Third Homework Set - Solutions

Chapter 3

Problem 20 (a) $P(F \mid C)=\frac{P(F C)}{P(C)}=\frac{.02}{.05}=\frac{2}{5}$.
(b) $P(C \mid F)=\frac{P(F C)}{P(F)}=\frac{.02}{.52}=\frac{1}{26}$.

Problem 57 (a) P (original price after two days $)=\binom{2}{1} p(1-p)=2 p(1-p)$
(b) P (increase by one after three days) $=\binom{3}{2} p^{2}(1-p)=3 p^{2}(1-p)$
(c) P (increase on first day \mid increase by one after three days $)=\frac{p \cdot 2 p(1-p)}{3 p^{2}(1-p)}=$ $\frac{2}{3}$

Problem 59 (a) $P(H H H H)=p^{4}$
(b) $P($ THHH $)=p^{3}(1-p)$
(c) The pattern $H H H H$ can only occur before THHH if the first four coin flips come up heads. Hence, $P($ THHH occurs before $H H H H)=$ $1-p^{4}$.

Problem 64 Let E be the event that the wife answers correctly, and let F be the event that the husband answers correctly.
(a) If only one of them answers, then the probability of a correct answer is $P(E)=P(F)=p$.
(b) $P($ correct answer $)=P(E F)+\frac{1}{2} \cdot 2 \cdot p(1-p)=p^{2}+p-p^{2}=p$

Problem 66 Let E_{i} be the event that the i-th switch is on.
(a)

$$
\begin{aligned}
& P(\text { current flows from } A \text { to } B) \\
& =\left(P\left(E_{1} E_{2}\right)+P\left(E_{3} E_{4}\right)-P\left(E_{1} E_{2} E_{3} E_{4}\right)\right) P\left(E_{5}\right) \\
& =\left(p_{1} p_{2}+p_{3} p_{4}-p_{1} p_{2} p_{3} p_{4}\right) p_{5}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& P(\text { current flows from } A \text { to } B) \\
& =P\left(E_{1} E_{4} \cup E_{1} E_{3} E_{5} \cup E_{2} E_{5} \cup E_{2} E_{3} E_{4}\right) \\
& =p_{1} p_{4}+p_{1} p_{3} p_{5}+p_{2} p_{5}+p_{2} p_{3} p_{4} \\
& -p_{1} p_{3} p_{4} p_{5}-p_{1} p_{2} p_{4} p_{5}-p_{1} p_{2} p_{3} p_{4} \\
& -p_{1} p_{2} p_{3} p_{5}-p_{1} p_{2} p_{3} p_{4} p_{5}-p_{2} p_{3} p_{4} p_{5} \\
& +4 p_{1} p_{2} p_{3} p_{4} p_{5}-p_{1} p_{2} p_{3} p_{4} p_{5} \\
& =p_{1} p_{4}+p_{1} p_{3} p_{5}+p_{2} p_{5}+p_{2} p_{3} p_{4} \\
& -p_{1} p_{3} p_{4} p_{5}-p_{1} p_{2} p_{4} p_{5}-p_{1} p_{2} p_{3} p_{4} \\
& -p_{1} p_{2} p_{3} p_{5}-p_{2} p_{3} p_{4} p_{5}+2 p_{1} p_{2} p_{3} p_{4} p_{5}
\end{aligned}
$$

Problem 78 (a) P (exactly four games are played) $=P(A B A A)+P(B A A A)+$ $P(A B B B)+P(B A B B)=2 p^{3}(1-p)+2 p(1-p)^{3}=2 p(1-$ p) $\left(p^{2}+(1-p)^{2}\right)=2 p(1-p)\left(1-2 p+2 p^{2}\right)$
(b) Let E be the event that A wins the match. Conditioning on the first two games of the match, we get $P(E)=P(E \mid A, A) p^{2}+$ $P(E \mid A, B) p(1-p)+P(E \mid B, A)(1-p) p+P(E \mid B, B)(1-p)^{2}=$ $p^{2}+2 P(E) p(1-p)$ because $P(E \mid A, B)=P(E \mid B, A)=P(E)$. Hence, $P(E)=\frac{p^{2}}{1-2 p(1-p)}$.

