10th Homework Set - Solutions

Chapter 7

Problem 7.50 We have

$$
f_{Y}(y)=\int_{0}^{\infty} \frac{e^{-\frac{x}{y}-y}}{y} d x=e^{-y}
$$

for $y>0$, so that

$$
f_{X \mid Y}(x \mid y)=\left\{\begin{array}{l}
\frac{e^{-\frac{x}{y}}}{y} \quad x>0 \\
0 \quad x \leq 0
\end{array}\right.
$$

Now, we have

$$
E\left[X^{2} \mid Y\right]=\int_{0}^{\infty} \frac{x^{2}}{y} e^{-\frac{x}{y}} d x=2 y^{2}
$$

Problem 7.51 We have

$$
f_{Y}(y)=\int_{0}^{y} \frac{e^{-y}}{y} d x=e^{-y}
$$

so that

$$
f_{X \mid Y}(x \mid y)= \begin{cases}\frac{1}{y} & x \in(0, y) \\ 0 & \text { otherwise }\end{cases}
$$

We conclude that

$$
E\left[X^{3} \mid Y=y\right]=\int_{0}^{y} \frac{x^{3}}{y} d x=\frac{y^{3}}{4}
$$

Problem 7.56 Let Y_{i} be one if the elevator stops at the i-th floor, for $i=1, \ldots, N$. Let $Y=Y_{1}+\cdots+Y_{N}$. Let X be the number of passengers, i.e., X is Poisson with parameter 10. We have $E\left[Y_{i}=1 \mid X=k\right]=1-\left(\frac{N-1}{N}\right)^{k}$, so that

$$
E[Y \mid X=k]=N\left(1-\left(\frac{N-1}{N}\right)^{k}\right)
$$

We have

$$
\begin{aligned}
E[Y] & =E[E[Y \mid X]]=E\left[N\left(1-\left(\frac{N-1}{N}\right)^{X}\right)\right] \\
& =N-N \sum_{k=0}^{\infty}\left(\frac{N-1}{N}\right)^{k} \frac{10^{k}}{k!} e^{-10} \\
& =N\left(1-e^{-\frac{10}{N}}\right)
\end{aligned}
$$

Problem 7.57 By Example 5d in Section 7.5, we have

$$
E\left[\sum_{i=1}^{N} X_{i}\right]=E[N] E\left[X_{1}\right]=12.5
$$

Problem 7.75 X is a random variable with moment generating function $M_{X}(t)=$ $\exp \left\{2 e^{t}-2\right\}=\exp \left\{2\left(e^{t}-1\right)\right\}$, i.e., X is Poisson with parameter $\lambda=2$. Y is a random variable with moment generating function $M_{Y}(t)=$ $\left(\frac{3}{4} e^{t}+\frac{1}{4}\right)^{10}$, i.e., Y is binomial with parameters (10, $\frac{3}{4}$).
(a)

$$
\begin{aligned}
P\{X+Y=2\}= & P\{X=0\} P\{Y=2\}+P\{X=1\} P\{Y=1\} \\
& +P\{X=2\} P\{Y=0\} \\
= & e^{-2} \cdot\binom{10}{2}\left(\frac{3}{4}\right)^{2}\left(\frac{1}{4}\right)^{8}+2 e^{-2} \cdot 10 \frac{3}{4}\left(\frac{1}{4}\right)^{9} \\
& +2 e^{-2} \cdot\left(\frac{1}{4}\right)^{10} \\
= & e^{-2}\left(\frac{1}{4}\right)^{10}(405+60+2)=\frac{467}{4^{10} e^{2}} .
\end{aligned}
$$

(b)

$$
\begin{aligned}
P\{X Y=0\} & =P\{X=0\}+P\{Y=0\}-P\{X=0\} P\{Y=0\} \\
& =e^{-2}+\frac{1}{4^{10}}-e^{-2} \frac{1}{4^{10}}=\frac{4^{10}+e^{2}-1}{4^{10} e^{2}}
\end{aligned}
$$

(c)

$$
\begin{aligned}
E[X Y] & =E[X] \cdot E[Y] \quad \text { by independence } \\
& =2 \cdot 7.5 \\
& =15
\end{aligned}
$$

Chapter 8

Problem 8.1 $P(0<X<40)=1-P(|X-20| \geq 20) \geq 1-\frac{20}{400}=\frac{19}{20}$.

Problem 8.2 (a) $P(X \geq 85) \leq \frac{75}{85}=\frac{15}{17}$.
(b) $P(65 \leq X \leq 85)=1-P(|X-75|>10) \geq 1-\frac{25}{100}=\frac{3}{4}$.
(c) Since

$$
P\left(\left|\sum_{i=1}^{n} \frac{X_{i}}{n}-75\right|>5\right) \leq \frac{25}{25 n}
$$

we need $n=10$.

