Second Homework Set - Solutions

Chapter 2

Problem 17 There are $64 \cdot 63 \cdot 62 \cdot 61 \cdot 60 \cdot 59 \cdot 58 \cdot 57$ ways of arranging 8 castles on a chess board. Of these, there are $64 \cdot 49 \cdot 36 \cdot 25 \cdot 16 \cdot 9 \cdot 4 \cdot 1=\prod_{i=1}^{8} i^{2}$ in which none of the rooks can capture any of the others. So the answer is

$$
\frac{\prod_{i=1}^{8} i^{2}}{64 \cdot 63 \cdot 62 \cdot 61 \cdot 60 \cdot 59 \cdot 58 \cdot 57}
$$

Problem 18

$$
\frac{2 \cdot 4 \cdot 16}{52 \cdot 51}
$$

Problem 20 Let A be the event that you are dealt a blackjack, and let B be the event that the dealer is dealt a blackjack.

Then

$$
\begin{aligned}
P(A)=P(B) & =\frac{2 \cdot 4 \cdot 16}{52 \cdot 51} \\
P(A B) & =\frac{4 \cdot 4 \cdot 16 \cdot 3 \cdot 15}{52 \cdot 51 \cdot 50 \cdot 49} \\
P(A \cup B) & =P(A)+P(B)-P(A B)=0.0948
\end{aligned}
$$

Hence, then probability that neither you nor the dealer is dealt a blackjack is $1-P(A \cup B)=0.9052$.
Problem 21 (a) $P(1)=\frac{4}{20}=\frac{1}{5}, P(2)=\frac{8}{20}=\frac{2}{5}, P(3)=\frac{5}{20}=\frac{1}{4}, P(4)=\frac{2}{20}=\frac{1}{10}$, and $P(5)=\frac{1}{20}$.
(b) There are 48 children altogether, so that $P(1)=\frac{4}{48}=\frac{1}{12}, P(2)=$ $\frac{2 \cdot 8}{48}=\frac{1}{3}, P(3)=\frac{3 \cdot 5}{48}=\frac{5}{16}, P(4)=\frac{4 \cdot 2}{48}=\frac{1}{6}$, and $P(5)=\frac{5}{48}$.

Problem 25 Let E_{n} be the event that a sum of 5 occurs on the nth roll, and no sum of 5 or 7 occurs on the first $n-1$ rolls. There are 36 outcomes of a single roll, and four of them give a sum of 5 , while 6 of them give a sum of 7 . Hence,

$$
P\left(E_{n}\right)=\left(\frac{26}{36}\right)^{n-1} \frac{4}{36}=\left(\frac{13}{18}\right)^{n-1} \frac{1}{9}
$$

A sum of 5 occurs before a sum of 7 precisely if the events E_{n} occurs for some n. Since E_{n} and E_{m} are disjoint if $n \neq m$, the desired probability is

$$
\sum_{n=1}^{\infty} P\left(E_{n}\right)=\sum_{n=1}^{\infty}\left(\frac{13}{18}\right)^{n-1} \cdot \frac{1}{9}=\frac{1}{9} \cdot \frac{1}{1-\frac{13}{18}}=\frac{1}{9} \frac{18}{5}=\frac{2}{5} .
$$

Problem 27

$$
\begin{aligned}
P(A \text { wins in one move }) & =\frac{3}{10} \\
P(A \text { wins in three moves }) & =\frac{7}{10} \cdot \frac{6}{9} \cdot \frac{3}{8}=\frac{7}{40} \\
P(A \text { wins in five moves }) & =\frac{7}{10} \cdot \frac{6}{9} \cdot \frac{5}{8} \cdot \frac{4}{7} \cdot \frac{3}{6}=\frac{1}{12} \\
P(A \text { wins in seven moves }) & =\frac{7}{10} \cdot \frac{6}{9} \cdot \frac{5}{8} \cdot \frac{4}{7} \cdot \frac{3}{6} \cdot \frac{2}{5} \cdot \frac{3}{4}=\frac{1}{40} \\
P(A \text { wins }) & =\frac{3}{10}+\frac{7}{40}+\frac{1}{12}+\frac{1}{40}=\frac{7}{12}
\end{aligned}
$$

