Math 461 Spring 2024

Renming Song

University of Illinois Urbana-Champaign

April 19, 2024

Outline

Outline

2 8.4 The strong law of large numbers

HW10 is due today, before the end of class.

Outline

(1) General Info

2 8.4 The strong law of large numbers

In Section 8.2, we discussed the weak law of large numbers.

In Section 8.2, we discussed the weak law of large numbers.

Weak law of large numbers

Let X_{1}, X_{2}, \ldots be a sequence of independent and identically distributed random variables with common (finite) mean $E\left[X_{1}\right]=\mu$. Then, for any $\epsilon>0$,

$$
P\left(\left|\frac{X_{1}+\cdots+X_{n}}{n}-\mu\right| \geq \epsilon\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
$$

We say that a sequence of random variables Z_{n} converge to a random variable Z in probability if, for any $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} P\left(\left|Z_{n}-Z\right| \geq \epsilon\right)=0
$$

Using this concept, the weak law of large numbers can be stated

We say that a sequence of random variables Z_{n} converge to a random variable Z in probability if, for any $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} P\left(\left|Z_{n}-Z\right| \geq \epsilon\right)=0
$$

Using this concept, the weak law of large numbers can be stated

If X_{1}, X_{2}, \ldots is a sequence of independent and identically distributed random variables with common (finite) mean $E\left[X_{1}\right]=\mu$, then $\left(X_{1}+\cdots+X_{n}\right) / n$ converges to μ in probability.

In this section we give the following

In this section we give the following

strong law of large numbers

Let X_{1}, X_{2}, \ldots be a sequence of independent and identically distributed random variables with common (finite) mean $E\left[X_{1}\right]=\mu$. Then, with probability 1 ,

$$
\frac{X_{1}+\cdots+X_{n}}{n} \rightarrow \mu, \quad \text { as } n \rightarrow \infty
$$

It can be shown that, if with probability 1 ,

$$
\frac{X_{1}+\cdots+X_{n}}{n} \rightarrow \mu, \quad \text { as } n \rightarrow \infty
$$

then $\left(X_{1}+\cdots+X_{n}\right) / n$ converges to μ in probability.

Now I am going to give a sequence of random variables which
converges in probability, but does not converge anywhere

It can be shown that, if with probability 1 ,

$$
\frac{X_{1}+\cdots+X_{n}}{n} \rightarrow \mu, \quad \text { as } n \rightarrow \infty
$$

then $\left(X_{1}+\cdots+X_{n}\right) / n$ converges to μ in probability.

Now I am going to give a sequence of random variables which converges in probability, but does not converge anywhere.

Suppose the sample space is $(0,1]$ and the probability of an interval is its length. Define

$$
\begin{aligned}
X_{1}(x)=1_{(0,1 / 2]}(x) ; & X_{2}(x)=1_{(1 / 2,1]}(x), \\
X_{3}(x)=1_{(0,1 / 4]}(x), & X_{4}(x)=1_{(1 / 4,1 / 2]}(x), \\
X_{5}(x)=1_{(1 / 2,3 / 4]}(x), & X_{6}(x)=1_{(3 / 4,1]}(x), \\
X_{7}(x)=1_{(0,1 / 8]}(x), & X_{8}(x)=1_{(1 / 8,1 / 4]}(x), \\
X_{9}(x)=1_{(1 / 4,3 / 8]}(x), & X_{10}(x)=1_{(3 / 8,1 / 2]}(x), \\
X_{11}(x)=1_{(1 / 2,5 / 8]}(x), & X_{12}(x)=1_{(5 / 8,3 / 4]}(x), \\
X_{13}(x)=1_{(3 / 4,7 / 8]}(x), & X_{14}(x)=1_{(7 / 8,1]}(x),
\end{aligned}
$$

Then obviously X_{n} converges to 0 in probability. But for for any $x \in(0,1], X_{n}(x)$ does not converge.

Proof of the strong law of large numbers

I am going to give a proof under the additional assumption that $E\left[X_{1}^{4}\right]=K<\infty$.

By considering $X_{n}^{\prime}=X_{n}-\mu$ if necessary, we may and do assume that $\mu=0$. We now show $\left(X_{1}+\cdots+X_{n}\right) / n$ tend to 0 with probability 1 .

Let $S_{n}=X_{1}+\cdots+X_{n}$. Consider

$$
E\left[S_{n}^{4}\right]=E\left[\left(X_{1}+\cdots+X_{n}\right)^{4}\right]
$$

Expanding the right side will results in terms of the form

$$
X_{i}^{4}, \quad X_{i}^{3} X_{j}, \quad X_{i}^{2} X_{j}^{2}, \quad X_{i}^{2} X_{j} X_{k}, \quad X_{i} X_{j} X_{k} X_{1}
$$

where i, j, k, I are all different. Since all the X_{i} have mean 0 , it follows by independence that

Proof of the strong law of large numbers (cont)

$$
\begin{aligned}
& E\left[X_{i}^{3} X_{j}\right]=E\left[X_{i}^{3}\right] E\left[X_{j}\right]=0, \\
& E\left[X_{i}^{2} X_{j} X_{k}\right]=E\left[X_{i}^{2}\right] E\left[X_{j}\right] E\left[X_{k}\right]=0, \\
& E\left[X_{i} X_{j} X_{k} X_{l}\right]=E\left[X_{i}\right] E\left[X_{j}\right] E\left[X_{k}\right] E\left[X_{l}\right]=0 .
\end{aligned}
$$

For, for a given pair i and j, there are $\binom{4}{2}=6$ terms in the expansion that equal to $X_{i}^{2} X_{j}^{2}$. Hence

$$
\begin{aligned}
E\left[S_{n}^{4}\right] & =n E\left[X_{1}^{4}\right]+6\binom{n}{2} E\left[X_{1}^{2} X_{2}^{2}\right] \\
& =n K+3 n(n-1) E\left[X_{1}^{2}\right] E\left[X_{2}^{2}\right] \\
& =n K+3 n(n-1)\left(E\left[X_{1}^{2}\right]\right)^{2} .
\end{aligned}
$$

Proof of the strong law of large numbers (cont)

Now, since

$$
0 \leq \operatorname{Var}\left(X_{1}^{2}\right)=E\left[X_{1}^{4}\right]-\left(E\left[X_{1}^{2}\right]\right)^{2},
$$

we have

$$
\left(E\left[X_{1}^{2}\right]\right)^{2} \leq E\left[X_{1}^{4}\right]=K
$$

Therefore,

$$
E\left[S_{n}^{4}\right] \leq n K+3 n(n-1) K
$$

which implies

$$
E\left[\frac{S_{n}^{4}}{n^{4}}\right] \leq \frac{K}{n^{3}}+\frac{3 K}{n^{2}} .
$$

Consequently,

$$
E\left[\sum_{n=1}^{\infty} \frac{S_{n}^{4}}{n^{4}}\right] \leq \sum_{n=1}^{\infty} E\left[\frac{S_{n}^{4}}{n^{4}}\right]<\infty .
$$

Proof of the strong law of large numbers (cont)

Thus, with probability $1, \sum_{n=1}^{\infty} \frac{S_{n}^{4}}{n^{4}}<\infty$, which implies that with probability $1, \frac{S_{n}^{4}}{n^{4}} \rightarrow 0$, and hence $\frac{S_{n}}{n} \rightarrow 0$. The proof is now complete.

