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General Info

HW11 is due on Friday, 04/26, before the end of class.

In the rest of the semester, I will review and answer questions. If
there are certain topics or questions you want me to go over in the
lecture, please send me emails.
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General Info

Definition
The covariance Cov(X ,Y ) of two random variables X and Y is
defined by

Cov(X ,Y ) = E [(X − E [X ])(Y − E [Y ])].

One can easily check that

Cov(X ,Y ) = E [XY ]− E [X ]E [Y ].

If X and Y are independent, then Cov(X ,Y ) = 0. But the converse is
not true. When Cov(X ,Y ) = 0, we say that X and Y are
uncorrelated. Independence implies uncorrelated, but not the other
way around.
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Proposition

(i) Cov(X ,Y ) = Cov(Y ,X ).
(ii) Cov(X ,X ) = Var(X ).
(iii) Cov(aX ,Y ) = aCov(X ,Y ).
(iv) Cov(

∑m
i=1 Xi ,

∑n
j=1 Yj) =

∑m
i=1

∑n
j=1 Cov(Xi ,Yj).

Combining (ii) and (iv) above, we get

Var(
n∑

i=1

Xi) =
n∑

i=1

Var(Xi) +
∑
i ̸=j

Cov(Xi ,Xj)

=
n∑

i=1

Var(Xi) + 2
∑
i<j

Cov(Xi ,Xj).



General Info

Proposition

(i) Cov(X ,Y ) = Cov(Y ,X ).
(ii) Cov(X ,X ) = Var(X ).
(iii) Cov(aX ,Y ) = aCov(X ,Y ).
(iv) Cov(

∑m
i=1 Xi ,

∑n
j=1 Yj) =

∑m
i=1

∑n
j=1 Cov(Xi ,Yj).

Combining (ii) and (iv) above, we get

Var(
n∑

i=1

Xi) =
n∑

i=1

Var(Xi) +
∑
i ̸=j

Cov(Xi ,Xj)

=
n∑

i=1

Var(Xi) + 2
∑
i<j

Cov(Xi ,Xj).



General Info

Let X and Y be discrete random variables with joint mass function
p(·, ·). If y is a possible value of Y (i.e, pY (y) > 0), then

P(X = x |Y = y) =
P(X = x ,Y = y)

P(Y = y)
=

p(x , y)
pY (y)

.

The function x 7→ p(x,y)
pY (y)

is a mass function. It is called the conditional
mass function of X given Y = y .

The function

pX |Y (x |y) =

{
p(x,y)
pY (y)

, pY (y) > 0,
0, otherwise

is called the conditional mass function of X given Y .
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If X and Y are independent, then for any possible value y of Y ,

pX |Y (x |y) = pX (x), x ∈ R.

We always have

p(x , y) = pY (y)pX |Y (x |y), x , y ∈ R.

We can similarly define the conditional mass function of Y given X :

pY |X (x |y) =

{
p(x,y)
pX (x)

, pX (x) > 0,
0, otherwise

We also have

p(x , y) = pX (x)pY |X (y |x), x , y ∈ R.



General Info

If X and Y are independent, then for any possible value y of Y ,

pX |Y (x |y) = pX (x), x ∈ R.

We always have

p(x , y) = pY (y)pX |Y (x |y), x , y ∈ R.

We can similarly define the conditional mass function of Y given X :

pY |X (x |y) =

{
p(x,y)
pX (x)

, pX (x) > 0,
0, otherwise

We also have

p(x , y) = pX (x)pY |X (y |x), x , y ∈ R.



General Info

Suppose pY (y) = P(Y = y) > 0. The conditional expectation of X
given Y = y is defined to be

E [X |Y = y ] =
∑

x

xpX |Y (x |y).

The conditional expectation of ϕ(X ) given Y = y is defined to be

E [ϕ(X )|Y = y ] =
∑

x

ϕ(x)pX |Y (x |y).

If pY (y) = P(Y = y) = 0, we define

E [X |Y = y ] = 0, E [ϕ(X )|Y = y ] = 0.
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Suppose that X and Y are jointly absolutely continuous with joint
density f (·, ·). For any y with fY (y) > 0, the function

x 7→ f (x , y)
fY (y)

, x ∈ R

is a probability density function. It is called the conditional density of
X given Y = y .

