K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Math 461 Spring 2024

Renming Song

University of Illinois Urbana-Champaign

March 22, 2024

Outline

Outline

² [6.3 Sums of independent random variables](#page-5-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q

HW7 is due today before the end of class time . Please submit your HW7 via the course Moodle page.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q

HW7 is due today before the end of class time . Please submit your HW7 via the course Moodle page.

Solution to HW7 will be on my homepage this weekend.

Outline

² [6.3 Sums of independent random variables](#page-5-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Last time, we have seen that, if *X* and *Y* are independent abs. cont. random variables with density f_X and f_Y respectively, then the density of $Z = X + Y$ is

$$
f_Z(z)=\int_{-\infty}^{\infty}f_X(x)f_Y(z-x)dx
$$

We also have

$$
f_Z(z)=\int_{-\infty}^{\infty}f_X(z-y)f_Y(y)dy.
$$

Last time, we have seen that, if *X* and *Y* are independent abs. cont. random variables with density f_X and f_Y respectively, then the density of $Z = X + Y$ is

$$
f_Z(z)=\int_{-\infty}^{\infty}f_X(x)f_Y(z-x)dx
$$

We also have

$$
f_Z(z)=\int_{-\infty}^{\infty}f_X(z-y)f_Y(y)dy.
$$

Now let's suppose that *X* and *Y* are independent positive abs. cont. random variables with density f_X and f_Y respectively, then $Z = X + Y$ is a also a positive random variable and its density is

$$
f_Z(z) = \begin{cases} \int_0^z f_X(x) f_Y(z-x) dx, & z > 0, \\ 0, & \text{otherwise.} \end{cases}
$$

We also have

$$
f_Z(z) = \begin{cases} \int_0^z f_X(z-y) f_Y(y) dy, & z > 0, \\ 0, & \text{otherwise.} \end{cases}
$$

-
- and (μ_2, σ_2^2) respectively, then $X+Y$ is a normal random variable

$$
f_Z(z) = \begin{cases} \int_0^z f_X(x) f_Y(z-x) dx, & z > 0, \\ 0, & \text{otherwise.} \end{cases}
$$

We also have

$$
f_Z(z) = \begin{cases} \int_0^z f_X(z-y) f_Y(y) dy, & z > 0, \\ 0, & \text{otherwise.} \end{cases}
$$

Proposition

Suppose *X* and *Y* are independent random variables.

- **(i)** If X and Y are Gamma random variables with parameters (α, λ) and (β, λ) respectively, then $X + Y$ is a Gamma random variable with parameters $(\alpha + \beta, \lambda)$.
- (ii) If *X* and *Y* are normal random variables with parameters (μ_1, σ_1^2) and (μ_2, σ_2^2) respectively, then $X + Y$ is a normal random variable $(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2).$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 9 Q Q*

Let's prove (i). For any $z > 0$,

$$
f_{X+Y}(z) = \frac{1}{\Gamma(\alpha)\Gamma(\beta)} \int_0^z \lambda e^{-\lambda x} (\lambda x)^{\alpha-1} \lambda e^{-\lambda(z-x)} (\lambda(z-x))^{\beta-1} dx
$$

\n
$$
= \frac{\lambda e^{-\lambda z}}{\Gamma(\alpha)\Gamma(\beta)} \lambda^{\alpha+\beta-1} \int_0^z x^{\alpha-1} (z-x)^{\beta-1} dx
$$

\n
$$
= \frac{\lambda e^{-\lambda z}}{\Gamma(\alpha)\Gamma(\beta)} (\lambda z)^{\alpha+\beta-1} \int_0^1 u^{\alpha-1} (1-u)^{\beta-1} du, \quad x = zu,
$$

\n
$$
= \frac{\lambda e^{-\lambda z}}{\Gamma(\alpha)\Gamma(\beta)} (\lambda z)^{\alpha+\beta-1} B(\alpha, \beta)
$$

\n
$$
= \frac{1}{\Gamma(\alpha+\beta)} \lambda e^{-\lambda z} (\lambda z)^{\alpha+\beta-1}.
$$

Example 1

A basketball team will play a 44-game season. 26 of these games are against class *A* teams and 18 are are against class *B* teams. Suppose that the team will win each game against a class *A* team with probability .4 and will win each game against a class *B* team with probability .7. Suppose also that the results of different games are independent. Approximate the probability that

- **(a)** the team wins 25 or more games;
- **(b)** the team will win more games against class *A* teams than it does agains class *B* teams.

Example 1

A basketball team will play a 44-game season. 26 of these games are against class *A* teams and 18 are are against class *B* teams. Suppose that the team will win each game against a class *A* team with probability .4 and will win each game against a class *B* team with probability .7. Suppose also that the results of different games are independent. Approximate the probability that

- **(a)** the team wins 25 or more games;
- **(b)** the team will win more games against class *A* teams than it does agains class *B* teams.

