Math 461 Spring 2024

Renming Song

University of Illinois Urbana-Champaign

March 27, 2024

Outline

Outline

2 6.6 Order statistics

3 7.2 Expectation of sums of random variables

HW8 is due Friday, 03/29, before the end of class.

HW8 is due Friday, 03/29, before the end of class.

Solution to HW7 is on my homepage now.

Outline

9 General Info

2 6.6 Order statistics

3 7.2 Expectation of sums of random variables

Let $X_{1}, X_{2}, \ldots, X_{n}$ be n independent and identically distributed absolutely continuous random variables with common density f and common distribution F. Define

$$
\begin{aligned}
& X_{(1)}=\min \left\{X_{1}, \ldots, X_{n}\right\}=\text { smallest of } X_{1}, \ldots, X_{n} \\
& X_{(2)}=\operatorname{second} \text { smallest of } X_{1}, \ldots, X_{n} \\
& \ldots \\
& X_{(n)}=\max \left\{X_{1}, \ldots, X_{n}\right\}=\text { largest of } X_{1}, \ldots, X_{n} .
\end{aligned}
$$

Let $X_{1}, X_{2}, \ldots, X_{n}$ be n independent and identically distributed absolutely continuous random variables with common density f and common distribution F. Define

$$
\begin{aligned}
& X_{(1)}=\min \left\{X_{1}, \ldots, X_{n}\right\}=\text { smallest of } X_{1}, \ldots, X_{n} \\
& X_{(2)}=\text { second smallest of } X_{1}, \ldots, X_{n} \\
& \ldots \\
& X_{(n)}=\max \left\{X_{1}, \ldots, X_{n}\right\}=\text { largest of } X_{1}, \ldots, X_{n} .
\end{aligned}
$$

$X_{(1)}, X_{(2)}, \ldots, X_{(n)}$ are called the order statistics of $X_{1}, X_{2}, \ldots, X_{n}$. We could find the joint density of $X_{(1)}, X_{(2)}, \ldots, X_{(n)}$. I am only going to present the joint density of $X_{(1)}$ and $X_{(n)}$.

Let $U=X_{(1)}=\min \left\{X_{1}, \ldots, X_{n}\right\}$ and $V=X_{(n)}=\max \left\{X_{1}, \ldots, X_{n}\right\}$. Let's find the joint density of U and V. To find the joint density, we first look for the joint distribution of U and V, and then we take the mixed partial derivative.

Let $U=X_{(1)}=\min \left\{X_{1}, \ldots, X_{n}\right\}$ and $V=X_{(n)}=\max \left\{X_{1}, \ldots, X_{n}\right\}$. Let's find the joint density of U and V. To find the joint density, we first look for the joint distribution of U and V, and then we take the mixed partial derivative.

For $u<v$,

$$
\begin{aligned}
& P(U \leq u, V \leq v)=P(V \leq v)-P(U>u, V \leq v) \\
& =P\left(X_{1} \leq v, \ldots, X_{n} \leq v\right)-P\left(u<X_{1} \leq v, \ldots, u<X_{n} \leq v\right) \\
& =[F(v)]^{n}-[F(v)-F(u)]^{n} .
\end{aligned}
$$

For $u \geq v$,

$$
P(U \leq u, V \leq v)=P(V \leq v)=[F(v)]^{n} .
$$

Thus the joint density of U and V is

For $u \geq v$,

$$
P(U \leq u, V \leq v)=P(V \leq v)=[F(v)]^{n} .
$$

Thus the joint density of U and V is

$$
f_{U, V}(u, v)= \begin{cases}n(n-1)[F(v)-F(u)]^{n-2} f(u) f(v), & u<v, \\ 0, & \text { otherwise } .\end{cases}
$$

From the derivations above, we have

$$
\begin{aligned}
& P(U \leq u)=P(U \leq u, V<\infty)=1-[1-F(u)]^{n} \\
& P(V \leq v)=P(U \leq v, V \leq v)=[F(v)]^{n} .
\end{aligned}
$$

From the derivations above, we have

$$
\begin{aligned}
& P(U \leq u)=P(U \leq u, V<\infty)=1-[1-F(u)]^{n} \\
& P(V \leq v)=P(U \leq v, V \leq v)=[F(v)]^{n} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& f_{U}(u)=n[1-F(u)]^{n-1} f(u), \\
& f_{V}(v)=n[F(v)]^{n-1} f(v) .
\end{aligned}
$$

Example 1

Let X_{1}, \ldots, X_{n} be independent and identically uniformly distributed on $(0,1)$. Find the joint density of $U=\min \left\{X_{1}, \ldots, X_{n}\right\}$ and $V=\max \left\{X_{1}, \ldots, X_{n}\right\}$.

