Math 461 Spring 2024

Renming Song

University of Illinois Urbana-Champaign

April 01, 2024

Outline

Outline

2 7.4 Covariance, variance of sums and correlations

HW9 is due Friday, 04/05, before the end of class.

HW9 is due Friday, 04/05, before the end of class.

Solution to HW8 is on my homepage.

Outline

(1) General Info

2 7.4 Covariance, variance of sums and correlations

Now we are going to use the formula

$$
\begin{aligned}
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) & =\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)+\sum_{i \neq j} \operatorname{Cov}\left(X_{i}, X_{j}\right) \\
& =\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)+2 \sum_{i<j} \operatorname{Cov}\left(X_{i}, X_{j}\right) .
\end{aligned}
$$

to find the variance of some complicated random variables.

Now we are going to use the formula

$$
\begin{aligned}
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) & =\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)+\sum_{i \neq j} \operatorname{Cov}\left(X_{i}, X_{j}\right) \\
& =\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)+2 \sum_{i<j} \operatorname{Cov}\left(X_{i}, X_{j}\right) .
\end{aligned}
$$

to find the variance of some complicated random variables.

Example 8

A group of N people throw their hats into the center of the room. The hats are mixed up, and each person randomly selects a hat. Let X be the number of people who get their own hats. Find $\operatorname{Var}(X)$.

For $i=1, \ldots, N$, let $X_{i}=1$ if the i-th man gets his own hat and $X_{i}=0$ otherwise. Then $X=X_{1}+\cdots+X_{N}$. Note that

$$
E\left[X_{i}\right]=P\left(X_{i}=1\right)=\frac{1}{N}, \quad \operatorname{Var}\left(X_{i}\right)=\frac{1}{N}\left(1-\frac{1}{N}\right) .
$$

Now let's find $\operatorname{Cov}\left(X_{i}, X_{i}\right)$ for $i \neq j . X_{i} X_{j}$ is also a Bernoulli random

 variable.For $i=1, \ldots, N$, let $X_{i}=1$ if the i-th man gets his own hat and $X_{i}=0$ otherwise. Then $X=X_{1}+\cdots+X_{N}$. Note that

$$
E\left[X_{i}\right]=P\left(X_{i}=1\right)=\frac{1}{N}, \quad \operatorname{Var}\left(X_{i}\right)=\frac{1}{N}\left(1-\frac{1}{N}\right) .
$$

Now let's find $\operatorname{Cov}\left(X_{i}, X_{j}\right)$ for $i \neq j . X_{i} X_{j}$ is also a Bernoulli random variable.

$$
E\left[X_{i} X_{j}\right]=P\left(X_{i} X_{j}=1\right)=P\left(X_{i}=1, X_{j}=1\right)=\frac{1}{N(N-1)} .
$$

Thus

$$
\operatorname{Cov}\left(X_{i}, X_{j}\right)=\frac{1}{N(N-1)}-\frac{1}{N^{2}}
$$

$$
\begin{aligned}
& \operatorname{Var}(X)=\operatorname{Var}\left(\sum_{i=1}^{N} X_{i}\right) \\
& =\sum_{i=1}^{N} \operatorname{Var}\left(X_{i}\right)+\sum_{i \neq j} \operatorname{Cov}\left(X_{i}, X_{j}\right) \\
& =N \cdot \frac{1}{N}\left(1-\frac{1}{N}\right)+N(N-1)\left(\frac{1}{N(N-1)}-\frac{1}{N^{2}}\right) \\
& =1
\end{aligned}
$$

Example 9

If n balls are randomly selected, without replacement, from a box containing $N(N>n)$ balls, of which m are white. Let X be the number of white balls selected. Find $\operatorname{Var}(X)$

$$
\begin{aligned}
& \operatorname{Var}(X)=\operatorname{Var}\left(\sum_{i=1}^{N} X_{i}\right) \\
& =\sum_{i=1}^{N} \operatorname{Var}\left(X_{i}\right)+\sum_{i \neq j} \operatorname{Cov}\left(X_{i}, X_{j}\right) \\
& =N \cdot \frac{1}{N}\left(1-\frac{1}{N}\right)+N(N-1)\left(\frac{1}{N(N-1)}-\frac{1}{N^{2}}\right) \\
& =1
\end{aligned}
$$

Example 9

If n balls are randomly selected, without replacement, from a box containing $N(N>n)$ balls, of which m are white. Let X be the number of white balls selected. Find $\operatorname{Var}(X)$.

