Math 461 Spring 2024

Renming Song

University of Illinois Urbana-Champaign

March 25, 2024

Outline

Outline

2 6.4 Conditional distributions: discrete case

3 6.5 Conditional distributions: continuous case

HW8 is due Friday, 03/29, before the end of class. Please submit your HW8 as a pdf file via the course Moodle page.

HW8 is due Friday, 03/29, before the end of class. Please submit your HW8 as a pdf file via the course Moodle page.

Solution to HW7 is on my homepage now.

Outline

(1) General Info

2 6.4 Conditional distributions: discrete case

3 6.5 Conditional distributions: continuous case

Let X and Y be discrete random variables with joint mass function $p(\cdot, \cdot)$. If y is a possible value of Y (i.e, $p_{Y}(y)>0$), then

$$
P(X=x \mid Y=y)=\frac{P(X=x, Y=y)}{P(Y=y)}=\frac{p(x, y)}{p_{Y}(y)} .
$$

The function $x \mapsto \frac{p(x, y)}{p_{Y}(y)}$ is a mass function. It is called the conditional mass function of X given $Y=y$.

Let X and Y be discrete random variables with joint mass function $p(\cdot, \cdot)$. If y is a possible value of Y (i.e, $p_{Y}(y)>0$), then

$$
P(X=x \mid Y=y)=\frac{P(X=x, Y=y)}{P(Y=y)}=\frac{p(x, y)}{p_{Y}(y)} .
$$

The function $x \mapsto \frac{p(x, y)}{p_{Y}(y)}$ is a mass function. It is called the conditional mass function of X given $Y=y$.

The function

$$
p_{X \mid Y}(x \mid y)= \begin{cases}\frac{p(x, y)}{p_{Y}(y)}, & p_{Y}(y)>0 \\ 0, & \text { otherwise }\end{cases}
$$

is called the conditional mass function of X given Y.

If X and Y are independent, then for any possible value y of Y,

$$
p_{X \mid Y}(x \mid y)=p_{X}(x), \quad x \in \mathbb{R} .
$$

We always have

$$
p(x, y)=p_{Y}(y) p_{X \mid Y}(x \mid y), \quad x, y \in \mathbb{R} .
$$

We can similarly define the conditional mass function of Y given X

We also have

If X and Y are independent, then for any possible value y of Y,

$$
p_{X \mid Y}(x \mid y)=p_{X}(x), \quad x \in \mathbb{R} .
$$

We always have

$$
p(x, y)=p_{Y}(y) p_{X \mid Y}(x \mid y), \quad x, y \in \mathbb{R} .
$$

We can similarly define the conditional mass function of Y given X :

$$
p_{Y \mid X}(y \mid x)= \begin{cases}\frac{p(x, y)}{p_{X}(x)}, & p_{X}(x)>0 \\ 0, & \text { otherwise }\end{cases}
$$

We also have

$$
p(x, y)=p_{X}(x) p_{Y \mid X}(y \mid x), \quad x, y \in \mathbb{R}
$$

Example 1

The joint mass function of X and Y is given below. Find $p_{X \mid Y}(x \mid 2)$.

$p_{Y}(2)=3 / 16$. So

$$
p_{X \mid Y}(x \mid 2)= \begin{cases}2 / 3, & x=1 \\ 1 / 3, & x=2 \\ 0, & \text { otherwsie }\end{cases}
$$

$$
p_{Y}(2)=3 / 16 \text {. So }
$$

$$
p_{X \mid Y}(x \mid 2)= \begin{cases}2 / 3, & x=1 \\ 1 / 3, & x=2 \\ 0, & \text { otherwsie }\end{cases}
$$

Example 1

Suppose X and Y are independent, X is a Poisson random variable with parameter λ_{1}, Y is a Poisson random variable with parameter λ_{2}. For $n \geq 1$, find the conditional mass function of X given $X+Y=n$.

