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HW10 is due today, before the end of class.
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In Section 8.2, we discussed the weak law of large numbers.

Weak law of large numbers

Let X1,X2, . . . be a sequence of independent and identically
distributed random variables with common (finite) mean E [X1] = µ.
Then, for any ϵ > 0,

P
(∣∣X1 + · · ·+ Xn

n
− µ

∣∣ ≥ ϵ

)
→ 0 as n → ∞.
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We say that a sequence of random variables Zn converge to a
random variable Z in probability if, for any ϵ > 0,

lim
n→∞

P(|Zn − Z | ≥ ϵ) = 0.

Using this concept, the weak law of large numbers can be stated

If X1,X2, . . . is a sequence of independent and identically distributed
random variables with common (finite) mean E [X1] = µ, then
(X1 + · · ·+ Xn)/n converges to µ in probability.
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In this section we give the following

strong law of large numbers

Let X1,X2, . . . be a sequence of independent and identically
distributed random variables with common (finite) mean E [X1] = µ.
Then, with probability 1,

X1 + · · ·+ Xn

n
→ µ, as n → ∞.



General Info 8.4 The strong law of large numbers

In this section we give the following

strong law of large numbers

Let X1,X2, . . . be a sequence of independent and identically
distributed random variables with common (finite) mean E [X1] = µ.
Then, with probability 1,

X1 + · · ·+ Xn

n
→ µ, as n → ∞.



General Info 8.4 The strong law of large numbers

It can be shown that, if with probability 1,

X1 + · · ·+ Xn

n
→ µ, as n → ∞,

then (X1 + · · ·+ Xn)/n converges to µ in probability.

Now I am going to give a sequence of random variables which
converges in probability, but does not converge anywhere.
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Suppose the sample space is (0,1] and the probability of an interval
is its length. Define

X1(x) = 1(0,1/2](x); X2(x) = 1(1/2,1](x),
X3(x) = 1(0,1/4](x), X4(x) = 1(1/4,1/2](x),

X5(x) = 1(1/2,3/4](x), X6(x) = 1(3/4,1](x),
X7(x) = 1(0,1/8](x), X8(x) = 1(1/8,1/4](x),

X9(x) = 1(1/4,3/8](x), X10(x) = 1(3/8,1/2](x),
X11(x) = 1(1/2,5/8](x), X12(x) = 1(5/8,3/4](x),
X13(x) = 1(3/4,7/8](x), X14(x) = 1(7/8,1](x),

. . . . . .

Then obviously Xn converges to 0 in probability. But for for any
x ∈ (0,1], Xn(x) does not converge.
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Proof of the strong law of large numbers

I am going to give a proof under the additional assumption that
E [X 4

1 ] = K < ∞.

By considering X ′
n = Xn − µ if necessary, we may and do assume that

µ = 0. We now show (X1 + · · ·+ Xn)/n tend to 0 with probability 1.

Let Sn = X1 + · · ·+ Xn. Consider

E [S4
n ] = E [(X1 + · · ·+ Xn)

4]

Expanding the right side will results in terms of the form

X 4
i , X 3

i Xj , X 2
i X 2

j , X 2
i XjXk , XiXjXk Xl

where i , j , k , l are all different. Since all the Xi have mean 0, it follows
by independence that
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Proof of the strong law of large numbers (cont)

E [X 3
i Xj ] = E [X 3

i ]E [Xj ] = 0,

E [X 2
i XjXk ] = E [X 2

i ]E [Xj ]E [Xk ] = 0,
E [XiXjXk Xl ] = E [Xi ]E [Xj ]E [Xk ]E [Xl ] = 0.

For, for a given pair i and j , there are
(4

2

)
= 6 terms in the expansion

that equal to X 2
i X 2

j . Hence

E [S4
n ] = nE [X 4

1 ] + 6
(

n
2

)
E [X 2

1 X 2
2 ]

= nK + 3n(n − 1)E [X 2
1 ]E [X 2

2 ]

= nK + 3n(n − 1)(E [X 2
1 ])

2.
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Proof of the strong law of large numbers (cont)

Now, since
0 ≤ Var(X 2

1 ) = E [X 4
1 ]− (E [X 2

1 ])
2,

we have
(E [X 2

1 ])
2 ≤ E [X 4

1 ] = K .

Therefore,
E [S4

n ] ≤ nK + 3n(n − 1)K

which implies

E
[

S4
n

n4

]
≤ K

n3 +
3K
n2 .

Consequently,

E

[ ∞∑
n=1

S4
n

n4

]
≤

∞∑
n=1

E
[

S4
n

n4

]
< ∞.
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Proof of the strong law of large numbers (cont)

Thus, with probability 1,
∑∞

n=1
S4

n
n4 < ∞, which implies that with

probability 1, S4
n

n4 → 0, and hence Sn
n → 0. The proof is now complete.
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