For $i=1, \ldots, m$, let $Y_{i}=1$ if the i-th white ball is among the selected. Then $X=Y_{1}+\cdots+Y_{m}$. Note that

$$
E\left[Y_{i}\right]=\frac{\binom{N-1}{n-1}}{\binom{N}{n}}=\frac{n}{N}, \quad \operatorname{Var}\left(Y_{i}\right)=\frac{n}{N}\left(1-\frac{n}{N}\right) .
$$

Now let's find $\operatorname{Cov}\left(Y_{i}, Y_{j}\right)$ for $i \neq j . Y_{i} Y_{j}$ is also a Bernoulli random

 variable.For $i=1, \ldots, m$, let $Y_{i}=1$ if the i-th white ball is among the selected. Then $X=Y_{1}+\cdots+Y_{m}$. Note that

$$
E\left[Y_{i}\right]=\frac{\binom{N-1}{n-1}}{\binom{N}{n}}=\frac{n}{N}, \quad \operatorname{Var}\left(Y_{i}\right)=\frac{n}{N}\left(1-\frac{n}{N}\right) .
$$

Now let's find $\operatorname{Cov}\left(Y_{i}, Y_{j}\right)$ for $i \neq j . Y_{i} Y_{j}$ is also a Bernoulli random variable.

$$
E\left[Y_{i} Y_{j}\right]=P\left(Y_{i}=1, Y_{j}=1\right)=\frac{\binom{N-2}{n-2}}{\binom{N}{n}}=\frac{n(n-1)}{N(N-1)}
$$

Thus

$$
\operatorname{Cov}\left(Y_{i}, Y_{j}\right)=\frac{n(n-1)}{N(N-1)}-\frac{n^{2}}{N^{2}}
$$

$$
\begin{aligned}
& \operatorname{Var}(X)=\operatorname{Var}\left(\sum_{i=1}^{m} Y_{i}\right) \\
& =\sum_{i=1}^{m} \operatorname{Var}\left(Y_{i}\right)+\sum_{i \neq j} \operatorname{Cov}\left(Y_{i}, Y_{j}\right) \\
& =m \frac{n}{N}\left(1-\frac{n}{N}\right)+m(m-1)\left(\frac{n(n-1)}{N(N-1)}-\frac{n^{2}}{N^{2}}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Var}(X)=\operatorname{Var}\left(\sum_{i=1}^{m} Y_{i}\right) \\
& =\sum_{i=1}^{m} \operatorname{Var}\left(Y_{i}\right)+\sum_{i \neq j} \operatorname{Cov}\left(Y_{i}, Y_{j}\right) \\
& =m \frac{n}{N}\left(1-\frac{n}{N}\right)+m(m-1)\left(\frac{n(n-1)}{N(N-1)}-\frac{n^{2}}{N^{2}}\right) .
\end{aligned}
$$

Example 10

n balls are randomly distributed into r boxes (so that each ball is equally likely to go to any of the r boxes). Let X be the number of empty boxes. Find $\operatorname{Var}(X)$.

For $i=1, \ldots, r$, let $X_{i}=1$ if box number i is empty and $X_{i}=0$ otherwise. Then $X=X_{1}+\cdots+X_{r}$. Note that for $i=1, \ldots, r$, $E\left[X_{i}\right]=P\left(X_{i}=1\right)=\left(\frac{r-1}{r}\right)^{n}, \quad \operatorname{Var}\left(X_{i}\right)=\left(\frac{r-1}{r}\right)^{n}\left(1-\left(\frac{r-1}{r}\right)^{n}\right)$.