We know that $X+Y$ a Poisson random variable with parameter $\lambda_{1}+\lambda_{2}$. If $X+Y=n$, then X can only take values $0,1, \ldots, n$. For any $x=0,1, \ldots, n$,

$$
\begin{aligned}
p_{X \mid X+Y}(x \mid n) & =\frac{P(X=x, X+Y=n)}{P(X+Y=n)}=\frac{P(X=x, Y=n-x)}{P(X+Y=n)} \\
& =\frac{P(X=x) P(Y=n-x)}{P(X+Y=n)}=\frac{e^{-\lambda_{1} \frac{\lambda_{1}^{x}}{x!}} e^{-\lambda_{2}} \frac{\lambda_{2}^{n-x}}{(n-x)!}}{e^{-\left(\lambda_{1}+\lambda_{2}\right) \frac{\left(\lambda_{1}+\lambda_{2}\right)^{n}}{n!}}} \\
& =\binom{n}{x}\left(\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}\right)^{x}\left(\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}}\right)^{n-x} .
\end{aligned}
$$

We know that $X+Y$ a Poisson random variable with parameter $\lambda_{1}+\lambda_{2}$. If $X+Y=n$, then X can only take values $0,1, \ldots, n$. For any $x=0,1, \ldots, n$,

$$
\begin{aligned}
p_{X \mid X+Y}(x \mid n) & =\frac{P(X=x, X+Y=n)}{P(X+Y=n)}=\frac{P(X=x, Y=n-x)}{P(X+Y=n)} \\
& =\frac{P(X=x) P(Y=n-x)}{P(X+Y=n)}=\frac{e^{-\lambda_{1} \frac{\lambda_{1}^{x}}{x!}} e^{-\lambda_{2}} \frac{\lambda_{2}^{n-x}}{(n-x)!}}{e^{-\left(\lambda_{1}+\lambda_{2}\right) \frac{\left(\lambda_{1}+\lambda_{2}\right)^{n}}{n!}}} \\
& =\binom{n}{x}\left(\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}\right)^{x}\left(\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}}\right)^{n-x} .
\end{aligned}
$$

Thus, given $X+Y=n, X$ is a binomial random variable with parameters $\left(n, \lambda_{1} /\left(\lambda_{1}+\lambda_{2}\right)\right)$.

Example 2

X and Y are independent geometric random variables with parameter p. For $n \geq 2$, find the conditional mass function of X given $X+Y=n$.

Example 2

X and Y are independent geometric random variables with parameter
p. For $n \geq 2$, find the conditional mass function of X given $X+Y=n$.
$X+Y$ is a negative binomial random variable with parameters $(2, p)$:

$$
p_{X+Y}(n)=\binom{n-1}{1} p^{2}(1-p)^{n-2}, \quad n=2,3, \ldots
$$

Give $X+Y=n, X$ can only take values $1, \ldots, n-1$. For, $x=1, \ldots, n-1$,

$$
\begin{aligned}
p_{X \mid X+Y}(x \mid n) & =\frac{P(X=x, X+Y=n)}{P(X+Y=n)}=\frac{P(X=x, Y=n-x)}{P(X+Y=n)} \\
& =\frac{P(X=x) P(Y=n-x)}{P(X+Y=n)}=\frac{p(1-p)^{x-1} p(1-p)^{n-x-1}}{(n-1) p^{2}(1-p)^{n-2}} \\
& =\frac{1}{n-1} .
\end{aligned}
$$

Thus the conditional mass function of X given $X+Y=n$ is

$$
p_{X \mid X+Y}(x \mid n)= \begin{cases}\frac{1}{n-1}, & x=1, \ldots, n-1 \\ 0, & \text { otherwise }\end{cases}
$$

\qquad

Thus the conditional mass function of X given $X+Y=n$ is

$$
p_{X \mid X+Y}(x \mid n)= \begin{cases}\frac{1}{n-1}, & x=1, \ldots, n-1 \\ 0, & \text { otherwise }\end{cases}
$$

Example 3

A number Y is chosen randomly from $\{1,2, \ldots, 100\}$ and then another number X is randomly chosen from $\{1,2, \ldots, Y\}$. Find the joint mass function of X and Y.

$$
p_{Y}(y)= \begin{cases}\frac{1}{100}, & y=1, \ldots, 100 \\ 0, & \text { otherwise }\end{cases}
$$