Problem 81 Using the gambler's ruin formula, the anwser is

$$
\frac{1-(9 / 11)^{15}}{1-(9 / 11)^{30}}
$$

Problem 83 (a) Conditioning on the coin flip

$$
P(\text { throw } \mathrm{n} \text { is red })=\frac{1}{2} \frac{4}{6}+\frac{1}{2} \frac{2}{6}=\frac{1}{2} .
$$

(b)

$$
P\left(R_{3} \mid R_{1} R_{2}\right)=\frac{P\left(R_{1} R_{2} R_{3}\right)}{P\left(R_{1} R_{2}\right)}=\frac{\frac{1}{2}\left(\frac{2}{3}\right)^{3}+\frac{1}{2}\left(\frac{1}{3}\right)^{3}}{\frac{1}{2}\left(\frac{2}{3}\right)^{2}+\frac{1}{2}\left(\frac{1}{3}\right)^{2}}=\frac{3}{5} .
$$

(c)

$$
P\left(A \mid R_{1} R_{2}\right)=\frac{P\left(R_{1} R_{2} \mid A\right) P(A)}{P\left(R_{1} R_{2}\right)}=\frac{\left(\frac{2}{3}\right)^{2} \frac{1}{2}}{\left(\frac{2}{3}\right)^{2} \frac{1}{2}+\left(\frac{1}{3}\right)^{2} \frac{1}{2}}=\frac{4}{5} .
$$

Problem 84 (a)

$$
\begin{aligned}
P(A \text { win }) & =\sum_{i=0}^{\infty} P(\text { the first white appears on draw number } 3 i+1) \\
& =\sum_{i=0}^{\infty}\left(\frac{2}{3}\right)^{3 i} \frac{1}{3}=\frac{1}{3} \sum_{i=0}^{\infty}\left(\frac{8}{27}\right)^{i}=\frac{1}{3} \frac{1}{1-\frac{8}{27}} \\
P(B \text { win }) & =\sum_{i=0}^{\infty} P(\text { the first white appears on draw number } 3 i+2) \\
& =\sum_{i=0}^{\infty}\left(\frac{2}{3}\right)^{3 i+1} \frac{1}{3}=\frac{2}{9} \sum_{i=0}^{\infty}\left(\frac{8}{27}\right)^{i}=\frac{2}{9} \frac{1}{1-\frac{8}{27}} \\
P(C \text { win }) & =\sum_{i=0}^{\infty} P(\text { the first white appears on draw number } 3 i+3) \\
& =\sum_{i=0}^{\infty}\left(\frac{2}{3}\right)^{3 i+2} \frac{1}{3}=\frac{4}{27} \sum_{i=0}^{\infty}\left(\frac{8}{27}\right)^{i}=\frac{4}{27} \frac{1}{1-\frac{8}{27}}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& P(A \text { win })=\frac{4}{12}+\frac{8}{12} \frac{7}{11} \frac{6}{10} \frac{4}{9}+\frac{8}{12} \frac{7}{11} \frac{6}{10} \frac{5}{9} \frac{4}{8} \frac{4}{6} \\
& P(B \text { win })=\frac{8}{12} \frac{4}{11}+\frac{8}{12} \frac{7}{11} \frac{6}{10} \frac{4}{9}+\frac{8}{12} \frac{7}{11} \frac{6}{10} \frac{5}{9} \frac{4}{8} \frac{2}{7} \frac{4}{5} \\
& P(C \text { win })=\frac{8}{12} \frac{7}{11} \frac{4}{10}+\frac{8}{12} \frac{7}{11} \frac{6}{10} \frac{5}{9} \frac{4}{8} \frac{4}{7}+\frac{8}{12} \frac{7}{11} \frac{6}{10} \frac{5}{9} \frac{4}{8} \frac{2}{7} \frac{1}{6} .
\end{aligned}
$$

