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HW8 is due today before the end of class.

Solution to HW8 will be on my homepage later this afternoon.
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Theorem
If X and Y are independent random variables, then for any functions
ϕ and ψ on R,

E [ϕ(X )ψ(Y )] = E [ϕ(X )]E [ψ(Y )].

Let’s prove this in the absolute continuous case. Let fX and fY be the
density of X and Y respectively. Since X and Y are independent, the
joint density of X and Y is fX (x)fY (y). Thus

E [ϕ(X )ψ(Y )] =

∫ ∞

−∞

∫ ∞

−∞
ϕ(x)ψ(y)fX (x)fY (y)dxdy

=

∫ ∞

−∞
ϕ(x)fX (x)dx

∫ ∞

−∞
ψ(y)fY (y)dy = E [ϕ(X )]E [ψ(Y )].
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Definition
The covariance Cov(X ,Y ) of two random variables X and Y is
defined by

Cov(X ,Y ) = E [(X − E [X ])(Y − E [Y ])].

One can easily check that

Cov(X ,Y ) = E [XY ]− E [X ]E [Y ].

If X and Y are independent, then Cov(X ,Y ) = 0. But the converse is
not true. When Cov(X ,Y ) = 0, we say that X and Y are
uncorrelated. Independence implies uncorrelated, but not the other
way around.
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Example 1

Suppose P(X = 0) = P(X = 1) = P(X = −1) = 1
3 and

Y =

{
0, if X ̸= 0,
1, if X = 0.

Then XY = 0, thus E [XY ] = 0. We also have E [X ] = 0 and
E [Y ] = 1

3 , thus E [X ]E [Y ] = 0. Hence Cov(X ,Y ) = 0. But X and Y
are obviously not independent.
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Example 2

A box has 3 balls labeled 1, 2, 3. Two Balls are randomly selected
without replacement. Let X be the number on the first ball and Y the
number on the second. Find Cov(X ,Y ).

P(X = 1,Y = 2) = P(X = 1,Y = 3) = P(X = 2,Y = 1)

=P(X = 2,Y = 3) = P(X = 3,Y = 1) = P(X = 3,Y = 2) =
1
6
.

Thus
E [XY ] = (2 + 3 + 2 + 3 + 6 + 6)

1
6
=

11
3
.

Since P(X = 1) = P(X = 2) = P(X = 3) = P(Y = 1) = P(Y = 2) =
P(Y = 3) = 1

3 , E [X ] = E [Y ] = 2. Hence Cov(X ,Y ) = − 1
3 .
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Example 3

The joint density of X and Y is given by

f (x , y) =

{
x + y , 0 < x < 1,0 < y < 1,
0, otherwise.

Find Cov(X ,Y ).

E [XY ] =

∫ 1

0

∫ 1

0
xy(x + y)dxdy =

∫ 1

0

∫ 1

0
(x2y + xy2)dxdy

=

∫ 1

0
(
y
3
+

y2

2
)dy =

1
3
.
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E [X ] =

∫ 1

0

∫ 1

0
x(x + y)dxdy =

∫ 1

0

∫ 1

0
(x2 + xy)dxdy

=

∫ 1

0
(
1
3
+

y
2
)dy =

7
12
.

Similarly, E [Y ] = 7
12 .

Thus
Cov(X ,Y ) =

1
3
− 49

144
= − 1

144
.
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Proposition

(i) Cov(X ,Y ) = Cov(Y ,X ).
(ii) Cov(X ,X ) = Var(X ).
(iii) Cov(aX ,Y ) = aCov(X ,Y ).
(iv) Cov(

∑m
i=1 Xi ,

∑n
j=1 Yj) =

∑m
i=1

∑n
j=1 Cov(Xi ,Yj).

(i), (ii) and (iii) are obvious. Let’s look at Cov(X1 + X2,Y ).

Cov(X1 + X2,Y ) = E [(X1 + X2)Y ]− E [X1 + X2]E [Y ]

= E [X1Y ]− E [X1]E [Y ] + E [X2Y ]− E [X2]E [Y ]

= Cov(X1,Y ) + Cov(X2,Y ).

