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Solution to Test 2 is is on my homepage. The distribution of scores for
Test 2 is also available on my homepage.

HW10 is due Friday, 04/119, before the end of class.
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Central limit theorem
Suppose that X1,X2, . . . are independent and identically distributed
random variables with common mean µ and common variance σ2.
Then the distribution of

X1 + · · ·+ Xn − nµ
σ
√

n

tends to the standard normal distribution as n → ∞. That is, for any
a ∈ R,

P
(

X1 + · · ·+ Xn − nµ
σ
√

n
≤ a

)
→ Φ(a), as n → ∞.

Note that the generality of the theorem above. The common
distributions of X1,X2, . . . can be discrete, can be continuous, and
can be neither discrete nor continuous. It can be regarded as
universality law.
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The key to the proof of the central limit theorem is the following result,
which we state without proof.

Proposition

Let Z1,Z2, . . . be a sequence of random variables with distribution
functions FZn and moment generating functions MZn , n ≥ 1; let Z be a
random variable with distribution function FZ and moment generating
function MZ . If MZn(t) → MZ (t) for all t , then FZn(z) → FZ (z) for all z
at which FZ is continuous.
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In general, we can not strengthen the conclusion of the proposition to
FZn(z) → FZ (z) for all z. Here is an example: Take Zn = 1

n and Z = 0.
Then as n → ∞,

MZn(t) = et/n → 1 = MZ (t), t ∈ R.

But
lim

n→∞
FZn(0) = 0 ̸= 1 = FZ (0).

0 is a discontinuous point of FZ .

When the limit distribution function FZ is continuous (this is the case
when the limit distribution is a normal distribution), we do have
FZn(z) → FZ (z) for all z since there are no discontinuous points.
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Proof of the central limit theorem
By considering X ′

n = (Xn − µ)/σ if necessary, we may assume without
loss of generality that µ = 0 and σ2 = 1. We will prove the central limit
theorem under the extra assumption that the moment generating
function M(t) of X1 exists and is finite for all t ∈ R.

The moment generating function Xi/
√

n is

E
[
etXi/

√
n
]
= M

(
t√
n

)
, t ∈ R,

and thus the moment generating function of
∑n

i=1 Xi/
√

n is[
M
(

t√
n

)]n

.
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Proof of the central limit theorem

Since µ = 0 and σ2 = 1, we have M ′(0) = 0 and M ′′(0) = 1, thus by
the Taylor formula, we have

M(t) = 1 +
1
2

t2 + o(t2).

Thus

M
(

t√
n

)
= 1 +

t2

2n
+ o(

t2

n
), t ∈ R.

Consequently, for any t ∈ R,[
M
(

t√
n

)]n

=

(
1 +

t2

2n
+ o(

t2

n
)

)n

→ et2/2

which is the moment generating function of the standard normal
distribution. The proof is now complete.
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Example 1

The number of students who enroll in a psychology course is a
Poisson random variable with parameter 100. The professor in
charge of the course has decided that if the number enrolling is 120
or more he will teach the course in two separate sections, whereas if
fewer than 120 students enroll he will teach all students together in a
single section. Use the central limit theorem to approximate the
probability that the professor will have to teach two sections.

The exact answer is

e−100
∞∑

i=120

100i

i!

which is not easy to evaluate.
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There is only one random variable involved here. How can we use the
central limit theorem?

Recall that a Poisson random variable with parameter 100 can written
as the sum of 100 independent Poisson random variables with
parameter 1. With this, we can use the central limit theorem.

P(X ≥ 120) = P(X ≥ 119.5) = P
(

X − 100√
100

≥ 119.5 − 100√
100

)
≈ 1 − Φ(1.95) ≈ .0256.
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Example 2

If 10 fair dice are rolled, find the approximate probability that sum
obtained is between 30 and 40 inclusive.

Let Xi denote the value of the i-th die, i = 1, . . . ,10. E [Xi ] =
7
2 and

Var(Xi) =
35
12 . The central limit theorem yields

P(30 ≤ X ≤ 40) = P(29.5 ≤ X ≤ 40.5)

= P

(
29.5 − 35√

350/12
≤ X − 35√

350/12
≤ 40.5 − 35√

350/12

)
≈ Φ(1.0184)− Φ(−1.0184) = 2Φ(1.0184)− 1 ≈ .692.
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Example 3

Let Xi , i = 1, . . . ,10 be independent random variables, each uniformly
distributed in the interval (0,1). Approximate the probability
P(
∑10

i=1 Xi > 6).

E [Xi ] =
1
2 and Var(Xi) =

1
12 . Thus by the central limit theorem,

P

(
10∑

i=1

Xi > 6

)
= P

(∑10
i=1 Xi − 5√

10/12
>

6 − 5√
10/12

)
≈ 1 − Φ(

√
1.2) ≈ .1367.
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