Problem 28 (a) Without replacement:

$$
P(\text { all three balls are the same color })=\frac{\binom{5}{3}+\binom{6}{3}+\binom{8}{3}}{\binom{19}{3}}
$$

With replacement:
$P($ all three balls are the same color $)=\left(\frac{5}{19}\right)^{3}+\left(\frac{6}{19}\right)^{3}+\left(\frac{8}{19}\right)^{3}$
(b) Without replacement:

$$
P(\text { all three balls are of different colors })=\frac{\binom{5}{1} \cdot\binom{6}{1} \cdot\binom{8}{1}}{\binom{19}{3}}
$$

With replacement:

$$
P(\text { all three balls are of different colors })=3!\cdot \frac{5}{19} \cdot \frac{6}{19} \cdot \frac{8}{19}
$$

Problem 32 There are $(b+g)$! ways to line up the children. There are $g \cdot(b+g-1)$! arrangements with a girl in the i th position. The desired probability is $\frac{g(b+g-1)!}{(b+g)!}=\frac{g}{b+g}$.

Problem 37 (a) There are $\binom{10}{5}$ selections for the final exam. The number of selections that allow the student to solve all problems is $\binom{7}{5}$, so that the desired probability is $\frac{\binom{7}{5}}{\binom{10}{5}}=0.08333$.
(b) There are $\binom{7}{4} \cdot\binom{3}{1}$ selections that'll let the student solve exactly four problems, so that the probability of solving at least four problems is $\frac{\binom{7}{5}+\binom{7}{4} \cdot\binom{3}{1}}{\binom{10}{5}}=\frac{1}{2}$.

Problem 43 (a) There are n ! ways to arrange n people in a line. There are $2(n-1)$! ways to arrange them such that A and B are next to each other. Hence, the probability of A and B being next to each other is $\frac{2(n-1)!}{n!}=\frac{2}{n}$.
(b) If $n=2$, then A and B will always be next to each other. Now, assume that $n>3$. After A picks a seat, there are $n-1$ seats left, two of which are next to A, so that the desired probability is $\frac{2}{n-1}$.

Problem 50 The probability that you have five spades and your partner has the remaining eight spades is

$$
\frac{\binom{13}{5}\binom{39}{8}\binom{8}{8}\binom{31}{5}}{\binom{52}{13,13,26}}=2.6084 \cdot 10^{-6}
$$

Problem 53 Let E_{i} be the event that the i-th couple sit together, for $j=1, \ldots, 4$. Then $P\left(E_{i}\right)=\frac{2}{8}=\frac{1}{4}$ (Problem 43(a)). Moreover, if $i<j$, then $P\left(E_{i} E_{j}\right)=\frac{2^{2} \cdot 6!}{8!}$. Similarly, if $i<j<k$, then $P\left(E_{i} E_{j} E_{k}\right)=\frac{2^{3} \cdot 5!}{8!}$. Finally, we have $P\left(E_{1} E_{2} E_{3} E_{4}\right)=\frac{2^{4} \cdot 4!}{8!}$. Using inclusion-exclusion, we obtain

$$
\begin{aligned}
P\left(E_{1} \cup E_{2} \cup E_{3} \cup E_{4}\right) & =\sum_{i=1}^{4} P\left(E_{i}\right)-\sum_{i<j} P\left(E_{i} E_{j}\right)+\sum_{i<j<k} P\left(E_{i} E_{j} E_{k}\right)-P\left(E_{1} E_{2} E_{3} E_{4}\right) \\
& =4 \cdot \frac{1}{4}-\binom{4}{2} \frac{2^{2} \cdot 6!}{8!}+\binom{4}{3} \frac{2^{3} \cdot 5!}{8!}-\frac{2^{4} \cdot 4!}{8!} \\
& =1-\frac{3}{7}+\frac{2}{21}-\frac{1}{105}=\frac{23}{35} .
\end{aligned}
$$

Hence, the probability that no husband sits next to his wife is $1-\frac{23}{35}=$ $\frac{12}{35}$.