The general case follows by induction.
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Combining (ii) and (iv) above, we get

Var(
n∑

i=1

Xi) =
n∑

i=1

Var(Xi) +
∑
i ̸=j

Cov(Xi ,Xj)

=
n∑

i=1

Var(Xi) + 2
∑
i<j

Cov(Xi ,Xj).

In particular, if X1, . . . ,Xn are independent, then

Var(
n∑

i=1

Xi) =
n∑

i=1

Var(Xi).
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Example 4

Suppose that X1,X2,X3 are independent, Var(X1) = σ2
1 , Var(X2) = σ2

2
and Var(X3) = σ2

3 . Find Cov(X1 − X2,X2 + X3).

Cov(X1 − X2,X2 + X3) = Cov(X1,X2 + X3)− Cov(X2,X2 + X3)

= −Cov(X2,X2 + X3) = −Cov(X2,X2)− Cov(X2,X3)

= −Var(X2) = −σ2
2 .
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Example 5

Let X1, . . . ,Xn be independent and identically distributed random
variables with common mean µ and common variance σ2.

X =
1
n

n∑
i=1

Xi

is called the sample mean and

S2 =
1

n − 1

n∑
i=1

(Xi − X )2

is called the sample variance. Find (a) Var(X ); (b) E [S2].

Var(X ) =
1
n2 Var(

n∑
i=1

Xi) =
σ2

n
.
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For (b), we start with the following algebraic identity

(n − 1)S2 =
n∑

i=1

(Xi − µ+ µ− X )2

=
n∑

i=1

(Xi − µ)2 +
n∑

i=1

(X − µ)2 − 2(X − µ)
n∑

i=1

(Xi − µ)

=
n∑

i=1

(Xi − µ)2 + n(X − µ)2 − 2(X − µ)n(X − µ)

=
n∑

i=1

(Xi − µ)2 − n(X − µ)2.

Taking expectation, we get

(n − 1)E [S2] = nσ2 − nVar(X ) = (n − 1)σ2,
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since E [X ] = µ. Hence E [S2] = σ2.

Definition
The correlation coefficient ρ(X ,Y ) of two random variables X and Y
is defined by

ρ(X ,Y ) =
Cov(X ,Y )√
Var(X )Var(Y )

.

We always have |ρ(X ,Y )| ≤ 1. ρ(X ,aX ) = 1 if a > 0, ρ(X ,aX ) = −1
if a < 0, and ρ(X ,Y ) = 0 if X and Y are independent. |ρ(X ,Y )| = 1 if
and only if P(X = aY ) = 1 for some a ̸= 0.
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Now we are going to use the formula

Var(
n∑

i=1

Xi) =
n∑

i=1

Var(Xi) +
∑
i ̸=j

Cov(Xi ,Xj)

=
n∑

i=1

Var(Xi) + 2
∑
i<j

Cov(Xi ,Xj).

to find the variance of some complicated random variables.

Example 6

Suppose Sn is a binomial random variable with parameters (n,p). Sn
is the total number of successes in n indep trails each of which results
in a success with probability p. For i = 1, . . . ,n, let Xi = 1 if the i-th
trial results in a success and Xi = 0 otherwise. Then X1, . . . ,Xn indep
Bernoulli random variables with parameter p and Sn =

∑n
i=1 Xi . Thus

Var(Sn) =
n∑

i=1

Var(Xi) = np(1 − p).
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Example 7

Let X be a negative binomial random variable with parameters (r ,p).
X is the number of trials needed in order to get r successes. Let Y1
be the number of trials needed in order to get the first success; let Y2
be the number of additional trials, after the first success, to get the
second success, . . . , let Yr be the number of additional trials, after
the (r − 1)-st success, to get the r -th success. Then Y1, . . . ,Yr are
independent geometric random variables with parameter p and
X = Y1 + · · ·+ Yr . Thus

Var(X ) =
r∑

i=1

Var(Yi) =
r(1 − p)

p2 .
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