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HW9 is due today, before the end of class.

Test 2 is next Friday. Materials covered on Test 2: Section 4.9,
Section 5.1, Section 5.2, Section 5.3, Section 5.4, Section 5.5,
Section 5.6, Section 5.7, Section 6.1, Section 6.2, Section 6.3,
Section 6.4, Section 6.5, Section 6.6, Section 7.2, Section 7.4
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General Info 7.5 Conditional expectation 7.7 Moment generating functions

Example 7

Independent trials, each resulting in a success with probability p, are
performed until a success occurs. Let N be the number of trials
needed. N is a geometric random variable with parameter p. Find
E [N] and Var(N).

Let Y = 1 if the first trial results in a success and Y = 0 otherwise.
Then

E [N] = E [E [N|Y ]] = E [N|Y = 1]P(Y = 1) + E [N|Y = 0]P(Y = 0)
= 1 · p + (1 + E [N])(1 − p)

which implies pE [N] = 1, that is, E [N] = 1
p .



General Info 7.5 Conditional expectation 7.7 Moment generating functions

Example 7

Independent trials, each resulting in a success with probability p, are
performed until a success occurs. Let N be the number of trials
needed. N is a geometric random variable with parameter p. Find
E [N] and Var(N).

Let Y = 1 if the first trial results in a success and Y = 0 otherwise.
Then

E [N] = E [E [N|Y ]] = E [N|Y = 1]P(Y = 1) + E [N|Y = 0]P(Y = 0)
= 1 · p + (1 + E [N])(1 − p)

which implies pE [N] = 1, that is, E [N] = 1
p .



General Info 7.5 Conditional expectation 7.7 Moment generating functions

E [N2] = E [E [N2|Y ]] = E [N2|Y = 1]P(Y = 1) + E [N2|Y = 0]P(Y = 0)

= 1 · p + E [(1 + N)2](1 − p)

= 1 + (1 − p)E [2N + N2] = 1 +
2(1 − p)

p
+ (1 − p)E [N2].

Solving for E [N2], we get

E [N2] =
2 − p

p2 .

Thus
Var(N) = E [N2]− (E [N])2 =

1 − p
p2 .



General Info 7.5 Conditional expectation 7.7 Moment generating functions

E [N2] = E [E [N2|Y ]] = E [N2|Y = 1]P(Y = 1) + E [N2|Y = 0]P(Y = 0)

= 1 · p + E [(1 + N)2](1 − p)

= 1 + (1 − p)E [2N + N2] = 1 +
2(1 − p)

p
+ (1 − p)E [N2].

Solving for E [N2], we get

E [N2] =
2 − p

p2 .

Thus
Var(N) = E [N2]− (E [N])2 =

1 − p
p2 .



General Info 7.5 Conditional expectation 7.7 Moment generating functions

Example 8

A coin, having probability p ∈ (0,1) of landing heads, is continually
flipped until at least one head and one tail have been flipped.
(a) Find the expected number of flips needed, and its variance.
(b) Find the expected number of flips that land on heads.

(a) Let X be the number of flips needed. Let Y = 1 if the first flip is H,
and Y = 0 the first flip is T. Then

E [X ] = E [E [X |Y ]] .

Given the first flip is H, the number of additional flips needed (X − 1)
is a geometric random variable with parameter 1 − p. Thus

E [X |Y = 1] = 1 +
1

1 − p
.
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Similarly, given the first flip is T, the number of additional flips needed
(X − 1) is a geometric random variable with parameter p, and

E [X |Y = 0] = 1 +
1
p
.

Hence

E [X ] = E [E [X |Y ]] = p · E [X |Y = 1] + (1 − p) · E [X |Y = 0]

= p ·
(

1 +
1

1 − p

)
+ (1 − p) ·

(
1 +

1
p

)
= 1 +

p
1 − p

+
1 − p

p
.

Given Y = 1, X − 1 is a geometric random variable with parameter
1 − p, thus

E
[
X 2|Y = 1

]
= 1 +

2
1 − p

+

(
p

(1 − p)2 +
1

(1 − p)2

)
= 1 +

3 − p
(1 − p)2 .
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Given Y = 0, X − 1 is a geometric random variable with parameter p,
thus

E
[
X 2|Y = 0

]
= 1 +

2
p
+

(
1 − p

p2 +
1
p2

)
= 1 +

2 + p
p2 .