Problem 54 Let S, H, C, and D be the event that spades are missing, hearts are missing, etc. Then

$$
\begin{aligned}
P(S \cup H \cup C \cup D)= & P(S)+P(H)+P(C)+P(D) \\
& -P(S H)-P(S C)-P(S D)-P(H C)-P(H D)-P(C D) \\
& +P(S H C)+P(S H D)+P(S C D)+P(H C D) \\
& -P(S H C D) \\
= & 4 \cdot \frac{\binom{39}{13}}{\binom{52}{13}}-6 \cdot \frac{\binom{26}{13}}{\binom{52}{13}}+4 \cdot \frac{1}{\binom{52}{13}}-0 \\
= & 0.0511 .
\end{aligned}
$$

Chapter 3

Problem 1 Let E be the event that at least one die lands on six, and let F be the event that the dice land of different numbers. Then $P(E F)=2 \cdot \frac{1}{6} \cdot 56=$ $\frac{5}{18}$ and $P(F)=\frac{30}{36}=\frac{5}{6}$. Hence,

$$
P(E \mid F)=\frac{P(E F)}{P(F)}=\frac{\frac{5}{18}}{\frac{5}{6}}=\frac{1}{3} .
$$

Problem 5

$$
\frac{6 \cdot 5 \cdot 9 \cdot 8}{15 \cdot 14 \cdot 13 \cdot 12}=\frac{6}{91}
$$

Problem 6 Let A be the event that the sample drawn contains exactly three white balls. Let B be the event that the first and third ball drawn are white.

Without replacement
$P(A)=4 \frac{8 \cdot 7 \cdot 6 \cdot 4}{12 \cdot 11 \cdot 10 \cdot 9}$ and $P(A B)=2 \frac{8 \cdot 7 \cdot 6 \cdot 4}{12 \cdot 11 \cdot 10 \cdot 9}$, hence $P(B \mid A)=\frac{P(A B)}{P(A)}=\frac{1}{2}$.
With replacement
$P(A)=\binom{4}{3}\left(\frac{2}{3}\right)^{3} \frac{1}{3}$ and $P(A B)=2\left(\frac{2}{3}\right)^{3} \frac{1}{3}$, hence $P(B \mid A)=\frac{P(A B)}{P(A)}=\frac{1}{2}$.
Problem 9 Let E_{i} be the event that the ball drawn from the i-th urn is white, for $i=1,2,3$. Let F be the event that exactly two white balls were drawn.

Then

$$
\begin{aligned}
P\left(E_{1} \mid F\right) & =\frac{E_{1} F}{P(F)} \\
& =\frac{P\left(E_{1} E_{2} E_{3}^{c}\right)+P\left(E_{1} E_{2}^{c} E_{3}\right)}{P\left(E_{1} E_{2} E_{3}^{c}\right)+P\left(E_{1} E_{2}^{c} E_{3}\right)+P\left(E_{1}^{c} E_{2} E_{3}\right)} \\
& =\frac{\frac{2 \cdot 8 \cdot 3}{6 \cdot 12 \cdot 4}+\frac{2 \cdot 4 \cdot 1}{6 \cdot 12 \cdot 4}}{\frac{2 \cdot 8 \cdot 3}{6 \cdot 12 \cdot 4}+\frac{2 \cdot 4 \cdot 1}{6 \cdot 12 \cdot 4}+\frac{4 \cdot 8 \cdot 1}{6 \cdot 12 \cdot 4}} \\
& =\frac{7}{11} .
\end{aligned}
$$