Let X_A and X_B denote respectively the number of games the teams wins are against class *A* teams and are against class *B* teams. Then X_A and X_B are independent binomial random variables with parameters (26, .4) and (18, .7) respectively.

 $E[X_A] = 26(.4) = 10.4$, $Var(X_A) = 26(.4)(.6) = 6.24$ $E[X_B] = 18(.7) = 12.6$, $Var(X_B) = 18(.7)(.3) = 3.78$.

By the central limit theorem, *X^A* is approximately normal with parameters (10.4, 6.24) and X_B is approximately normal with parameters (12.6, 3.78).

$$
P(X_A + X_B \ge 25) = P(X_A + X_B \ge 24.5)
$$

= $P\left(\frac{X_A + X_B - 23}{\sqrt{10.02}} \ge \frac{24.5 - 23}{\sqrt{10.02}}\right)$
= $P\left(\frac{X_A + X_B - 23}{\sqrt{10.02}} \ge .4739\right) \approx 1 - \Phi(.4739) \approx .3178.$

 $E[X_A] = 26(.4) = 10.4$, $Var(X_A) = 26(.4)(.6) = 6.24$ $E[X_B] = 18(.7) = 12.6$, $Var(X_B) = 18(.7)(.3) = 3.78$.

By the central limit theorem, *X^A* is approximately normal with parameters (10.4, 6.24) and X_B is approximately normal with parameters (12.6, 3.78).

By the Proposition above, $X_A + X_B$ is approximately normal with parameters (23, 10.02) since X_A and X_B are independent. Thus

$$
P(X_A + X_B \ge 25) = P(X_A + X_B \ge 24.5)
$$

= $P\left(\frac{X_A + X_B - 23}{\sqrt{10.02}} \ge \frac{24.5 - 23}{\sqrt{10.02}}\right)$
= $P\left(\frac{X_A + X_B - 23}{\sqrt{10.02}} \ge .4739\right) \approx 1 - \Phi(.4739) \approx .3178.$

Since X_A and X_B are independent, by the Proposition above, $X_A - X_B$ is approximately normal with parameters (-2.2, 10.02). Hence

$$
P(X_A - X_B \ge 1) = P(X_A - X_B \ge .5)
$$

= $P\left(\frac{X_A - X_B + 2.2}{\sqrt{10.02}} \ge \frac{.5 + 2.2}{\sqrt{10.02}}\right)$
= $P\left(\frac{X_A - X_B + 2.2}{\sqrt{10.02}} \ge .8530\right) \approx 1 - \Phi(.8530) \approx .1968.$

Since X_A and X_B are independent, by the Proposition above, $X_A - X_B$ is approximately normal with parameters $(-2.2, 10.02)$. Hence

$$
P(X_A - X_B \ge 1) = P(X_A - X_B \ge .5)
$$

= $P\left(\frac{X_A - X_B + 2.2}{\sqrt{10.02}} \ge \frac{.5 + 2.2}{\sqrt{10.02}}\right)$
= $P\left(\frac{X_A - X_B + 2.2}{\sqrt{10.02}} \ge .8530\right) \approx 1 - \Phi(.8530) \approx .1968.$

Example 2

Suppose that *X* and *Y* are independent standard normal random variables. Find the density of $Z = X^2 + Y^2$.

KOD KOD KED KED E VOOR

We know that *X* ² and *Y* ² are independent Gamma random variables with parameters $(\frac{1}{2},\frac{1}{2})$. Thus $X^2 + Y^2$ is a Gamma random variables with parameters $(\frac{1}{2}, \frac{1}{2})$, that is, an exponential random variable with parameters $(1, \frac{1}{2})$, that is, an exponential random variable with parameter 1/2.

KORKAR KERKER E VOOR

We know that *X* ² and *Y* ² are independent Gamma random variables with parameters $(\frac{1}{2},\frac{1}{2}).$ Thus $\mathcal{X}^2+\mathcal{Y}^2$ is a Gamma random variables with parameters $(1,\frac{1}{2})$, that is, an exponential random variable with parameter 1/2.

Example 3

Suppose that *X* and *Y* are independent random variables, both uniformly distributed on (0, 1). Find the density of $Z = X + Y$.

KID K@ KKEX KEX E 1090

We know that *X* ² and *Y* ² are independent Gamma random variables with parameters $(\frac{1}{2},\frac{1}{2})$. Thus $X^2 + Y^2$ is a Gamma random variables with parameters $(\frac{1}{2}, \frac{1}{2})$, that is, an exponential random variable with parameters $(1, \frac{1}{2})$, that is, an exponential random variable with parameter 1/2.

