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HW7 is due Friday, 03/22, before the end of class time . Please
submit your HW7 via the course Moodle page.

Solution to HW6 is on my homepage now.
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Two random variables X and Y are said to be independent if for any
two subsets A and B of R,

P(X ∈ A,Y ∈ B) = P(X ∈ A)P(Y ∈ B).

It can be shown that X and Y are independent if and only if

F (x , y) = FX (x)FY (y), (x , y) ∈ R2.
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Example 2

Suppose that the number of people entering a certain post office on a
given day is a Poisson random variable with parameter λ > 0.
Assume that each person entering the post office is male with
probability p and female with probability 1 − p, independent of all
others. Show that the number of males and the number of females
entering the post office on a given day are independent Poisson
random variables with parameters λp and λ(1 − p) respectively.

Let X and Y be the number of males and the number of females
entering the post office on a given day respectively. X and Y are
non-negative integer-valued random variables.
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For any non-negative integers i and j ,

P(X = i ,Y = j) = P(X = i ,Y = j |X + Y = i + j)P(X + Y = i + j)

=

(
i + j

i

)
pi(1 − p)je−λ λi+j

(i + j)!

= e−λp (λp)i

i!
e−λ(1−p) (λ(1 − p))j

j!
.

Hence

P(X = i) = e−λp (λp)i

i!

∞∑
j=0

e−λ(1−p) (λ(1 − p))j

j!
= e−λp (λp)i

i!
.

Similarly

P(Y = j) = e−λ(1−p) (λ(1 − p))j

j!
.

Therefore X and Y are independent Poisson random variables with
parameters λp and λ(1 − p) respectively.
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Example 3

A man and a woman decide to meet at a certain location. If each of
them independently arrives at a time uniformly distributed between
noon and 1 pm. Find the probability that the first to arrive needs to
wait no more than 10 minutes.
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The answer is
602 − 502

602 =
11
36

.

Proposition

(i) Suppose that X and Y are discrete with joint mass function
p(·, ·). Then X and Y are independent if and only if

p(x , y) = g(x)h(y), (x , y) ∈ R2

for some functions g and h on R.
(ii) Suppose that X and Y are jointly abs. cont. with joint density

f (·, ·). Then X and Y are independent if and only if

f (x , y) = g(x)h(y), (x , y) ∈ R2,

for some functions g and h on R.
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Example 4

The joint density of X and Y is

f (x , y) =

{
10e−(2x+5y), x > 0, y > 0
0, otherwise.

If

g(x) =

{
10e−2x , x > 0,
0, otherwise,

h(y) =

{
e−5y , y > 0,
0, otherwise.

Then
f (x , y) = g(x)h(y), (x , y) ∈ R2.

Thus X and Y are independent.
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The joint density of X and Y is
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{
24xy , x ∈ (0,1), y ∈ (0,1), x + y ∈ (0,1)
0, otherwise.
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Both X and Y take values in (0,1). For x ∈ (0,1),

fX (x) =
∫ 1−x

0
24xydy = 12x(1 − x)2.

Similarly, for y ∈ (0,1),

fY (y) = 12y(1 − y)2.

X and Y are not independent!

The concept of independent random variables can be extended to
more than 2 random variables.
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n random variables X1, . . . ,Xn are said to be independent if for any
subsets A1, . . . ,An of R,

P(X1 ∈ A1, . . .Xn ∈ An) =
n∏

i=1

P(Xi ∈ Ai).

It can be shown that n random variables X1, . . . ,Xn with joint
distribution function F (·, . . . , ·) are independent if and only if

F (x1, . . . , xn) =
n∏

i=1

FXi (xi), (x1, . . . , xn) ∈ Rn.
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Example 6

Suppose that X1, . . . ,Xn are independent absolutely continuous
random random variables with a common density f . . Define

U = min{X1, . . . ,Xn}, V = max{X1, . . . ,Xn}.

Find the densities of U and V respectively.

Let’s deal with V first. Let F be the common distribution. For any
v ∈ R,

P(V ≤ v) = P(X1 ≤ v , . . . ,Xn ≤ v) = (F (v))n.

Thus the density of V is fV (v) = n(F (v))n−1f (v).
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Now let’s deal with U. For any u ∈ R,

P(U ≤ u) = 1 − P(U > u) = 1 − P(X1 > u, . . . ,Xn > u)
= 1 − (1 − F (u))n.

Thus the density of U is

fU(u) = n(1 − F (u))n−1f (u).

We can also find the joint density of U and V . I will come back to this
later in this chapter.
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Suppose X and Y are independent abs. cont. random variables with
density fX and fY respectively. Find the density of Z = X + Y .
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For any z ∈ R,

FZ (z) = P(X + Y ≤ z)

=

∫ ∞

−∞

(∫ z−x

−∞
fX (x)fY (y)dy

)
dx

=

∫ ∞

−∞

(∫ z

−∞
fX (x)fY (v − x)dv

)
dx , (y = v − x)

=

∫ z

−∞

∫ ∞

−∞
fX (x)fY (v − x)dxdv

Thus the density of Z is

fZ (z) =
∫ ∞

−∞
fX (x)fY (z − x)dx .

Similarly, we also have

fZ (z) =
∫ ∞

−∞
fX (z − y)fY (y)dy .
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