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Solution to Test 2 is is on my homepage now. The distribution for Test
2 scores is also available on my homepage.

HW10 is due Friday, 04/19, before the end of class.
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When we are given the distribution of a random variable X , we can
find the probability of any event defined in terms of X . Suppose that
we are only given the expectation and variance of X , then, in general,
we can not find the probability of events defined in terms of X exactly.

But for some events, we can still get some meaningful estimates on
their probabilities. Let’s first look at the case of a non-negative
random variable X . Suppose that we only know E [X ].
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Markov inequality

Suppose that X is a non-negative random variable, then for any
a > 0,

P(X ≥ a) ≤ E [X ]

a
.

Proof
Define a random variable

I =

{
1, if X ≥ a,
0, otherwise.

Then I ≤ X/a. Thus

P(X ≥ a) = E [I] ≤ E [X/a] =
E [X ]

a
.
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Note that the Markov inequality gives a trivial bound when a ≤ E [X ].
It only gives a non-trivial bound for a > E [X ].

As a consequence of the Markov inequality, we have the following

Chebyshev inequality

If X is a random variable with finite mean µ and finite variance σ2,
then for any ϵ > 0,

P(|X − µ| ≥ ϵ) ≤ σ2

ϵ2 .
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Proof

Since (X − µ)2 is a non-negative random variable with mean σ2, we
can apply the Markov inequality with a = ϵ2 to get

P(|X − µ| ≥ ϵ) = P((X − µ)2 ≥ ϵ2) ≤ σ2

ϵ2 .

Note that the Chebyshev inequality gives a trivial bound when
ϵ2 ≤ σ2. It only gives a non-trivial bound for ϵ2 > σ2.
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Example 1

Suppose that it is known that the number of items produced in a
certain factory during a week is a random variable X with mean 50.

(i) What can be said about the probability that this week’s
production will be at least 75?

(ii) If the variance of a week’s production is known to be 25, then
what can be said about the probability that this week’s production
will be between 40 and 60?

P(X ≥ 75) ≤ 50
75

=
2
3
.
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P(40 ≤ X ≤ 60) = P(|X − 50| ≤ 10) = 1 − P(|X − 50| ≥ 11)

≥ 1 − 25
112 =

96
121

.

Chebyshev’s inequality, although very simple, is very useful. For
example, it can be used to prove the following very important result,
the weak law of large numbers.
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Theorem (the weak law of large numbers)

Let X1,X2, . . . be a sequence of independent and identically
distributed random variables with common (finite ) mean E [X1] = µ.
Then, for any ϵ > 0,

P
(∣∣X1 + · · ·+ Xn

n
− µ

∣∣ ≥ ϵ

)
→ 0 as n → ∞.

I will give a proof under the additional assumption that the random
variables X1,X2, . . . have a finite variance σ2. The proof in the
general case is more difficult.
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Proof of the weak law of large numbers

Note that

E
[

X1 + · · ·+ Xn

n

]
= µ

and

Var
(

X1 + · · ·+ Xn

n

)
=

σ2

n
.

It follows from Chebyshev’s inequality that for any ϵ > 0,

P
(∣∣X1 + · · ·+ Xn

n
− µ

∣∣ ≥ ϵ

)
≤ σ2

nϵ2 → 0, as n → ∞.
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The central limit theorem is one the most important results in
probability theory. In Chapter 5, we have already seen a special case
of this result. Here is the general result

Central limit theorem
Suppose that X1,X2, . . . are independent and identically distributed
random variables with common mean µ and common variance σ2.
Then the distribution of

X1 + · · ·+ Xn − nµ
σ
√

n

tends to the standard normal distribution as n → ∞. That is, for any
a ∈ R,

P
(

X1 + · · ·+ Xn − nµ
σ
√

n
≤ a

)
→ Φ(a), as n → ∞.
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Note that the generality of the theorem above. The common
distributions of X1,X2, . . . can be discrete, can be continuous, and
can be neither discrete nor continuous. It can be regarded as
universality law. I will try to give a proof this this result next time and
give some applications.
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