Math 461 Spring 2024

Renming Song

University of Illinois Urbana-Champaign

March 18, 2024

Outline

Outline

2 6.1 Joint distribution functions

3 6.2 Independent random variables

HW7 is due Friday, 03/22, before the end of class time .

HW7 is due Friday, 03/22, before the end of class time .

Solution to HW6 is on my homepage now.

Outline

(1) General Info

2 6.1 Joint distribution functions

3 6.2 Independent random variables

Example 3

The joint density of X and Y is given by

$$
f(x, y)= \begin{cases}6 e^{-2 x} e^{-3 y}, & x>0, y>0 \\ 0, & \text { otherwise }\end{cases}
$$

Find $P(X<Y)$.

Example 3

The joint density of X and Y is given by

$$
f(x, y)= \begin{cases}6 e^{-2 x} e^{-3 y}, & x>0, y>0 \\ 0, & \text { otherwise }\end{cases}
$$

Find $P(X<Y)$.

$$
\begin{aligned}
P(X<Y) & =\int_{0}^{\infty} \int_{x}^{\infty} 6 e^{-2 x} e^{-3 y} d y d x \\
& =\int_{0}^{\infty} 2 e^{-2 x} \int_{x}^{\infty} 3 e^{-3 y} d y d x \\
& =\int_{0}^{\infty} 2 e^{-5 x} d x=\frac{2}{5}
\end{aligned}
$$

$$
\begin{aligned}
P(X<Y) & =\int_{0}^{\infty} \int_{x}^{\infty} 6 e^{-2 x} e^{-3 y} d y d x \\
& =\int_{0}^{\infty} 2 e^{-2 x} \int_{x}^{\infty} 3 e^{-3 y} d y d x \\
& =\int_{0}^{\infty} 2 e^{-5 x} d x=\frac{2}{5}
\end{aligned}
$$

Example 4

The joint density of X and Y is given by

$$
f(x, y)=\left\{\begin{array}{lc}
2 e^{-(x+2 y)}, & x>0, y>0 \\
0, & \text { otherwise }
\end{array}\right.
$$

Find the density of $Z=X / Y$.
Z is a positive random variable. To find the density of Z, we need to find

$$
P(Z \leq z)=P\left(\frac{X}{Y} \leq z\right)=P\left(Y \geq \frac{X}{z}\right), \quad z>0 .
$$

Z is a positive random variable. To find the density of Z, we need to find

$$
P(Z \leq z)=P\left(\frac{X}{Y} \leq z\right)=P\left(Y \geq \frac{X}{z}\right), \quad z>0 .
$$

$$
\begin{aligned}
P(Z \leq z) & =\int_{0}^{\infty} e^{-x} \int_{x / z}^{\infty} 2 e^{-2 y} d y d x \\
& =\int_{0}^{\infty} e^{-\left(1+\frac{2}{2}\right) x} d x=\frac{z}{z+2}
\end{aligned}
$$

$$
\begin{aligned}
P(Z \leq z) & =\int_{0}^{\infty} e^{-x} \int_{x / z}^{\infty} 2 e^{-2 y} d y d x \\
& =\int_{0}^{\infty} e^{-\left(1+\frac{2}{2}\right) x} d x=\frac{z}{z+2}
\end{aligned}
$$

Thus the density of Z is

$$
f_{Z}(z)= \begin{cases}\frac{2}{(z+2)^{2}}, & z>0 \\ 0, & z \leq 0\end{cases}
$$

Example 5

Consider the disk of radius R centered at the origin. A point is random chosen from this disk. Let X and Y be the x and y coordinates of the chosen point. Then the joint density of X and Y is

$$
f(x, y)= \begin{cases}c, & x^{2}+y^{2}<R^{2} \\ 0, & x^{2}+y^{2} \geq R^{2}\end{cases}
$$

(a) Find the value of c. (b) Find the marginal densities of X and Y. (c) Find the density of Z, the distance between the chosen point and the origin. (d) Find $E[Z]$.
(a) $c=1 /\left(\pi R^{2}\right)$.
(b) X takes values in $(-R, R)$. For $x \in(-R, R)$,

$$
f_{X}(x)=\frac{1}{\pi R^{2}} \int_{-\sqrt{R^{2}-x^{2}}}^{\sqrt{R^{2}-x^{2}}} d y=\frac{2 \sqrt{R^{2}-x^{2}}}{\pi R^{2}}
$$