Example 3

Suppose that *X* and *Y* are independent random variables, both uniformly distributed on (0, 1). Find the density of $Z = X + Y$.

Applying the formula directly is not easy. We look for the distribution of *Z* first.

イロト (御) (道) (道

 299

X + *Y* takes values in (0, 2). For $z \in (0, 1]$,

X + *Y* takes values in (0, 2). For $z \in (0, 1]$,

$$
P(Z \leq z) = P(X + Y \leq z) = \frac{z^2}{2}.
$$

For $z \in (1, 2)$,

$$
P(Z \le z) = P(X + Y \le z) = 1 - \frac{(2-z)^2}{2}.
$$

.
◆ ロ ▶ ◆ @ ▶ ◆ 경 ▶ → 경 ▶ │ 경 │ ◇ 9,9,0°

Thus the density of *Z* is $f_Z(z) =$ $\sqrt{ }$ \int \mathcal{L} *z*, 0≤*z* ≤ 1, 2 − *z*, 1 < *z* < 2, 0, otherwise.

Suppose that *X* and *Y* are independent discrete random variables with mass functions $p_X(\cdot)$ and $p_Y(\cdot)$ respectively. Find the mass function of $Z = X + Y$.

For any *z*,

$$
p_Z(z) = P(X + Y = z) = \sum_{x} P(X + Y = z, X = x)
$$

= $\sum_{x} P(X = x, Y = z - x) = \sum_{x} P(X = x)P(Y = z - x)$
= $\sum_{x} p_X(x)p_Y(z - x)$.

We also have
$$
p_Z(z) = \sum_{y} p_X(z - y) p_Y(y).
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

For any *z*,

$$
p_Z(z) = P(X + Y = z) = \sum_{x} P(X + Y = z, X = x)
$$

= $\sum_{x} P(X = x, Y = z - x) = \sum_{x} P(X = x)P(Y = z - x)$
= $\sum_{x} p_X(x)p_Y(z - x)$.

We also have $p_Z(z) = \sum$ *y p^X* (*z* − *y*)*p^Y* (*y*). If *X* and *Y* are integer-valued, then for any integer *z*,

$$
p_{X+Y}(z)=\sum_{x=-\infty}^{\infty}p_X(x)p_Y(z-x).
$$

If *X* and *Y* are non-negative integer-valued, then for any non-negative integer *z*,

$$
p_{X+Y}(z)=\sum_{x=0}^z p_X(x)p_Y(z-x).
$$

$$
p_{X+Y}(z) = \sum_{x=1}^{z-1} p_X(x) p_Y(z-x).
$$

 $\mathbf{1} \oplus \mathbf{1} \oplus \mathbf{$ 2990 If *X* and *Y* are integer-valued, then for any integer *z*,

$$
p_{X+Y}(z)=\sum_{x=-\infty}^{\infty}p_X(x)p_Y(z-x).
$$

If *X* and *Y* are non-negative integer-valued, then for any non-negative integer *z*,

$$
p_{X+Y}(z)=\sum_{x=0}^z p_X(x)p_Y(z-x).
$$

If *X* and *Y* are positive integer-valued, then $X + Y$ takes values $2, 3, \ldots$. For $z = 2, 3, \ldots$

$$
p_{X+Y}(z) = \sum_{x=1}^{z-1} p_X(x) p_Y(z-x).
$$

K ロ ト K 何 ト K ヨ ト K ヨ ト \Rightarrow 2990

Proposition

Suppose that *X* and *Y* are independent random variables.

- **(i)** If *X* is a binomial random variable with parameters (*m*, *p*), and *Y* is a binomial random variable with parameters (n, p) , then $X + Y$ is a binomial random variable with parameters $(m + n, p)$;
- **(ii)** If *X* is a Poisson random variables with parameter λ_1 , and *Y* is a Poisson random variables with parameter λ_2 , then $X + Y$ is a Poisson random variables with parameter $\lambda_1 + \lambda_2$;
- **(iii)** If *X* is a negative binomial random variable with parameters (r_1, p) , and Y is a negative binomial random variable with parameters (r_2, p) , then $X + Y$ is a negative binomial random variable with parameters $(r_1 + r_2, p)$.

KOD KOD KED KED E VOOR

Proposition

Suppose that *X* and *Y* are independent random variables.

- **(i)** If *X* is a binomial random variable with parameters (*m*, *p*), and *Y* is a binomial random variable with parameters (n, p) , then $X + Y$ is a binomial random variable with parameters $(m + n, p)$;
- **(ii)** If *X* is a Poisson random variables with parameter λ_1 , and *Y* is a Poisson random variables with parameter λ_2 , then $X + Y$ is a Poisson random variables with parameter $\lambda_1 + \lambda_2$;
- **(iii)** If *X* is a negative binomial random variable with parameters (r_1, p) , and Y is a negative binomial random variable with parameters (r_2, p) , then $X + Y$ is a negative binomial random variable with parameters $(r_1 + r_2, p)$.