More generally, the function

fX |Y (x |y) =

{
f (x,y)
fY (y)

, fY (y) > 0,
0, otherwise

is called the conditional density of X given Y .
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If X and Y are independent, then for any y with fY (y) > 0,
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For any y with fY (y) > 0, the conditional density fX |Y (x |y) allows us
to define the conditional probability P(X ∈ A|Y = y). For example, for
any a < b,

P(X ∈ (a,b)|Y = y) =
∫ b

a
fX |Y x |y)dx .

Suppose fY (y) > 0. The conditional expectation of X given Y = y is
defined to be

E [X |Y = y ] =
∫ ∞

∞
xfX |Y (x |y)dx .

The conditional expectation of ϕ(X ) given Y = y is defined to be

E [ϕ(X )|Y = y ] =
∫ ∞

∞
ϕ(x)fX |Y (x |y)dx .

If fY (y) = 0, we define

E [X |Y = y ] = 0, E [ϕ(X )|Y = y ] = 0.
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Define
E [X |Y ] = φ(Y ),

where
φ(y) = E [X |Y = y ].

Then E [X |Y ] is a random variable.

Theorem

E [E [X |Y ]] = E [X ].

This theorem can be used to be find the expectation of some
complicated random variables.
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Example

At a party n men throw their hats into the center of the room. The
hats are mixed up and each randomly selects one. Suppose that
those choosing their own hats depart, while others (those without a
match) put their selected hats into the center of the room, mix them
up and then re-select. Suppose that this process continues until each
individual has his own hat. Let Rn be the number of rounds needed
(when n individual are initially present). Find E [Rn].

We know that, no matter how many people remain, there will, on
average, be one match per round. Hence, we might guess that
E [Rn] = n. This is indeed the case. We will show this by induction
and conditioning on Xn, the number of matches in the first round.
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Obviously E [R1] = 1. Assume E [Rk ] = k for k = 1, . . . ,n − 1. To find
E [Rn], we conditioning on Xn:

E [Rn] = E [E [Rn|Xn]] =
n∑

i=0

E [Rn|Xn = i]P(Xn = i).

Now, given a total of i matches in the first round, the number of
rounds needed will equal to 1 plus the number of rounds needed
when n − i persons are initially present. Thus

E [Rn] =
n∑

i=0

(1 + E [Rn−i ])P(Xn = i)

=1 + E [Rn]P(Xn = 0) +
n∑

i=1

E [Rn−i ]P(Xn = i).
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By the induction hypothesis,

E [Rn] =1 + E [Rn]P(Xn = 0) +
n∑

i=1

(n − i)P(Xn = i)

=1 + E [Rn]P(Xn = 0) + n(1 − P(Xn = 0))− E [Xn]

=E [Rn]P(Xn = 0) + n(1 − P(Xn = 0)).

From this we immediately get E [Rn] = n.



General Info

By the induction hypothesis,

E [Rn] =1 + E [Rn]P(Xn = 0) +
n∑

i=1

(n − i)P(Xn = i)

=1 + E [Rn]P(Xn = 0) + n(1 − P(Xn = 0))− E [Xn]

=E [Rn]P(Xn = 0) + n(1 − P(Xn = 0)).

From this we immediately get E [Rn] = n.



General Info

If you are asked to find probabilities involving two independent
discrete random random variables, try to break things up and then
use independence.

Example

Let X and Y be independent geometric random variables with
parameters p1 and p2 respectively. Find (a) P(X ≥ Y ); (b) P(X = Y ).

P(X ≥ Y ) =
∞∑
i=1

P(X ≥ Y ,Y = i) =
∞∑
i=1

P(X ≥ i ,Y = i)

=
∞∑
i=1

P(X ≥ i)P(Y = i) =
∞∑
i=1

(1 − p1)
i−1(1 − p2)

i−1p2

=
p2

1 − (1 − p1)(1 − p2)
.
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P(X = Y ) =
∞∑
i=1

P(X = Y ,Y = i) =
∞∑
i=1

P(X = i ,Y = i)

=
∞∑
i=1

P(X = i)P(Y = i) =
∞∑
i=1

(1 − p1)
i−1p1(1 − p2)

i−1p2

=
p1p2

1 − (1 − p1)(1 − p2)
.
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