For any $y=1, \ldots, 100$,

$$
p_{X \mid Y}(x \mid y)=\left\{\begin{array}{lc}
\frac{1}{y}, & x=1, \ldots, y, \\
0, & \text { otherwise }
\end{array}\right.
$$

$$
p_{Y}(y)= \begin{cases}\frac{1}{100}, & y=1, \ldots, 100 \\ 0, & \text { otherwise }\end{cases}
$$

For any $y=1, \ldots, 100$,

$$
p_{X \mid Y}(x \mid y)=\left\{\begin{array}{lc}
\frac{1}{y}, & x=1, \ldots, y, \\
0, & \text { otherwise }
\end{array}\right.
$$

Thus the joint mass function of X and Y is

$$
p(x, y)=p_{Y}(y) p_{X \mid Y}(x \mid y)= \begin{cases}\frac{1}{100 y}, & y=1, \ldots, 100 ; x=1, \ldots, y, \\ 0, & \text { otherwise }\end{cases}
$$

Outline

(1) General Info

2 6.4 Conditional distributions: discrete case

3 6.5 Conditional distributions: continuous case

Suppose that X and Y are jointly absolutely continuous with joint density $f(\cdot, \cdot)$. For any y with $f_{Y}(y)>0$, the function

$$
x \mapsto \frac{f(x, y)}{f_{Y}(y)}, \quad x \in \mathbb{R}
$$

is a probability density function. It is called the conditional density of X given $Y=y$.

Suppose that X and Y are jointly absolutely continuous with joint density $f(\cdot, \cdot)$. For any y with $f_{Y}(y)>0$, the function

$$
x \mapsto \frac{f(x, y)}{f_{Y}(y)}, \quad x \in \mathbb{R}
$$

is a probability density function. It is called the conditional density of X given $Y=y$.

More generally, the function

$$
f_{X \mid Y}(x \mid y)=\left\{\begin{array}{lc}
\frac{f(x, y)}{f_{Y}(y)}, & f_{Y}(y)>0 \\
0, & \text { otherwise }
\end{array}\right.
$$

is called the conditional density of X given Y.

If X and Y are independent, then for any y with $f_{Y}(y)>0$,

$$
f_{X \mid Y}(x \mid y)=f_{X}(x), \quad x \in \mathbb{R} .
$$

We always have

$$
f(x, y)=f_{Y}(y) f_{X \mid Y}(x \mid y), \quad x, y \in \mathbb{R} .
$$

We can similarly define the conditional density of Y given X

If X and Y are independent, then for any y with $f_{Y}(y)>0$,

$$
f_{X \mid Y}(x \mid y)=f_{X}(x), \quad x \in \mathbb{R} .
$$

We always have

$$
f(x, y)=f_{Y}(y) f_{X \mid Y}(x \mid y), \quad x, y \in \mathbb{R} .
$$

We can similarly define the conditional density of Y given X :

$$
f_{Y \mid X}(y \mid x)=\left\{\begin{array}{lc}
\frac{f(x, y)}{f_{X}(x)}, & f_{X}(x)>0 \\
0, & \text { otherwise }
\end{array}\right.
$$

We also have

$$
f(x, y)=f_{X}(x) f_{Y \mid X}(y \mid x), \quad x, y \in \mathbb{R}
$$

For any y with $f_{Y}(y)>0$, the conditional density $f_{X \mid Y}(x \mid y)$ allows us to define the conditional probability $P(X \in A \mid Y=y)$. For example, for any $a<b$,

$$
\left.P(X \in(a, b) \mid Y=y)=\int_{a}^{b} f_{X \mid Y} x \mid y\right) d x
$$

