▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

# Math 461 Spring 2024

## **Renming Song**

University of Illinois Urbana-Champaign

March 29, 2024

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

# Outline

## Outline



## 2 7.4 Covariance, variance of sums and correlations



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

HW8 is due today before the end of class.

Solution to HW8 will be on my homepage later this afternoon.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

HW8 is due today before the end of class.

### Solution to HW8 will be on my homepage later this afternoon.

## **Outline**



## **2** 7.4 Covariance, variance of sums and correlations

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

#### Theorem

If X and Y are independent random variables, then for any functions  $\phi$  and  $\psi$  on  $\mathbb{R},$ 

 $E[\phi(X)\psi(Y)] = E[\phi(X)]E[\psi(Y)].$ 

Let's prove this in the absolute continuous case. Let  $f_X$  and  $f_Y$  be the density of X and Y respectively. Since X and Y are independent, the joint density of X and Y is  $f_X(x)f_Y(y)$ . Thus

$$E[\phi(X)\psi(Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \phi(x)\psi(y)f_X(x)f_Y(y)dxdy$$
$$= \int_{-\infty}^{\infty} \phi(x)f_X(x)dx \int_{-\infty}^{\infty} \psi(y)f_Y(y)dy = E[\phi(X)]E[\psi(Y)]$$

#### Theorem

If X and Y are independent random variables, then for any functions  $\phi$  and  $\psi$  on  $\mathbb{R},$ 

$$E[\phi(X)\psi(Y)] = E[\phi(X)]E[\psi(Y)].$$

Let's prove this in the absolute continuous case. Let  $f_X$  and  $f_Y$  be the density of X and Y respectively. Since X and Y are independent, the joint density of X and Y is  $f_X(x)f_Y(y)$ . Thus

$$E[\phi(X)\psi(Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \phi(x)\psi(y)f_X(x)f_Y(y)dxdy$$
$$= \int_{-\infty}^{\infty} \phi(x)f_X(x)dx \int_{-\infty}^{\infty} \psi(y)f_Y(y)dy = E[\phi(X)]E[\psi(Y)]$$

The covariance Cov(X, Y) of two random variables X and Y is defined by

$$\operatorname{Cov}(X, Y) = E[(X - E[X])(Y - E[Y])].$$

One can easily check that

 $\operatorname{Cov}(X,Y) = E[XY] - E[X]E[Y].$ 

If X and Y are independent, then Cov(X, Y) = 0. But the converse is not true. When Cov(X, Y) = 0, we say that X and Y are uncorrelated. Independence implies uncorrelated, but not the other way around.

The covariance Cov(X, Y) of two random variables X and Y is defined by

$$\operatorname{Cov}(X, Y) = E[(X - E[X])(Y - E[Y])].$$

One can easily check that

 $\operatorname{Cov}(X,Y) = E[XY] - E[X]E[Y].$ 

If X and Y are independent, then Cov(X, Y) = 0. But the converse is not true. When Cov(X, Y) = 0, we say that X and Y are uncorrelated. Independence implies uncorrelated, but not the other way around.

The covariance Cov(X, Y) of two random variables X and Y is defined by

$$\operatorname{Cov}(X, Y) = E[(X - E[X])(Y - E[Y])].$$

One can easily check that

 $\operatorname{Cov}(X,Y) = E[XY] - E[X]E[Y].$ 

If X and Y are independent, then Cov(X, Y) = 0. But the converse is not true. When Cov(X, Y) = 0, we say that X and Y are uncorrelated. Independence implies uncorrelated, but not the other way around.