For $i=1, \ldots, r$, let $X_{i}=1$ if box number i is empty and $X_{i}=0$ otherwise. Then $X=X_{1}+\cdots+X_{r}$. Note that for $i=1, \ldots, r$,
$E\left[X_{i}\right]=P\left(X_{i}=1\right)=\left(\frac{r-1}{r}\right)^{n}, \quad \operatorname{Var}\left(X_{i}\right)=\left(\frac{r-1}{r}\right)^{n}\left(1-\left(\frac{r-1}{r}\right)^{n}\right)$.

Now let's find $\operatorname{Cov}\left(X_{i}, X_{j}\right)$ for $i \neq j . X_{i} X_{j}$ is also a Bernoulli random variable.

$$
E\left[X_{i} X_{j}\right]=P\left(X_{i}=1, X_{j}=1\right)=\left(\frac{r-2}{r}\right)^{n}
$$

Thus

$$
\operatorname{Cov}\left(X_{i}, X_{j}\right)=\left(\frac{r-2}{r}\right)^{n}-\left(\frac{r-1}{r}\right)^{2 n}
$$

$$
\begin{aligned}
& \operatorname{Var}(X)=\operatorname{Var}\left(\sum_{i=1}^{r} X_{i}\right) \\
& =\sum_{i=1}^{r} \operatorname{Var}\left(X_{i}\right)+\sum_{i \neq j} \operatorname{Cov}\left(X_{i}, X_{j}\right) \\
& =r\left(\frac{r-1}{r}\right)^{n}\left(1-\left(\frac{r-1}{r}\right)^{n}\right)+r(r-1)\left(\left(\frac{r-2}{r}\right)^{n}-\left(\frac{r-1}{r}\right)^{2 n}\right)
\end{aligned}
$$

Example 11

There are n types of coupons. Each newly obtained coupon is
independently, equally like to be any of the n types. Let X be the number of distinct types contained in a collection of k coupons. Find $\operatorname{Var}(X)$

$$
\begin{aligned}
& \operatorname{Var}(X)=\operatorname{Var}\left(\sum_{i=1}^{r} X_{i}\right) \\
& =\sum_{i=1}^{r} \operatorname{Var}\left(X_{i}\right)+\sum_{i \neq j} \operatorname{Cov}\left(X_{i}, X_{j}\right) \\
& =r\left(\frac{r-1}{r}\right)^{n}\left(1-\left(\frac{r-1}{r}\right)^{n}\right)+r(r-1)\left(\left(\frac{r-2}{r}\right)^{n}-\left(\frac{r-1}{r}\right)^{2 n}\right)
\end{aligned}
$$

Example 11

There are n types of coupons. Each newly obtained coupon is, independently, equally like to be any of the n types. Let X be the number of distinct types contained in a collection of k coupons. Find $\operatorname{Var}(X)$.

For $i=1, \cdots, n$, let $X_{i}=1$ if there is at least one type i coupon in the collection of k coupons and $X_{i}=0$ otherwise. Then $X_{1}+\cdots+X_{n}$ is the number of distinct types in the collection of k coupons.

For $i=1, \cdots, n$, let $X_{i}=1$ if there is at least one type i coupon in the collection of k coupons and $X_{i}=0$ otherwise. Then $X_{1}+\cdots+X_{n}$ is the number of distinct types in the collection of k coupons.