Problem 10 For $i=1,2,3$, let E_{i} be the event that the i-th card is a spade. Then

$$
P\left(E_{1} E_{2} E_{3}\right)=\frac{13}{52} \frac{12}{51} \frac{11}{50}
$$

and

$$
P\left(E_{2} E_{3}\right)=P\left(E_{1} E_{2} E_{3}\right)+P\left(E_{1}^{c} E_{2} E_{3}\right)=\frac{13}{52} \frac{12}{51} \frac{11}{50}+\frac{39}{52} \frac{13}{51} \frac{12}{50}
$$

Thus

$$
P\left(E_{1} \mid E_{2} E_{3}\right)=\frac{P\left(E_{1} E_{2} E_{3}\right)}{P\left(E_{2} E_{3}\right)}=\frac{11}{50}
$$

Problem 23 (a) Let W be the event that the ball selected urn II is white, E be the event that the transfered ball is white and F be the event that the transfered ball is red, then

$$
P(W)=P(E) P(W \mid E)+P(F) P(W \mid F)=\frac{2}{3} \frac{1}{3}+\frac{1}{3} \frac{2}{3}=\frac{4}{9} .
$$

(b)

$$
P(E \mid W)=\frac{P(E W)}{P(W)}=\frac{P(E) P(W \mid E)}{P(W)}=\frac{1}{2} .
$$

Problem 30 Let B and W be the events that the marble is black and white respectively, and let B_{i} be the event that box i is chosen. Then

$$
\begin{gathered}
P(B)=P\left(B_{1}\right) P\left(B \mid B_{1}\right)+P\left(B_{2}\right) P\left(B \mid B_{2}\right)=\frac{1}{2} \frac{1}{2}+\frac{1}{2} \frac{2}{3}=\frac{7}{12}, \\
P\left(B_{1} \mid W\right)=\frac{P\left(B_{1} W\right)}{P(W)}=\frac{P\left(B_{1}\right) P\left(W \mid B_{1}\right)}{P(W)}=\frac{\frac{1}{2} \frac{1}{2}}{\frac{5}{12}}=\frac{3}{5} .
\end{gathered}
$$

Problem 47 (a)

$$
P(\text { all white })=\frac{1}{6}\left(\frac{5}{15}+\frac{5}{15} \frac{4}{14}+\frac{5}{15} \frac{4}{14} \frac{3}{13}+\frac{5}{15} \frac{4}{14} \frac{3}{13} \frac{2}{12}+\frac{5}{15} \frac{4}{14} \frac{3}{13} \frac{2}{12} \frac{1}{11}\right) .
$$

(b)

$$
P(3 \mid \text { all white })=\frac{\frac{1}{6} \frac{5}{15} \frac{4}{14} \frac{3}{13}}{P(\text { all white })} .
$$

Problem 51 Let R be the event that she receives a job offer, S be the event that event of a strong recommendation, M the event of a moderate recommendation and W the event of a weak recommendation.
(a)

$$
\begin{aligned}
& P(R)=P(S) P(R \mid S)+P(M) P(R \mid M)+P(W) P(R \mid W) \\
& =(.8)(.7)+(.4)(.2)+(.1)(.1)=.65
\end{aligned}
$$

(b)

$$
P(S \mid R)=\frac{P(S R)}{P(R)}=\frac{P(S) P(R \mid S)}{P(R)}=\frac{(.8)(.7)}{.65}=\frac{56}{65} .
$$

Similarly

$$
P(M \mid R)=\frac{8}{65}, \quad P(W \mid R)=\frac{1}{65} .
$$

Problem 56
$P($ new $)=\sum_{i=1}^{m} p_{i} P($ new \mid the n - th coupon is of type i$)=\sum_{i=1}^{m} p_{i}\left(1-p_{i}\right)^{n-1}$.