Suppose 
$$P(X = 0) = P(X = 1) = P(X = -1) = \frac{1}{3}$$
 and

$$Y = \begin{cases} 0, & \text{if } X \neq 0, \\ 1, & \text{if } X = 0. \end{cases}$$

Then XY = 0, thus E[XY] = 0. We also have E[X] = 0 and  $E[Y] = \frac{1}{3}$ , thus E[X]E[Y] = 0. Hence Cov(X, Y) = 0. But X and Y are obviously not independent.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

### **Example 1**

Suppose 
$$P(X = 0) = P(X = 1) = P(X = -1) = \frac{1}{3}$$
 and

$$Y = \begin{cases} 0, & \text{if } X \neq 0, \\ 1, & \text{if } X = 0. \end{cases}$$

Then XY = 0, thus E[XY] = 0. We also have E[X] = 0 and  $E[Y] = \frac{1}{3}$ , thus E[X]E[Y] = 0. Hence Cov(X, Y) = 0. But X and Y are obviously not independent.

A box has 3 balls labeled 1, 2, 3. Two Balls are randomly selected without replacement. Let X be the number on the first ball and Y the number on the second. Find Cov(X, Y).

$$P(X = 1, Y = 2) = P(X = 1, Y = 3) = P(X = 2, Y = 1)$$
  
=  $P(X = 2, Y = 3) = P(X = 3, Y = 1) = P(X = 3, Y = 2) = \frac{1}{6}.$   
Thus  
$$E[XY] = (2 + 3 + 2 + 3 + 6 + 6)\frac{1}{6} = \frac{11}{3}.$$
  
Since  $P(X = 1) = P(X = 2) = P(X = 3) = P(Y = 1) = P(Y = 2) = P(Y = 3) = \frac{1}{3}, E[X] = E[Y] = 2.$  Hence  $Cov(X, Y) = -\frac{1}{3}.$ 

A box has 3 balls labeled 1, 2, 3. Two Balls are randomly selected without replacement. Let X be the number on the first ball and Y the number on the second. Find Cov(X, Y).

$$P(X = 1, Y = 2) = P(X = 1, Y = 3) = P(X = 2, Y = 1)$$
$$= P(X = 2, Y = 3) = P(X = 3, Y = 1) = P(X = 3, Y = 2) = \frac{1}{6}.$$
Thus
$$E[XY] = (2 + 3 + 2 + 3 + 6 + 6)\frac{1}{6} = \frac{11}{3}.$$

Since  $P(X = 1) = P(X = 2) = P(X = 3) = P(Y = 1) = P(Y = 2) = P(Y = 3) = \frac{1}{3}$ , E[X] = E[Y] = 2. Hence  $Cov(X, Y) = -\frac{1}{3}$ .

The joint density of X and Y is given by

$$f(x, y) = \begin{cases} x + y, & 0 < x < 1, 0 < y < 1, \\ 0, & \text{otherwise.} \end{cases}$$

Find Cov(X, Y).

$$E[XY] = \int_0^1 \int_0^1 xy(x+y) dx dy = \int_0^1 \int_0^1 (x^2y + xy^2) dx dy$$
$$= \int_0^1 (\frac{y}{3} + \frac{y^2}{2}) dy = \frac{1}{3}.$$

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

The joint density of X and Y is given by

$$f(x, y) = \begin{cases} x + y, & 0 < x < 1, 0 < y < 1, \\ 0, & \text{otherwise.} \end{cases}$$

Find Cov(X, Y).

$$E[XY] = \int_0^1 \int_0^1 xy(x+y) dx dy = \int_0^1 \int_0^1 (x^2y + xy^2) dx dy$$
  
=  $\int_0^1 (\frac{y}{3} + \frac{y^2}{2}) dy = \frac{1}{3}.$ 

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$E[X] = \int_0^1 \int_0^1 x(x+y) dx dy = \int_0^1 \int_0^1 (x^2 + xy) dx dy$$
$$= \int_0^1 (\frac{1}{3} + \frac{y}{2}) dy = \frac{7}{12}.$$
Similarly,  $E[Y] = \frac{7}{12}.$ 

Thus

$$\operatorname{Cov}(X, Y) = \frac{1}{3} - \frac{49}{144} = -\frac{1}{144}.$$

$$E[X] = \int_0^1 \int_0^1 x(x+y) dx dy = \int_0^1 \int_0^1 (x^2 + xy) dx dy$$
$$= \int_0^1 (\frac{1}{3} + \frac{y}{2}) dy = \frac{7}{12}.$$
Similarly,  $E[Y] = \frac{7}{12}.$ 