I will only give the proof of (ii).

For any
$$
z = 0, 1, \ldots
$$
,

$$
p_{X+Y}(z) = \sum_{x=0}^{z} e^{-\lambda_1} \frac{\lambda_1^x}{x!} e^{-\lambda_2} \frac{\lambda_2^{z-x}}{(z-x)!}
$$

= $e^{-(\lambda_1 + \lambda_2)} \frac{(\lambda_1 + \lambda_2)^z}{z!} \sum_{x=0}^{z} {z \choose x} \left(\frac{\lambda_1}{\lambda_1 + \lambda_2}\right)^x \left(\frac{\lambda_2}{\lambda_1 + \lambda_2}\right)^{z-x}$
= $e^{-(\lambda_1 + \lambda_2)} \frac{(\lambda_1 + \lambda_2)^z}{z!}.$

For any
$$
z = 0, 1, \ldots
$$
,

$$
p_{X+Y}(z) = \sum_{x=0}^{z} e^{-\lambda_1} \frac{\lambda_1^x}{x!} e^{-\lambda_2} \frac{\lambda_2^{z-x}}{(z-x)!}
$$

= $e^{-(\lambda_1 + \lambda_2)} \frac{(\lambda_1 + \lambda_2)^z}{z!} \sum_{x=0}^{z} {z \choose x} \left(\frac{\lambda_1}{\lambda_1 + \lambda_2}\right)^x \left(\frac{\lambda_2}{\lambda_1 + \lambda_2}\right)^{z-x}$
= $e^{-(\lambda_1 + \lambda_2)} \frac{(\lambda_1 + \lambda_2)^z}{z!}.$

Example 4

Suppose that *X* and *Y* are independent geometric random variables with a common parameter *p*. Find (a) the mass function of min(*X*, *Y*); (b) $P(\min(X, Y) = X) = P(Y \ge X)$.

 $min(X, Y)$ takes only positive integer values. For $z = 1, 2, \ldots$,

$$
P(\min(X, Y) > z) = P(X > z, Y > z) = P(X > z)P(Y > z)
$$

= (1 - p)^{2z} = (1 - (2p - p²))^z.

Thus $min(X, Y)$ is a geometric random variable with parameter 2*p* − *p* 2 .

 $min(X, Y)$ takes only positive integer values. For $z = 1, 2, \ldots$,

$$
P(\min(X, Y) > z) = P(X > z, Y > z) = P(X > z)P(Y > z)
$$

= (1 - p)^{2z} = (1 - (2p - p²))^z.

Thus $min(X, Y)$ is a geometric random variable with parameter 2*p* − *p* 2 .

$$
P(Y \ge X) = \sum_{x=1}^{\infty} P(X = x, Y \ge X) = \sum_{x=1}^{\infty} P(X = x, Y \ge x)
$$

=
$$
\sum_{x=1}^{\infty} P(X = x)P(Y \ge x) = \sum_{x=1}^{\infty} p(1-p)^{x-1}(1-p)^{x-1}
$$

=
$$
p \sum_{x=1}^{\infty} (1 - (2p - p^2))^{x-1} = \frac{p}{2p - p^2} = \frac{1}{2 - p}.
$$

K ロ ⊁ K 個 ≯ K 違 ≯ K 違 ≯ … 違 2990 Suppose that *X* and *Y* are independent random variables such that

$$
P(X = i) = P(Y = i) = \frac{1}{100}, i = 1,... 100.
$$

Find (a) $P(X > Y)$; (b) $P(X = Y)$.

Suppose that *X* and *Y* are independent random variables such that

$$
P(X = i) = P(Y = i) = \frac{1}{100}, i = 1,... 100.
$$

Find (a) $P(X \ge Y)$; (b) $P(X = Y)$.

y=1

$$
P(X \ge Y) = \sum_{y=1}^{100} P(X \ge Y, Y = y) = \sum_{y=1}^{100} P(X \ge y)P(Y = y)
$$

= $\frac{1}{100^2} \sum_{y=1}^{100} (101 - y) = \frac{1}{100^2} \sum_{i=1}^{100} i = \frac{101}{200}.$

$$
P(X = Y) = \sum_{y=1}^{100} P(X = x, Y = X) = \sum_{y=1}^{100} P(X = x, Y = x)
$$

= $\sum_{y=1}^{100} P(X = x)P(Y = x) = \frac{1}{100}.$

100.