Hence

E [X 2] = E
[
E
[
X 2|Y

]]
= p · E

[
X 2|Y = 1

]
+ (1 − p) · E

[
X 2|Y = 0

]
= p ·

(
1 +

3 − p
(1 − p)2

)
+ (1 − p) ·

(
1 +

2 + p
p2

)
= 1 +

p(3 − p)
(1 − p)2 +

(1 − p)(2 + p)
p2 .

Therefore

Var [X ] = E
[
X 2]− (E [X ])2

= 1 +
p(3 − p)
(1 − p)2 +

(1 − p)(2 + p)
p2 −

(
1 +

p
1 − p

+
1 − p

p

)2

.
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(b) Let Z be the number of flips that lands on heads. Then, given
Y = 1, the number of flips that land on heads is a geometric random
variable with parameter 1 − p, thus

E [Z |Y = 1] =
1

1 − p
.

Given Y = 0, the number of flips that land on heads is equal to 1, thus

E [Z |Y = 0] = 1.

Consequently

E [Z ] = p · 1
1 − p

+ (1 − p) · 1 =
p

1 − p
+ 1 − p.



General Info 7.5 Conditional expectation 7.7 Moment generating functions

Outline

1 General Info

2 7.5 Conditional expectation

3 7.7 Moment generating functions



General Info 7.5 Conditional expectation 7.7 Moment generating functions

The moment generating function of a random variable X is defined to
be the function

MX (t) = E [etX ], t ∈ R.

MX (t) may not be defined for all t ∈ R, but it is always defined for
t = 0. In fact, MX (0) = 1. We will concentrate on random variables X
for which MX (t) is defined at least in an interval around the origin. All
the important random variables we learned in the course satisfy this
property.

Why the name “moment generating function”? For a random variable
X satisfying the property above, one can justify that for t in that
interval,
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M ′
X (t) = E [XetX ],M ′′

X (t) = E [X 2etX ], . . . ,M(n)
X (t) = E [X netX ].

Thus

M ′
X (0) = E [X ],M ′′

X (0) = E [X 2], . . .M(n)
X (0) = E [X n].

and
Var(X ) = M ′′

X (0)− (M ′
X (0))

2.

Once we know the moment generating function MX (t) of X , we can
easily find all the moments of X . This is why we call MX (t) he
moment generating function of X
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Proposition

(i) If X is a binomial random variable with parameters (n,p), then

MX (t) = (pet + 1 − p)n, for all t ∈ R.

(ii) If X is a Poisson random variable with parameter λ, then

MX (t) = eλ(et−1), for all t ∈ R.

(iii) If X is a geometric random variable with parameter p, then

MX (t) =
pet

1 − (1 − p)et , for all t < − ln(1 − p).

(iv) If X is a negative binomial random variable with parameters
(r ,p), then

MX (t) =
(

pet

1 − (1 − p)et

)r

, for all t < − ln(1 − p).
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Proposition (cont)

(v) If X is uniformly distributed in the interval (a,b), then

MX (t) =
etb − eta

b − a
, for all t ∈ R.

(vi) If X is an exponential random variable with parameter λ, then

MX (t) =
λ

λ− t
, for all t < λ.

(vii) If X is a Gamma random variable with parameters (α, λ), then

MX (t) =
(

λ

λ− t

)α

, for all t < λ.

(viii) If X is a normal random variable with parameters (µ, σ2), then

MX (t) = exp

(
µt +

σ2t2

2

)
, for all t ∈ R.
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Let’s derive two of the 8 items above. Suppose X is a Poisson
random variable with parameter λ, then

MX (t) = E [etX ] =
∞∑
i=0

etie−λλ
i

i!
= e−λ

∞∑
i=0

(λet)i

i!

= e−λeλet
= eλ(et−1).

Suppose X is an exponential random variable with parameter λ, then

MX (t) =
∫ ∞

0
etxλe−λxdx = λ

∫ ∞

0
e−(λ−t)xdx

=
λ

λ− t
, for all t < λ.
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Theorem
If X and Y are two random variables with MX (t) = MY (t) for all t , then
X and Y have the same distribution.

This theorem says that the moment generating function MX (t) of X
also contains all the statistical information about X .

Theorem
If X and Y are independent random variables, then

MX+Y (t) = MX (t)MY (t), for all t .
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Since X and Y are independent, etX and etY are also independent.
Thus

MX+Y (t) = E [et(X+Y )] = E [etX etY ] = E [etX ]E [etY ] = MX (t)MY (t).

Next time, I will use this theorem to prove that sums of independent
binomial random variables with a common second parameter p is
again a binomial random variable, and other similar results.
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