned}
$$

so that

$$
f_{Z}(a)=\frac{d}{d a} F(a)=\frac{\lambda_{1}}{\lambda_{1} a+\lambda_{2}}-\frac{\lambda_{1}^{2} a}{\left(a \lambda_{1}+\lambda_{2}\right)^{2}} .
$$

Finally, we have

$$
P\left\{X_{1}<X_{2}\right\}=P\{Z<1\}=F_{Z}(1)=\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}
$$

Problem 6.29 Let X_{1}, X_{2} be independent normal random variables with $\mu=2200$ and $\sigma^{2}=230^{2}$, representing the gross sales over this week and next week, respectively. Then $X=X_{1}+X_{2}$ is normal with mean 4400 and variance $2 \cdot 230^{2}=105800$.
(a) $P\{X>5000\}=P\left\{\frac{X-4400}{\sqrt{105800}}>\frac{600}{\sqrt{105800}}\right\}=1-\Phi(1.84)=1-$ $0.9671=0.0329$.
(b) Let $p=P\left\{X_{1}>2000\right\}=P\left\{\frac{X_{1}-2200}{230}>\frac{-200}{230}\right\}=1-\Phi\left(-\frac{20}{23}\right)=$ $\Phi(0.87)=0.8078$.
Let N be the number of weeks (out of three) in which the sales exceed $\$ 2000$. Then N is binomial with parameters $(p, 3)$, so that $P\{N \geq 2\}=p^{3}+3 p^{2}(1-p)=0.9034$.

Problem 6.31 Let X be the number of women who never eat breakfast, and let Y be the number of men who never eat breakfast. Let $Z=X+Y$. By DeMoivre-Laplace, X is approximated by a normal random variable with mean $200 \cdot 0.236=47.2$ and variance $47.2 \cdot 0.764=36.061$, and Y is normal with mean $200 \cdot 0.252=50.4$ and variance 50.4•0.748 $=37.699$. Let $Z_{1}=X+Y$ and $Z_{2}=X-Y$. Then Z_{1} is normal with mean 97.6 and variance $36.061+37.699=73.76$, and Z_{2} is normal with mean -3.2 and variance 73.76 .
(a) $P\left\{Z_{1} \geq 110\right\}=P\left\{Z_{1}>109.5\right\}=P\left\{\frac{Z_{1}-97.6}{\sqrt{73.76}}>\frac{11.9}{\sqrt{73.76}}\right\}=1-$ $\Phi(1.39)=1-0.9177=0.0823$.
(b) $P\{X \geq Y\}=P\{X-Y \geq 0\}=P\left\{Z_{2} \geq 0\right\}=P\left\{Z_{2}>-0.5\right\}=$ $P\left\{\frac{Z_{2}+3.2}{\sqrt{73.76}}>\frac{2.7}{\sqrt{73.76}}\right\}=1-\Phi(0.31)=0.3783$.

Problem 6.34 Let X_{1} be the number of accidents in the next month, X_{2} the number of accidents in the month after that, and X_{3} the number of accidents in the third month. It makes sense to think of X_{1}, X_{2}, and X_{3} as independent Poisson random variables with parameter $\lambda=2.2$.
Let $X=X_{1}, Y=X_{1}+X_{2}$, and $Z=X_{1}+X_{2}+X_{3}$. Then X, Y, and Z are Poisson with parameter 2.2, 4.4, and 6.6, respectively.
(a) $P\{X>2\}=1-e^{-2.2}\left(1+2.2+\frac{2.2^{2}}{2}\right)=0.3773$.
(b) $P\{Y>4\}=1-e^{-4.4}\left(1+4.4+\frac{4.4^{2}}{2}+\frac{4.4^{3}}{3!}+\frac{4.4^{4}}{4!}\right)=0.4488$.
(c) $P\{Z>5\}=1-e^{-6.6}\left(1+6.6+\frac{6.6^{2}}{2}+\frac{6.6^{3}}{3!}+\frac{6.6^{4}}{4!}+\frac{6.6^{5}}{5!}\right)=0.6453$.

Problem 6.38 (a) $P\{X=i, Y=j\}=\frac{1}{5 i}$ for $i=1, \ldots, 5$ and $j=1, \ldots, i, 0$ other-
wise.