Thus

$$\operatorname{Cov}(X, Y) = \frac{1}{3} - \frac{49}{144} = -\frac{1}{144}.$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲≣ めるの

### Proposition

(i) Cov(X, Y) = Cov(Y, X). (ii) Cov(X, X) = Var(X). (iii) Cov(aX, Y) = aCov(X, Y). (iv)  $Cov(\sum_{i=1}^{m} X_i, \sum_{j=1}^{n} Y_j) = \sum_{i=1}^{m} \sum_{j=1}^{n} Cov(X_i, Y_j)$ .

(i), (ii) and (iii) are obvious. Let's look at  $Cov(X_1 + X_2, Y)$ .

$$Cov(X_1 + X_2, Y) = E[(X_1 + X_2)Y] - E[X_1 + X_2]E[Y]$$
  
=  $E[X_1Y] - E[X_1]E[Y] + E[X_2Y] - E[X_2]E[Y]$   
=  $Cov(X_1, Y) + Cov(X_2, Y).$ 

The general case follows by induction.

## Proposition

(i) 
$$Cov(X, Y) = Cov(Y, X)$$
.  
(ii)  $Cov(X, X) = Var(X)$ .  
(iii)  $Cov(aX, Y) = aCov(X, Y)$ .  
(iv)  $Cov(\sum_{i=1}^{m} X_i, \sum_{j=1}^{n} Y_j) = \sum_{i=1}^{m} \sum_{j=1}^{n} Cov(X_i, Y_j)$ .

(i), (ii) and (iii) are obvious. Let's look at  $Cov(X_1 + X_2, Y)$ .

$$Cov(X_1 + X_2, Y) = E[(X_1 + X_2)Y] - E[X_1 + X_2]E[Y]$$
  
=  $E[X_1Y] - E[X_1]E[Y] + E[X_2Y] - E[X_2]E[Y]$   
=  $Cov(X_1, Y) + Cov(X_2, Y).$ 

The general case follows by induction.

## Combining (ii) and (iv) above, we get

$$\operatorname{Var}(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} \operatorname{Var}(X_i) + \sum_{i \neq j} \operatorname{Cov}(X_i, X_j)$$
$$= \sum_{i=1}^{n} \operatorname{Var}(X_i) + 2 \sum_{i < j} \operatorname{Cov}(X_i, X_j).$$

In particular, if  $X_1, \ldots, X_n$  are independent, then

$$\operatorname{Var}(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} \operatorname{Var}(X_i).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Combining (ii) and (iv) above, we get

$$\operatorname{Var}(\sum_{i=1}^{n} X_{i}) = \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + \sum_{i \neq j} \operatorname{Cov}(X_{i}, X_{j})$$
$$= \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2 \sum_{i < j} \operatorname{Cov}(X_{i}, X_{j}).$$

In particular, if  $X_1, \ldots, X_n$  are independent, then

$$\operatorname{Var}(\sum_{i=1}^{n} X_{i}) = \sum_{i=1}^{n} \operatorname{Var}(X_{i}).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

## **Example 4**

Suppose that  $X_1, X_2, X_3$  are independent,  $Var(X_1) = \sigma_1^2$ ,  $Var(X_2) = \sigma_2^2$ and  $Var(X_3) = \sigma_3^2$ . Find  $Cov(X_1 - X_2, X_2 + X_3)$ .

$$Cov(X_1 - X_2, X_2 + X_3) = Cov(X_1, X_2 + X_3) - Cov(X_2, X_2 + X_3)$$
  
= -Cov(X\_2, X\_2 + X\_3) = -Cov(X\_2, X\_2) - Cov(X\_2, X\_3)  
= -Var(X\_2) = -\sigma\_2^2.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

