Fifth Homework Set - Solutions

Chapter 4

Problem 72 Let A be the stronger team. $P(A$ wins in i games $)=\binom{i-1}{i-4} 0.6^{i} 0.4^{i-4}$, for $i=4, \ldots, 7$. Hence

$$
P(A \text { wins best-of-seven series })=\sum_{i=4}^{7}\binom{i-1}{i-4} 0.6^{4} 0.4^{i-4}=0.7102 .
$$

Similarly,

$$
P(A \text { wins best-of-three series })=\sum_{i=2}^{3}\binom{i-1}{i-2} 0.6^{4} 0.4^{i-2}=0.6480
$$

Problem 73 Let X be the number of games played in a match. Then $P\{X=i\}=$ $2\binom{i-1}{i-4}\left(\frac{1}{2}\right)^{i}$ for $i=4, \ldots, 7$. Hence, $E[X]=2 \sum_{i=4}^{7} i\binom{i-1}{i-4}\left(\frac{1}{2}\right)^{i}=5.8125$.

Problem 77 Let E be the event that right-hand box is emptied while the left-hand box still contains k matches. Then, using a negative binomial random variable with $p=\frac{1}{2}, r=N$, and $n=2 N-k$, we see that $P(E)=$ $\binom{2 N-k-1}{N-1}\left(\frac{1}{2}\right)^{2 N-k}$. Now the desired probability is $2 P(E)$.

Problem 78 Let E be the event that a single drawing results in two white and two black balls. Then $P(E)=\frac{\binom{4}{2}\binom{4}{2}}{\binom{8}{4}}=\frac{18}{35}$.
Let X be the number of selections until E occurs. Then

$$
P(X=n)=\frac{17^{n-1} \cdot 18}{35^{n}}
$$

Problem 79 (a) $P(X=0)=\frac{\binom{94}{10}}{\binom{100}{10}}=0.5223$
(b)

$$
\begin{aligned}
& P(X>2)=1-P(X=0)-P(X=1)-P(X=2) \\
& =\frac{\binom{100}{10}-\binom{94}{10}-\binom{6}{1}\binom{94}{9}-\binom{6}{2}\binom{94}{8}}{\binom{100}{10}}=0.0126
\end{aligned}
$$

Problem 84 (a) For $i=1, \ldots, 5$, let $X_{i}=1$ if the i-th box is empty and $X_{i}=0$ otherwise. Then $X=X_{1}+\cdots+X_{5}$ is the number of empty boxes. For $i=1, \ldots, 5$,

$$
E\left[X_{i}\right]=P\left(X_{i}=1\right)=\left(1-p_{i}\right)^{10}
$$

Thus

$$
E[X]=E\left[X_{1}\right]+\cdots+E\left[X_{5}\right]=\sum_{i=1}^{5}\left(1-p_{i}\right)^{10}
$$

(b) For $i=1, \ldots, 5$, let $Y_{i}=1$ if the i-th box has exactly 1 ball and $Y_{i}=0$ otherwise. Then $Y=Y_{1}+\cdots+Y_{5}$ is the number of boxes that have exactly 1 ball. For $i=1, \ldots, 5$,

$$
E\left[Y_{i}\right]=P\left(Y_{i}=1\right)=10 p_{i}\left(1-p_{i}\right)^{9}
$$

Thus

$$
E[Y]=E\left[Y_{1}\right]+\cdots+E\left[Y_{5}\right]=\sum_{i=1}^{5} 10 p_{i}\left(1-p_{i}\right)^{9}
$$

Problem 85 For $i=1, \ldots, k$, let $X_{i}=1$ if the i-th type appear at least once in the set of n coupons. Then $X=X_{1}+\cdots+X_{k}$ is the number of distinct types that appear in this set. For $i=1, \ldots, k$,

$$
E\left[X_{i}\right]=P\left(X_{i}=1\right)=1-P\left(X_{i}=0\right)=1-\left(1-p_{i}\right)^{n}
$$

Thus

$$
E[X]=E\left[X_{1}\right]+\cdots+E\left[X_{k}\right]=k-\sum_{i=1}^{k}\left(1-p_{i}\right)^{n}
$$

Chapter 5

Problem 1 (a) We have $1=\int_{-1}^{1} c\left(1-x^{2}\right) d x=\left.c x\left(1-\frac{x^{2}}{3}\right)\right|_{-1} ^{1}=\frac{4}{3} c$, so that $c=\frac{3}{4}$.
(b) We have $\int_{-1}^{x} f(y) d y=\left.\frac{3}{4} y\left(1-\frac{y^{2}}{3}\right)\right|_{-1} ^{x}=\frac{1}{2}+\frac{3}{4} x\left(1-\frac{x^{2}}{3}\right)$ if $-1 \leq$ $x \leq 1$. Hence,

$$
F(x)=\left\{\begin{array}{l}
0 \quad x<-1 \\
\frac{1}{2}+\frac{3}{4} x\left(1-\frac{x^{2}}{3}\right) \quad-1 \leq x \leq 1, \\
1 \quad x>1
\end{array}\right.
$$

Problem 2 Determine $C: \int_{0}^{\infty} x e^{-\frac{x}{2}} d x=-\left.2 x e^{-\frac{x}{2}}\right|_{0} ^{\infty}+\int_{0}^{\infty} 2 e^{-\frac{x}{2}} d x=\left.(-2 x-4) e^{-\frac{x}{2}}\right|_{0} ^{\infty}=$ 4 , so that $C=\frac{1}{4}$.
Now, we have $P(X \geq 5)=\int_{5}^{\infty} \frac{1}{4} x e^{-\frac{x}{2}}=-\left.\left(\frac{x}{2}+1\right) e^{-\frac{x}{2}}\right|_{5} ^{\infty}=\frac{7}{2} e^{-\frac{5}{2}}$
Problem 4 (a) $P(X>20)=\int_{20}^{\infty} \frac{10}{x^{2}} d x=-\left.\frac{10}{x}\right|_{20} ^{\infty}=\frac{1}{2}$.
(b)

$$
F(x)=\left\{\begin{array}{l}
0 \quad x<10 \\
1-\frac{10}{x} \quad x \geq 10
\end{array}\right.
$$

(c) Let's assume that lifetimes of the six devices are independent of each other. Let $p=1-F(15)$. Then the desired probability is

$$
\sum_{i=3}^{6}\binom{6}{i} p^{i}(1-p)^{6-i}
$$

Problem 5 We want to find C such that $F(C) \geq 0.99$. We have $F(C)=\int_{0}^{C} 5(1-$ $x)^{4} d x=-\left.(1-x)^{5}\right|_{0} ^{C}=1-(1-C)^{5}$. We want $1-(1-C)^{5} \geq 0.99$, i.e., $(1-C)^{5} \leq 0.01$, hence $C \geq 1-(0.01)^{0.2}$.