Thus the density of X is

$$
f_{X}(x)= \begin{cases}\frac{2 \sqrt{R^{2}-x^{2}}}{\pi R^{2}}, & x \in(-R, R) \\ 0, & \text { otherwise } .\end{cases}
$$

Similarly, the density of Y is

$$
f_{Y}(y)= \begin{cases}\frac{2 \sqrt{R^{2}-y^{2}}}{\pi R^{2}}, & y \in(-R, R) \\ 0, & \text { otherwise } .\end{cases}
$$

(c) Z takes values in $(0, R)$. For $z \in(0, R)$,

$$
P(Z \leq z)=\frac{z^{2}}{R^{2}}
$$

Thus the density of Z is

$$
f_{Z}(z)= \begin{cases}\frac{2 z}{R^{2}}, & z \in(0, R) \\ 0, & \text { otherwise }\end{cases}
$$

(d)

$$
E[Z]=\int_{0}^{R} \frac{2 z^{2}}{R^{2}} d z=\frac{2 R}{3} .
$$

If X and Y are absolutely continuous with joint distribution F, then the joint density is

(c) Z takes values in $(0, R)$. For $z \in(0, R)$,

$$
P(Z \leq z)=\frac{z^{2}}{R^{2}}
$$

Thus the density of Z is

$$
f_{Z}(z)= \begin{cases}\frac{2 z}{R^{2}}, & z \in(0, R) \\ 0, & \text { otherwise }\end{cases}
$$

(d)

$$
E[Z]=\int_{0}^{R} \frac{2 z^{2}}{R^{2}} d z=\frac{2 R}{3}
$$

If X and Y are absolutely continuous with joint distribution F, then the joint density is

$$
f(x, y)=\frac{\partial^{2} F}{\partial x \partial y}(x, y)
$$

We can also define the joint distribution function of n random variables X_{1}, \ldots, X_{n} in exactly the same manner as we did for $n=2$: The joint distribution function of X_{1}, \ldots, X_{n} is defined by

$$
F\left(x_{1}, \ldots, x_{n}\right)=P\left(X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right), \quad\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} .
$$

We can also define the joint distribution function of n random variables X_{1}, \ldots, X_{n} in exactly the same manner as we did for $n=2$: The joint distribution function of X_{1}, \ldots, X_{n} is defined by

$$
F\left(x_{1}, \ldots, x_{n}\right)=P\left(X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right), \quad\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} .
$$

The distribution function $F_{X_{i}}$ of $X_{i}, i=1, \ldots, n$, is called the marginal distribution function of X_{i} :

$$
\begin{array}{ll}
F_{X_{1}}\left(x_{1}\right)=P\left(X_{1} \leq x_{1}\right)=F\left(x_{1}, \infty, \ldots, \infty\right), & x_{1} \in \mathbb{R} \\
\ldots & \\
F_{X_{n}}\left(x_{n}\right)=P\left(X_{n} \leq x_{n}\right)=F\left(\infty, \ldots, \infty, x_{n}\right), & x_{n} \in \mathbb{R}
\end{array}
$$

The joint mass function of n discrete random variables X_{1}, \ldots, X_{n} is defined by

$$
p\left(x_{1}, \ldots, x_{n}\right)=P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right), \quad\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} .
$$

The joint mass function of n discrete random variables X_{1}, \ldots, X_{n} is defined by

$$
p\left(x_{1}, \ldots, x_{n}\right)=P\left(X_{1}=x_{1}, \ldots, x_{n}=x_{n}\right), \quad\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} .
$$

The mass function $p_{X_{i}}$ of $X_{i}, i=1, \ldots, n$, is called the marginal mass function of X_{i} :

$$
\begin{aligned}
& p_{X_{1}}\left(x_{1}\right)=P\left(X_{1}=x_{1}\right)=\sum_{x_{2}, \ldots, x_{n}} p\left(x_{1}, \ldots, x_{n}\right), \quad x_{1} \in \mathbb{R} \\
& \ldots \\
& p_{X_{n}}\left(x_{n}\right)=P\left(X_{n}=x_{n}\right)=\sum_{x_{1}, \ldots, x_{n-1}} p\left(x_{1}, \ldots, x_{n}\right), \quad x_{n} \in \mathbb{R} .
\end{aligned}
$$

n random variables X_{1}, \ldots, X_{n} are said to be jointly absolutely

 continuous if there is a non-negative function f on \mathbb{R}^{n} such that for all $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$,$$
P\left(X_{1} \leq x_{1}, \ldots, x_{n} \leq x_{n}\right)=\int_{-\infty}^{x_{1}} \cdots \int_{-\infty}^{x_{n}} f\left(y_{1}, \ldots, y_{n}\right) d y_{n} \cdots d y_{1} .
$$

f is called the joint density of X_{1}, \ldots, X_{n}.