## **Example 4**

Suppose that  $X_1, X_2, X_3$  are independent,  $Var(X_1) = \sigma_1^2$ ,  $Var(X_2) = \sigma_2^2$ and  $Var(X_3) = \sigma_3^2$ . Find  $Cov(X_1 - X_2, X_2 + X_3)$ .

$$Cov(X_1 - X_2, X_2 + X_3) = Cov(X_1, X_2 + X_3) - Cov(X_2, X_2 + X_3)$$
  
= -Cov(X\_2, X\_2 + X\_3) = -Cov(X\_2, X\_2) - Cov(X\_2, X\_3)  
= -Var(X\_2) = -\sigma\_2^2.

Let  $X_1, \ldots, X_n$  be independent and identically distributed random variables with common mean  $\mu$  and common variance  $\sigma^2$ .

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

is called the sample mean and

$$S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$

is called the sample variance. Find (a)  $Var(\overline{X})$ ; (b)  $E[S^2]$ .

$$\operatorname{Var}(\overline{X}) = \frac{1}{n^2} \operatorname{Var}(\sum_{i=1}^n X_i) = \frac{\sigma^2}{n}.$$

Let  $X_1, \ldots, X_n$  be independent and identically distributed random variables with common mean  $\mu$  and common variance  $\sigma^2$ .

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

is called the sample mean and

$$S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$

is called the sample variance. Find (a)  $Var(\overline{X})$ ; (b)  $E[S^2]$ .

$$\operatorname{Var}(\overline{X}) = \frac{1}{n^2} \operatorname{Var}(\sum_{i=1}^n X_i) = \frac{\sigma^2}{n}.$$

For (b), we start with the following algebraic identity

$$(n-1)S^{2} = \sum_{i=1}^{n} (X_{i} - \mu + \mu - \overline{X})^{2}$$
  
=  $\sum_{i=1}^{n} (X_{i} - \mu)^{2} + \sum_{i=1}^{n} (\overline{X} - \mu)^{2} - 2(\overline{X} - \mu) \sum_{i=1}^{n} (X_{i} - \mu)^{2}$   
=  $\sum_{i=1}^{n} (X_{i} - \mu)^{2} + n(\overline{X} - \mu)^{2} - 2(\overline{X} - \mu)n(\overline{X} - \mu)^{2}$   
=  $\sum_{i=1}^{n} (X_{i} - \mu)^{2} - n(\overline{X} - \mu)^{2}$ .

Taking expectation, we get

$$(n-1)E[S^2] = n\sigma^2 - n\operatorname{Var}(\overline{X}) = (n-1)\sigma^2,$$

For (b), we start with the following algebraic identity

$$(n-1)S^{2} = \sum_{i=1}^{n} (X_{i} - \mu + \mu - \overline{X})^{2}$$
  
=  $\sum_{i=1}^{n} (X_{i} - \mu)^{2} + \sum_{i=1}^{n} (\overline{X} - \mu)^{2} - 2(\overline{X} - \mu) \sum_{i=1}^{n} (X_{i} - \mu)$   
=  $\sum_{i=1}^{n} (X_{i} - \mu)^{2} + n(\overline{X} - \mu)^{2} - 2(\overline{X} - \mu)n(\overline{X} - \mu)$   
=  $\sum_{i=1}^{n} (X_{i} - \mu)^{2} - n(\overline{X} - \mu)^{2}.$ 

Taking expectation, we get

$$(n-1)E[S^2] = n\sigma^2 - n\operatorname{Var}(\overline{X}) = (n-1)\sigma^2,$$

since 
$$E[\overline{X}] = \mu$$
. Hence  $E[S^2] = \sigma^2$ .

The correlation coefficient  $\rho(X, Y)$  of two random variables X and Y is defined by

$$\rho(X, Y) = \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}$$

We always have  $|\rho(X, Y)| \le 1$ .  $\rho(X, aX) = 1$  if a > 0,  $\rho(X, aX) = -1$  if a < 0, and  $\rho(X, Y) = 0$  if X and Y are independent.  $|\rho(X, Y)| = 1$  if and only if P(X = aY) = 1 for some  $a \ne 0$ .

since 
$$E[\overline{X}] = \mu$$
. Hence  $E[S^2] = \sigma^2$ .