Example 1

Let X_{1}, \ldots, X_{n} be independent and identically uniformly distributed on $(0,1)$. Find the joint density of $U=\min \left\{X_{1}, \ldots, X_{n}\right\}$ and $V=\max \left\{X_{1}, \ldots, X_{n}\right\}$.

The joint density is

$$
f_{U, v}(u, v)=\left\{\begin{array}{lc}
n(n-1)(v-u)^{n-2}, & 0<u<v<1 \\
0, & \text { otherwise }
\end{array}\right.
$$

Outline

(1) General Info

2 6.6 Order statistics

3 7.2 Expectation of sums of random variables

Proposition

Suppose that X and Y are discrete random variables with joint mass function $p(\cdot, \cdot)$, and that g is a function on \mathbb{R}^{2}. If

$$
\sum_{x, y}|g(x, y)| p(x, y)<\infty
$$

then

$$
E[g(X, Y)]=\sum_{x, y} g(x, y) p(x, y)
$$

Suppose that X and Y are jointly abs. cont. random variables with joint density $f(\cdot, \cdot)$, and that g is a function on \mathbb{R}^{2}. If

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|g(x, y)| f(x, y) d x d y<\infty
$$

then

$$
E[g(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f(x, y) d x d y
$$

Proposition

Suppose that X and Y are discrete random variables with joint mass function $p(\cdot, \cdot)$, and that g is a function on \mathbb{R}^{2}. If

$$
\sum_{x, y}|g(x, y)| p(x, y)<\infty
$$

then

$$
E[g(X, Y)]=\sum_{x, y} g(x, y) p(x, y)
$$

Suppose that X and Y are jointly abs. cont. random variables with joint density $f(\cdot, \cdot)$, and that g is a function on \mathbb{R}^{2}. If

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|g(x, y)| f(x, y) d x d y<\infty
$$

then

$$
E[g(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f(x, y) d x d y
$$

By taking $g(x, y)=x$, we get that in the discrete case,

$$
E[X]=\sum_{x, y} x p(x, y),
$$

and the absolutely continuous case,

$$
E[X]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f(x, y) d x d y .
$$

By taking $g(x, y)=y$, we get that in the discrete case
and the absolutely continuous case

By taking $g(x, y)=x$, we get that in the discrete case,

$$
E[X]=\sum_{x, y} x p(x, y),
$$

and the absolutely continuous case,

$$
E[X]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f(x, y) d x d y
$$

By taking $g(x, y)=y$, we get that in the discrete case,

$$
E[Y]=\sum_{x, y} y p(x, y),
$$

and the absolutely continuous case,

$$
E[Y]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f(x, y) d x d y
$$

By taking $g(x, y)=x+y$, we get that in the discrete case,

$$
E[X+Y]=\sum_{x, y}(x+y) p(x, y)=E[X]+E[Y] .
$$

and the absolutely continuous case,

$$
E[X+Y]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(x+y) f(x, y) d x d y=E[X]+E[Y] .
$$

By taking $g(x, y)=x+y$, we get that in the discrete case,

$$
E[X+Y]=\sum_{x, y}(x+y) p(x, y)=E[X]+E[Y] .
$$

and the absolutely continuous case,

$$
E[X+Y]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(x+y) f(x, y) d x d y=E[X]+E[Y]
$$

Using induction, we can show that

$$
E\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} E\left[X_{i}\right] .
$$

Example 1

An accident occurs at a point X that is uniformly distributed on a road of length L. At the time of the accident, an ambulance is at a location Y that is also uniformly distributed on that stretch of the road. Assume that X and Y are independent. Find the expected distance between the ambulance and the accident.