If X_{1}, \ldots, X_{n} are jointly absolutely continuous with joint density f, then
n random variables X_{1}, \ldots, X_{n} are said to be jointly absolutely continuous if there is a non-negative function f on \mathbb{R}^{n} such that for all $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$,

$$
P\left(X_{1} \leq x_{1}, \ldots, x_{n} \leq x_{n}\right)=\int_{-\infty}^{x_{1}} \cdots \int_{-\infty}^{x_{n}} f\left(y_{1}, \ldots, y_{n}\right) d y_{n} \cdots d y_{1} .
$$

f is called the joint density of X_{1}, \ldots, X_{n}.

If X_{1}, \ldots, X_{n} are jointly absolutely continuous with joint density f, then for any region C of \mathbb{R}^{n},

$$
P\left(\left(X_{1}, \ldots, X_{n}\right) \in C\right)=\int \cdots \int_{C} f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \cdots d x_{n}
$$

If X_{1}, \ldots, X_{n} are jointly absolutely continuous with joint density f, then X_{1}, \ldots, X_{n} are also absolutely continuous with densities

$$
\begin{aligned}
& f_{X_{1}}\left(x_{1}\right)=\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} f\left(x_{1}, x_{2}, \ldots, x_{n}\right) d x_{2} \ldots d x_{n}, \quad x_{1} \in \mathbb{R} \\
& \ldots \\
& f_{X_{n}}\left(x_{n}\right)=\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} f\left(x_{1},, \ldots, x_{n-1}, x_{n}\right) d x_{1} \ldots d x_{n-1}, \quad x_{n} \in \mathbb{R} .
\end{aligned}
$$

$f_{X_{i}}\left(x_{i}\right)$ is called the marginal density of X_{i}.

Example: Multinomial distribution

A sequence n independent trails are performed. Suppose that each trial can result in any one of r possible outcomes with respective probabilities $p_{1}, \ldots, p_{r}, \sum_{i=1}^{r} p_{i}=1$. If we let X_{i} denote the number of the n trials that result in outcome $i, i=1, \ldots, r$, then

$$
P\left(X_{1}=n_{1}, \ldots, X_{r}=n_{r}\right)=\binom{n}{n_{1}, \ldots, n_{r}} p_{1}^{n_{1}} \cdots p_{r}^{n_{r}}
$$

whenever n_{1}, \ldots, n_{r} are non-negative integers such that $\sum_{i=1}^{r} n_{i}=n$.

Outline

(1) General Info

2 6.1 Joint distribution functions

3 6.2 Independent random variables

Two random variables X and Y are said to be independent if for any two subsets A and B of \mathbb{R},

$$
P(X \in A, Y \in B)=P(X \in A) P(Y \in B) .
$$

Two random variables X and Y are said to be independent if for any two subsets A and B of \mathbb{R},

$$
P(X \in A, Y \in B)=P(X \in A) P(Y \in B) .
$$

It can be shown that X and Y are independent if and only if

$$
F(x, y)=F_{X}(x) F_{Y}(y), \quad(x, y) \in \mathbb{R}^{2} .
$$

If X and Y are discrete random variables with joint mass function $p(\cdot, \cdot)$, then X and Y are independent if and only if

$$
p(x, y)=p_{X}(x) p_{Y}(y), \quad(x, y) \in \mathbb{R}^{2}
$$

If X and Y are discrete random variables with joint mass function $p(\cdot, \cdot)$, then X and Y are independent if and only if

$$
p(x, y)=p_{X}(x) p_{Y}(y), \quad(x, y) \in \mathbb{R}^{2} .
$$

If X and Y are jointly absolutely continuous with joint density $f(\cdot, \cdot)$, then X and Y are independent if and only if

$$
f(x, y)=f_{X}(x) f_{Y}(y), \quad(x, y) \in \mathbb{R}^{2}
$$

Example 1

Independent trails, each results in a success with probability p, are performed $n+m$ times. Let X be the number of successes in the first n trials; Y be the number of successes in the last m trials and Z the total number of successes.

Example 1

Independent trails, each results in a success with probability p, are performed $n+m$ times. Let X be the number of successes in the first n trials; Y be the number of successes in the last m trials and Z the total number of successes.
X and Y are independent, but X and Z are not independent.