For any y with $f_{Y}(y)>0$, the conditional density $f_{X \mid Y}(x \mid y)$ allows us to define the conditional probability $P(X \in A \mid Y=y)$. For example, for any $a<b$,

$$
\left.P(X \in(a, b) \mid Y=y)=\int_{a}^{b} f_{X \mid Y} x \mid y\right) d x .
$$

$$
\begin{aligned}
& P(X \in(a, b) \mid Y=y)=\lim _{h \downarrow 0} P(X \in(a, b) \mid Y \in(y-h, y+h)) \\
& =\lim _{h \downarrow 0} \frac{P(X \in(a, b), Y \in(y-h, y+h))}{P(Y \in(y-h, y+h))} \\
& =\lim _{h \downarrow 0} \frac{\frac{1}{2 h} \int_{y-h}^{y+h} \int_{a}^{b} f(x, v) d x d v}{\frac{1}{2 h} \int_{y-h}^{y+h} f_{Y}(v) d v}=\int_{a}^{b} \frac{f(x, y)}{f_{Y}(y)} d x=\int_{a}^{b} f_{X \mid Y}(x \mid y) d x .
\end{aligned}
$$

Example 1

Suppose the joint density of X and Y is given by

$$
f(x, y)= \begin{cases}\lambda^{2} e^{-\lambda y}, & 0<x<y \\ 0, & \text { otherwise }\end{cases}
$$

Find $f_{Y \mid X}(y \mid x)$ for $0<x<y$.

Example 1

Suppose the joint density of X and Y is given by

$$
f(x, y)=\left\{\begin{array}{lc}
\lambda^{2} e^{-\lambda y}, & 0<x<y \\
0, & \text { otherwise }
\end{array}\right.
$$

Find $f_{Y \mid X}(y \mid x)$ for $0<x<y$.

For $x>0$,

$$
f_{X}(x)=\int_{x}^{\infty} \lambda^{2} e^{-\lambda y} d y=\lambda e^{-\lambda x}
$$

Thus for $0<x<y$,

$$
f_{Y \mid X}(y \mid x)=\frac{f(x, y)}{f_{X}(x)}=\lambda e^{-\lambda(y-x)} .
$$

Example 2

Let X and Y be uniformly distributed in the triangle with vertices at $(0,0),(2,0),(1,2)$. Find $P(X \leq 1 \mid Y=1)$.

Example 2

Let X and Y be uniformly distributed in the triangle with vertices at $(0,0),(2,0),(1,2)$. Find $P(X \leq 1 \mid Y=1)$.

$$
\begin{aligned}
& f_{Y}(1)=\frac{1}{2} \int_{1 / 2}^{3 / 2} d x=\frac{1}{2} . \text { Thus } \\
& \qquad f_{X \mid Y}(x \mid 1)=\left\{\begin{array}{lc}
1, & x \in(1 / 2,3 / 2), \\
0, & \text { otherwise } .
\end{array}\right.
\end{aligned}
$$

Thus $P(X \leq 1 \mid Y=1)=\frac{1}{2}$.

$f_{Y}(1)=\frac{1}{2} \int_{1 / 2}^{3 / 2} d x=\frac{1}{2}$. Thus

$$
f_{X \mid Y}(x \mid 1)=\left\{\begin{array}{lc}
1, & x \in(1 / 2,3 / 2) \\
0, & \text { otherwise }
\end{array}\right.
$$

Thus $P(X \leq 1 \mid Y=1)=\frac{1}{2}$.

Example 3

Suppose that a point X is randomly chosen from the interval $(0,1)$, and the a point Y is chosen randomly from ($0, X$). Find the joint density of X and Y.

$$
f_{X}(x)=\left\{\begin{array}{lc}
1, & x \in(0,1) \\
0, & \text { otherwise } .
\end{array}\right.
$$

For $x \in(0,1)$,

$$
f_{Y \mid X}(y \mid x)= \begin{cases}\frac{1}{x}, & y \in(0, x), \\ 0, & \text { otherwise. }\end{cases}
$$

Thus the joint density of X and Y is

$$
f_{X}(x)=\left\{\begin{array}{lc}
1, & x \in(0,1) \\
0, & \text { otherwise }
\end{array}\right.
$$

For $x \in(0,1)$,

$$
f_{Y \mid X}(y \mid x)= \begin{cases}\frac{1}{x}, & y \in(0, x) \\ 0, & \text { otherwise }\end{cases}
$$

Thus the joint density of X and Y is

$$
f(x, y)=f_{X}(x) f_{Y \mid X}(y \mid x)= \begin{cases}\frac{1}{x}, & 0<y<x<1 \\ 0, & \text { otherwise }\end{cases}
$$