For $i=1, \cdots, n$,

$$
P\left(X_{i}=0\right)=\left(1-\frac{1}{n}\right)^{k}, \quad P\left(X_{i}=1\right)=1-\left(1-\frac{1}{n}\right)^{k}
$$

For $i \neq j$,

$$
\begin{aligned}
& P\left(X_{i} X_{j}=0\right)=P\left(X_{i}=0\right)+P\left(X_{j}=0\right)-P\left(X_{i}=0, X_{j}=0\right) \\
& =2\left(1-\frac{1}{n}\right)^{k}-\left(1-\frac{2}{n}\right)^{k} \\
& \quad P\left(X_{i} X_{j}=1\right)=1-2\left(1-\frac{1}{n}\right)^{k}+\left(1-\frac{2}{n}\right)^{k} .
\end{aligned}
$$

Thus

$$
E\left[X_{i}\right]=1-\left(1-\frac{1}{n}\right)^{k}, \quad \operatorname{Var}\left(X_{i}\right)=\left(1-\frac{1}{n}\right)^{k}\left(1-\left(1-\frac{1}{n}\right)^{k}\right)
$$

and

$$
\operatorname{Cov}\left(X_{i}, X_{j}\right)=1-2\left(1-\frac{1}{n}\right)^{k}+\left(1-\frac{2}{n}\right)^{k}-\left(1-\left(1-\frac{1}{n}\right)^{k}\right)^{2}
$$

Consequently

$$
E\left[X_{1}+\cdots+X_{n}\right]=n\left(1-\left(1-\frac{1}{n}\right)^{k}\right)
$$

and
$\operatorname{Var}\left(X_{1}+\cdots+X_{n}\right)=n\left(1-\frac{1}{n}\right)^{k}\left(1-\left(1-\frac{1}{n}\right)^{k}\right)$

$$
+n(n-1)\left(1-2\left(1-\frac{1}{n}\right)^{k}+\left(1-\frac{2}{n}\right)^{k}-\left(1-\left(1-\frac{1}{n}\right)^{k}\right)^{2}\right)
$$

Example 12

10 couples are randomly seated at a round table. Let X be the number of couples that are seated together. Find $\operatorname{Var}(X)$.

Example 12

10 couples are randomly seated at a round table. Let X be the number of couples that are seated together. Find $\operatorname{Var}(X)$.

For $i=1, \ldots, 10$, let $X_{i}=1$ if the i-the couple are seated together. Then $X=X_{1}+\cdots+X_{10}$. For $i=1, \ldots, 10$,

$$
P\left(X_{i}=1\right)=\frac{2(18)!}{(19)!}=\frac{2}{19} .
$$

For $i \neq j$,

$$
P\left(X_{i}=1, X_{j}=1\right)=\frac{2^{2}(17)!}{(19)!}=\frac{4}{19 \cdot 18} .
$$

Thus for $i=1, \ldots, 10$,

$$
E\left[X_{i}\right]=\frac{2}{19}, \quad \operatorname{Var}\left(X_{i}\right)=\frac{2}{19} \frac{17}{19} .
$$

For $i \neq j$,

$$
\operatorname{Cov}\left(X_{i}, X_{j}\right)=\frac{4}{19 \cdot 18}-\frac{4}{19^{2}} .
$$

Thus for $i=1, \ldots, 10$,

$$
E\left[X_{i}\right]=\frac{2}{19}, \quad \operatorname{Var}\left(X_{i}\right)=\frac{2}{19} \frac{17}{19} .
$$

For $i \neq j$,

$$
\operatorname{Cov}\left(X_{i}, X_{j}\right)=\frac{4}{19 \cdot 18}-\frac{4}{19^{2}} .
$$

$$
\begin{aligned}
& \operatorname{Var}(X)=\operatorname{Var}\left(\sum_{i=1}^{10} X_{i}\right) \\
& =\sum_{i=1}^{10} \operatorname{Var}\left(X_{1}\right)+\sum_{i \neq j} \operatorname{Cov}\left(X_{i}, X_{j}\right) \\
& =\frac{20}{19} \frac{17}{19}+90\left(\frac{4}{19 \cdot 18}-\frac{4}{19^{2}}\right) .
\end{aligned}
$$

