11th Homework Set - Solutions

Chapter 8

Problem 8.4 (a) $P\left(\sum_{i=1}^{20} X_{i}>15\right) \leq \frac{20}{15}$.
(b)

$$
\begin{aligned}
P\left(\sum_{i=1}^{20} X_{i}>15\right) & =P\left(\sum_{i=1}^{20} X_{i}>15.5\right) \approx P\left(Z>\frac{15.5-20}{\sqrt{2} 0}\right. \\
& =P(Z>-1.006) \approx .8428
\end{aligned}
$$

Problem 8.5 Let X_{i} be the i-th round-off error, then

$$
E\left(\sum_{i=1}^{50} X_{i}\right)=0, \quad \operatorname{Var}\left(\sum_{i=1}^{50} X_{i}\right)=\frac{50}{12}
$$

Hence by the central limit theorem

$$
P\left(\left|\sum_{i=1}^{50} X_{i}\right|>3\right) \approx P\left(|Z|>\frac{3}{\sqrt{12 / 50}}\right)=2 P(Z>1.47)=.1416 .
$$

Problem 8.7 If we let X_{i} be the lifetime of the i-th light bulb, then the desired probability is

$$
P\left(\sum_{i=1}^{100} X_{i}>525\right) .
$$

It follows from the central limit theorem that $\sum_{i=1}^{100} X_{i}$ is approximately a normal random variable with mean 500 and variance 2500 . Consequently the desired probability is equal to

$$
P\left(Z>\frac{525-500}{50}\right)=P(Z>.05)=.3085 .
$$

Problem 8.8 If we let X_{i} be the lifetime of the i-th light bulb and R_{i} be the time to replace the i-th light bulb, then the desired probability is

$$
P\left(\sum_{i=1}^{100} X_{i}+\sum_{i=1}^{99} R_{i} \leq 550\right)
$$

It follows from the central limit theorem that $\sum_{i=1}^{100} X_{i}$ is approximately a normal random variable with mean 500 and variance 2500 and that $\sum_{i=1}^{99} R_{i}$ is approximately a normal random variable with mean 24.75 and variance $99 / 48$, therefore $\sum_{i=1}^{100} X_{i}+\sum_{i=1}^{99} R_{i}$ is approximately a normal random variable with mean 524.75 and variance 2502.02 . Consequently the desired probability is equal to

$$
P\left(Z \leq \frac{550-524.75}{\sqrt{2502.02}}\right)=P(Z \leq .505)=.693
$$

Problem 8.15 For $i=1, \ldots, 10000$, let X_{i} the claim amount of the i-th policyholder. Then $E\left[X_{i}\right]=240$ and $\operatorname{Var}\left(X_{i}\right)=800^{2}$. Thus

$$
\begin{aligned}
& P\left(\sum_{i=1}^{10000} X_{i}>2700000\right) \\
= & P\left(\frac{\sum_{i=1}^{10000} X_{i}-2400000}{80000}>\frac{2700000-2400000}{80000}\right) \\
\approx & 1-\Phi(3.75) \approx 0 .
\end{aligned}
$$