The correlation coefficient  $\rho(X, Y)$  of two random variables X and Y is defined by

$$\rho(X, Y) = \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}$$

We always have  $|\rho(X, Y)| \le 1$ .  $\rho(X, aX) = 1$  if a > 0,  $\rho(X, aX) = -1$  if a < 0, and  $\rho(X, Y) = 0$  if X and Y are independent.  $|\rho(X, Y)| = 1$  if and only if P(X = aY) = 1 for some  $a \ne 0$ .

since 
$$E[\overline{X}] = \mu$$
. Hence  $E[S^2] = \sigma^2$ .

The correlation coefficient  $\rho(X, Y)$  of two random variables X and Y is defined by

$$\rho(X, Y) = \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}$$

We always have  $|\rho(X, Y)| \le 1$ .  $\rho(X, aX) = 1$  if a > 0,  $\rho(X, aX) = -1$  if a < 0, and  $\rho(X, Y) = 0$  if X and Y are independent.  $|\rho(X, Y)| = 1$  if and only if P(X = aY) = 1 for some  $a \ne 0$ .

#### Now we are going to use the formula

$$\operatorname{Var}(\sum_{i=1}^{n} X_{i}) = \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + \sum_{i \neq j} \operatorname{Cov}(X_{i}, X_{j})$$
$$= \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2\sum_{i < j} \operatorname{Cov}(X_{i}, X_{j}).$$

to find the variance of some complicated random variables.

#### Example 6

Suppose  $S_n$  is a binomial random variable with parameters (n, p).  $S_n$  is the total number of successes in *n* indep trails each of which results in a success with probability *p*. For i = 1, ..., n, let  $X_i = 1$  if the *i*-th trial results in a success and  $X_i = 0$  otherwise. Then  $X_1, ..., X_n$  indep Bernoulli random variables with parameter *p* and  $S_n = \sum_{i=1}^n X_i$ . Thus

$$\operatorname{Var}(S_n) = \sum_{i=1}^n \operatorname{Var}(X_i) = np(1-p).$$

000

#### Now we are going to use the formula

$$\operatorname{Var}(\sum_{i=1}^{n} X_{i}) = \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + \sum_{i \neq j} \operatorname{Cov}(X_{i}, X_{j})$$
$$= \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2 \sum_{i < j} \operatorname{Cov}(X_{i}, X_{j}).$$

to find the variance of some complicated random variables.

#### Example 6

Suppose  $S_n$  is a binomial random variable with parameters (n, p).  $S_n$  is the total number of successes in *n* indep trails each of which results in a success with probability *p*. For i = 1, ..., n, let  $X_i = 1$  if the *i*-th trial results in a success and  $X_i = 0$  otherwise. Then  $X_1, ..., X_n$  indep Bernoulli random variables with parameter *p* and  $S_n = \sum_{i=1}^n X_i$ . Thus

$$\operatorname{Var}(S_n) = \sum_{i=1}^n \operatorname{Var}(X_i) = np(1-p).$$

200

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

### Example 7

Let *X* be a negative binomial random variable with parameters (r, p). *X* is the number of trials needed in order to get *r* successes. Let  $Y_1$ be the number of trials needed in order to get the first success; let  $Y_2$ be the number of additional trials, after the first success, to get the second success, ..., let  $Y_r$  be the number of additional trials, after the (r - 1)-st success, to get the *r*-th success. Then  $Y_1, \ldots, Y_r$  are independent geometric random variables with parameter *p* and  $X = Y_1 + \cdots + Y_r$ . Thus

$$\operatorname{Var}(X) = \sum_{i=1}^{r} \operatorname{Var}(Y_i) = \frac{r(1-p)}{p^2}.$$