Example 1

An accident occurs at a point X that is uniformly distributed on a road of length L. At the time of the accident, an ambulance is at a location Y that is also uniformly distributed on that stretch of the road. Assume that X and Y are independent. Find the expected distance between the ambulance and the accident.

The joint density of X and Y is

$$
f(x, y)= \begin{cases}\frac{1}{L^{2}}, & 0<x, y<L \\ 0, \text { otherwsie. }\end{cases}
$$

We are looking for $E[|X-Y|]$.

$$
E[|X-Y|]=\frac{1}{L^{2}} \int_{0}^{L} \int_{0}^{L}|x-y| d x d y .
$$

$$
E[|X-Y|]=\frac{1}{L^{2}} \int_{0}^{L} \int_{0}^{L}|x-y| d x d y .
$$

$$
\begin{aligned}
& \int_{0}^{L}|x-y| d x=\int_{0}^{y}(y-x) d x+\int_{y}^{L}(x-y) d x \\
& =y^{2}-\frac{y^{2}}{2}+\frac{L^{2}}{2}-\frac{y^{2}}{2}-y(L-y) \\
& =\frac{L^{2}}{2}+y^{2}-y L .
\end{aligned}
$$

$$
E[|X-Y|]=\frac{1}{L^{2}} \int_{0}^{L}\left(\frac{L^{2}}{2}+y^{2}-y\right) d y=\frac{L}{3} .
$$

Now we are going to use the formula

to find the expectation of some complicated random variables. In
Section 4.9, we have seen quite a few examples of this nature.
Please review these examples. Now I am going to give more
examples of this nature.

$$
E[|X-Y|]=\frac{1}{L^{2}} \int_{0}^{L}\left(\frac{L^{2}}{2}+y^{2}-y\right) d y=\frac{L}{3} .
$$

Now we are going to use the formula

$$
E\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} E\left[X_{i}\right]
$$

to find the expectation of some complicated random variables. In Section 4.9, we have seen quite a few examples of this nature. Please review these examples. Now I am going to give more examples of this nature.

Example 2

Ten hunters are waiting for ducks to fly by. When a flock of ducks flies overhead, the hunters fire at the same time, but each chooses his target at random, independently of the others. If each hunter independently hits his target with probability p, find the expected number of ducks that escape unhurt when a flock of size 10 flies overhead.

Example 2

Ten hunters are waiting for ducks to fly by. When a flock of ducks flies overhead, the hunters fire at the same time, but each chooses his target at random, independently of the others. If each hunter independently hits his target with probability p, find the expected number of ducks that escape unhurt when a flock of size 10 flies overhead.

For $i=1, \ldots, 10$, let $X_{i}=1$ if the i-th duck escapes unhurt and $X_{i}=0$ otherwise. We are looking for $E\left[X_{1}+\cdots+X_{10}\right]$. Since each hunter will, independently, hit the i-th duck with probability $p / 10$,

$$
E\left[X_{i}\right]=P\left(X_{i}=1\right)=\left(1-\frac{p}{10}\right)^{10}
$$

Hence

$$
E\left[X_{1}+\cdots+X_{10}\right]=10\left(1-\frac{p}{10}\right)^{10}
$$

Example 3

Suppose that n balls are randomly distributed into r boxes (so that all r^{n} possibilities are equally likely). Find the expected number of boxes that has exactly 1 ball.

Example 3

Suppose that n balls are randomly distributed into r boxes (so that all r^{n} possibilities are equally likely). Find the expected number of boxes that has exactly 1 ball.

For $i=1, \ldots, r$, Let $X_{i}=1$ if the i-th box has exactly 1 ball and $X_{i}=0$ otherwise. We are looking for $E\left[X_{1}+\cdots+X_{r}\right]$. For $=1, \ldots, r$,

$$
E\left[X_{i}\right]=P\left(X_{i}=1\right)=n \frac{1}{r}\left(\frac{r-1}{r}\right)^{n-1} .
$$

Thus

$$
E\left[X_{1}+\cdots+X_{r}\right]=n\left(\frac{r-1}{r}\right)^{n-1}
$$