$P\{X=i, Y=j\}$	$\mathrm{Y}=1$	$\mathrm{Y}=2$	$\mathrm{Y}=3$	$\mathrm{Y}=4$	$\mathrm{Y}=5$	$P\{X=i\}$
$\mathrm{X}=1$	$\frac{1}{5}$	0	0	0	0	$\frac{1}{5}$
$\mathrm{X}=2$	$\frac{1}{10}$	$\frac{1}{10}$	0	0	0	$\frac{1}{5}$
$\mathrm{X}=3$	$\frac{1}{15}$	$\frac{1}{15}$	$\frac{1}{15}$	0	0	$\frac{1}{5}$
$\mathrm{X}=4$	$\frac{1}{20}$	$\frac{1}{20}$	$\frac{1}{20}$	$\frac{1}{20}$	0	$\frac{1}{5}$
$\mathrm{X}=5$	$\frac{1}{25}$	$\frac{1}{25}$	$\frac{1}{25}$	$\frac{1}{25}$	$\frac{1}{25}$	$\frac{1}{5}$
$P\{Y=j\}$	$\frac{137}{300}$	$\frac{77}{300}$	$\frac{47}{300}$	$\frac{9}{100}$	$\frac{1}{25}$	1

(b) $P\{X=i \mid Y=j\}=\frac{\frac{1}{5 i}}{\sum_{k=i}^{5} \frac{1}{5 k}}$

$P\{X=i \mid Y=j\}$	$\mathrm{Y}=1$	$\mathrm{Y}=2$	$\mathrm{Y}=3$	$\mathrm{Y}=4$	$\mathrm{Y}=5$
$X=1$	$\frac{60}{137}$	0	0	0	0
$X=2$	$\frac{30}{137}$	$\frac{30}{77}$	0	0	0
$X=3$	$\frac{20}{137}$	$\frac{20}{77}$	$\frac{20}{47}$	0	0
$X=4$	$\frac{15}{137}$	$\frac{15}{77}$	$\frac{15}{47}$	$\frac{5}{9}$	0
$X=5$	$\frac{12}{137}$	$\frac{12}{77}$	$\frac{12}{47}$	$\frac{4}{9}$	1

(c) No.

Problem 6.40

$p(i, j)$	$j=1$	$j=2$	
$i=1$	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{3}{8}$
$i=2$	$\frac{1}{8}$	$\frac{1}{2}$	$\frac{5}{8}$
	$\frac{1}{4}$	$\frac{3}{4}$	1

(a)

$P\{X=i \mid Y=j\}$	$j=1$	$j=2$
$i=1$	$\frac{1}{2}$	$\frac{1}{3}$
$i=2$	$\frac{1}{2}$	$\frac{2}{3}$

(b) No.
(c) $P\{X Y \leq 3\}=1-p(2,2)=\frac{1}{2}$
$P\{X+Y>2\}=1-p(1,1)=\frac{7}{8}$
$P\left\{\frac{X}{Y}>1\right\}=p(2,1)=\frac{1}{8}$

Problem 6.41 Let X and Y be jointly continuous with density function $f(x, y)=$ $x e^{-x(y+1)}$ for $x>0, y>0$. Note that $f_{X}(x)=\int_{0}^{\infty} f(x, y) d y=e^{-x}$ for $x>0$, and $f_{Y}(y)=\int_{0}^{\infty} f(x, y) d x=\frac{1}{(y+1)^{2}}$ for $y>0$.
(a) $f_{X \mid Y}(x \mid y)=(y+1)^{2} x e^{-x(y+1)}$ for $x>0, y>0,0$ otherwise, and $f_{Y \mid X}(y \mid x)=x e^{-x y}$ for $x>0, y>0$.
(b) Let $Z=X Y$. Then for $a>0$,

$$
F_{Z}(a)=P\{X Y<a\}=\int_{0}^{\infty} \int_{0}^{\frac{a}{x}} x e^{-x(y+1)} d y d x=1-e^{-a}
$$

Hence, $f_{Z}(a)=\frac{d}{d a} F_{Z}(a)=e^{-a}$ for $a>0,0$ otherwise.
Problem 6.42 Let X and Y be jointly continuous with density function

$$
f(x, y)=c\left(x^{2}-y^{2}\right) e^{-x}
$$

for $0 \leq x<\infty,-x \leq y \leq x$. For $x>0$, we have

$$
f_{X}(x)=\int_{-x}^{x} c\left(x^{2}-y^{2}\right) e^{-x} d y=\frac{4 c}{3} x^{3} e^{-x}
$$

Hence, $f_{Y \mid X}(y \mid x)=\frac{3}{4} \frac{x^{2}-y^{2}}{x^{3}}$ for $-x<y<x, 0$ otherwise. We conclude that

$$
F_{Y \mid X}(y \mid x)=\left\{\begin{array}{l}
0 \quad y \leq-x \\
\frac{3}{4} \int_{-x}^{y} \frac{x^{2}-y^{2}}{x^{3}} d y=\frac{1}{4}\left(\frac{y\left(3 x^{2}-y^{2}\right)}{x^{3}}+2\right) \quad-x<y<x \\
1 \quad x \leq y
\end{array}\right.
$$