Chapter 4

Problem 1 Possible values of X : $0,2,4,-1,-2,1$ Probabilities:

$$
\begin{gathered}
P(X=0)=\frac{\binom{2}{2}}{\binom{14}{2}}=\frac{1}{91} \\
P(X=2)=\frac{\binom{4}{1}\binom{2}{1}}{\binom{14}{2}}=\frac{8}{91} \\
P(X=4)=\frac{\binom{4}{2}}{\binom{14}{2}}=\frac{6}{91} \\
P(X=-1)=\frac{\binom{8}{1}\binom{2}{1}}{\binom{14}{2}}=\frac{16}{91} \\
P(X=-2)=\frac{\binom{8}{2}}{\binom{14}{2}}=\frac{28}{91} \\
P(X=1)=\frac{\binom{8}{1}\binom{4}{1}}{\binom{14}{2}}=\frac{32}{91}
\end{gathered}
$$

Problem 4

$$
\begin{aligned}
& P(X=1)=\frac{\binom{5}{1} 9!}{10!}=\frac{1}{2} \\
& P\left(X=2=\frac{\binom{5}{1}\binom{5}{1} 8!}{10!}=\frac{5}{18}\right. \\
& P(X=3)=\frac{\binom{5}{2} 2!\binom{5}{1} 7!}{10!}=\frac{5}{36} \\
& P(X=4)=\frac{\binom{5}{3} 3!\binom{5}{1} 6!}{10!}=\frac{5}{84} \\
& P(X=5)=\frac{\binom{5}{4} 4!\binom{5}{1} 5!}{10!}=\frac{5}{252} \\
& P(X=6)=\frac{\binom{5}{5} 5!\binom{5}{1} 4!}{10!}=\frac{1}{252} \\
& P(X=7)=P(X=8)=P(X=9)=P(X=10)=0
\end{aligned}
$$

Problem 5 The possible values are $n, n-2, n-4, \ldots,-n+4,-n+2,-n$.

Problem 13 Let X be the total dollar value of all sales. Then X can take the values $0,500,1000,1500,2000$, and we have

$$
\begin{aligned}
P(X=0) & =0.7 \cdot 0.4=0.28 \\
P(X=500) & =\frac{1}{2}(0.3 \cdot 0.4+0.7 \cdot 0.6)=0.27 \\
P(X=1000) & =\frac{1}{2}(0.3 \cdot 0.4+0.7 \cdot 0.6)+\frac{1}{4} 0.3 \cdot 0.6=0.315 \\
P(X=1500) & =2 \frac{1}{4} 0.3 \cdot 0.6=0.09 \\
P(X=2000) & =\frac{1}{4} 0.3 \cdot 0.6=0.045
\end{aligned}
$$

Problem 14

$$
\begin{aligned}
& P(X=0)=\frac{0!}{2!}=\frac{1}{2} \\
& P(X=1)=\frac{1!}{3!}=\frac{1}{6} \\
& P(X=2)=\frac{2!}{4!}=\frac{1}{12} \\
& P(X=3)=\frac{3!}{5!}=\frac{1}{20} \\
& P(X=4)=\frac{4!}{5!}=\frac{1}{5}
\end{aligned}
$$

Problem 17 (a)

$$
\begin{gathered}
\qquad \begin{array}{l}
P(X=1)=P(X \leq 1)-P(X<1)=\frac{1}{2}-\frac{1}{4}=\frac{1}{4} \\
P(X=2)=\frac{11}{12}-\frac{3}{4}=\frac{1}{6} \\
P(X=3)=1-\frac{11}{12}=\frac{1}{12} \\
\text { (b) } P\left(\frac{1}{2}<X<\frac{3}{2}\right)=\frac{5}{8}-\frac{1}{8}=\frac{1}{2} .
\end{array}
\end{gathered}
$$

Problem 19

$$
\begin{aligned}
P(X=0) & =\frac{1}{2} \\
P(X=1) & =\frac{3}{5}-\frac{1}{2}=\frac{1}{10} \\
P(X=2) & =\frac{4}{5}-\frac{3}{5}=\frac{1}{5} \\
P(X=3) & =\frac{9}{10}-\frac{4}{5}=\frac{1}{10} \\
P(X=3.5) & =1-\frac{9}{10}=\frac{1}{10}
\end{aligned}
$$

