Math 461 Spring 2024

Renming Song

University of Illinois Urbana-Champaign

March 04, 2024

Outline

Outline

2 5.5 Exponential Random Variables

3 5.6 Other Absolutely Continuous Random Variables

HW6 is due Friday, 03/08, before the end of the class.

HW6 is due Friday, 03/08, before the end of the class.

Solution to Test 1 is on my homepage. The distribution of the score of Test 1 is available on my homepage.

Outline

(1) General Info

2 5.5 Exponential Random Variables

3 5.6 Other Absolutely Continuous Random Variables

For any $\lambda>0$, the function

$$
f(x)= \begin{cases}\lambda e^{-\lambda x}, & x \geq 0 \\ 0, & x<0\end{cases}
$$

is a probability density. It is called an exponential density with parameter λ.

> A random variable X is called an exponential random variable with parameter $\lambda>0$ if it is an absolutely continuous random variable whose density is an exponential density with parameter

For any $\lambda>0$, the function

$$
f(x)= \begin{cases}\lambda e^{-\lambda x}, & x \geq 0 \\ 0, & x<0\end{cases}
$$

is a probability density. It is called an exponential density with parameter λ.

A random variable X is called an exponential random variable with parameter $\lambda>0$ if it is an absolutely continuous random variable whose density is an exponential density with parameter λ.

If X is an exponential random variable with parameter $\lambda>0$, then for any $x \geq 0$,

$$
\begin{gathered}
P(X \leq x)=\int_{0}^{x} \lambda e^{-\lambda t} d t=1-e^{-\lambda x} \\
P(X>x)=e^{-\lambda x}
\end{gathered}
$$

Thus the distribution function of X is

$$
F(x)= \begin{cases}1-e^{-\lambda x}, & x \geq 0 \\ 0, & x<0\end{cases}
$$

If X is an exponential random variable with parameter $\lambda>0$, then

If X is an exponential random variable with parameter $\lambda>0$, then for any $x \geq 0$,

$$
\begin{gathered}
P(X \leq x)=\int_{0}^{x} \lambda e^{-\lambda t} d t=1-e^{-\lambda x} \\
P(X>x)=e^{-\lambda x}
\end{gathered}
$$

Thus the distribution function of X is

$$
F(x)= \begin{cases}1-e^{-\lambda x}, & x \geq 0 \\ 0, & x<0\end{cases}
$$

If X is an exponential random variable with parameter $\lambda>0$, then

$$
E[X]=\frac{1}{\lambda}, \quad \operatorname{Var}(X)=\frac{1}{\lambda^{2}}
$$

$$
\begin{aligned}
E[X] & =\int_{0}^{\infty} x \lambda e^{-\lambda x} d x=\int_{0}^{\infty} x d\left(-e^{-\lambda x}\right) \\
& =-\left.x e^{-\lambda x}\right|_{0} ^{\infty}+\int_{0}^{\infty} e^{-\lambda x} d x \\
& =0-\left.\frac{1}{\lambda} e^{-\lambda x}\right|_{0} ^{\infty}=\frac{1}{\lambda},
\end{aligned}
$$

For $n>1$

$$
\begin{aligned}
E[X] & =\int_{0}^{\infty} x \lambda e^{-\lambda x} d x=\int_{0}^{\infty} x d\left(-e^{-\lambda x}\right) \\
& =-\left.x e^{-\lambda x}\right|_{0} ^{\infty}+\int_{0}^{\infty} e^{-\lambda x} d x \\
& =0-\left.\frac{1}{\lambda} e^{-\lambda x}\right|_{0} ^{\infty}=\frac{1}{\lambda},
\end{aligned}
$$

For $n>1$,

$$
\begin{aligned}
E\left[X^{n}\right] & =\int_{0}^{\infty} x^{n} \lambda e^{-\lambda x} d x=\int_{0}^{\infty} x^{n} d\left(-e^{-\lambda x}\right) \\
& =-\left.x^{n} e^{-\lambda x}\right|_{0} ^{\infty}+\int_{0}^{\infty} n x^{n-1} e^{-\lambda x} d x \\
& =\frac{n}{\lambda} \int_{0}^{\infty} x^{n-1} \lambda e^{-\lambda x} d x=\frac{n}{\lambda} E\left[X^{n-1}\right] .
\end{aligned}
$$

Example

Suppose that the length X of a phone call in minutes is an exponential random variable with parameter $\lambda=1 / 5$. Find the probability that the phone call will (a) last more than 5 minutes; (b) last between 5 and 10 minutes.

Example

Suppose that the length X of a phone call in minutes is an exponential random variable with parameter $\lambda=1 / 5$. Find the probability that the phone call will (a) last more than 5 minutes; (b) last between 5 and 10 minutes.

$$
\begin{gathered}
P(X>5)=\int_{5}^{\infty} \frac{1}{5} e^{-x / 5} d x=e^{-1} \\
P(5 \leq X \leq 10)=\int_{5}^{10} \frac{1}{5} e^{-x / 5} d x=e^{-1}-e^{-2}
\end{gathered}
$$

Suppose X is an exponential random variable with parameter $\lambda>0$. For any $s, t>0$,

$$
\begin{aligned}
& P(X>s+t \mid X>t)=\frac{P(X>s+t)}{P(X>t)} \\
= & \frac{e^{-\lambda(s+t)}}{e^{-\lambda t}}=e^{-\lambda s}=P(X>s) .
\end{aligned}
$$

This property is called the memoryless property. Any exponential random variable satisfies the memoryless property.

The memoryless property is equivalent to

Suppose X is an exponential random variable with parameter $\lambda>0$. For any $s, t>0$,

$$
\begin{aligned}
& P(X>s+t \mid X>t)=\frac{P(X>s+t)}{P(X>t)} \\
= & \frac{e^{-\lambda(s+t)}}{e^{-\lambda t}}=e^{-\lambda s}=P(X>s) .
\end{aligned}
$$

This property is called the memoryless property. Any exponential random variable satisfies the memoryless property.

The memoryless property is equivalent to

$$
P(X>s+t)=P(X>s) P(X>t), \quad s, t>0
$$

It can be shown that if g is a non-negative right continuous function on $(0, \infty)$ taking values in $(0,1)$ such that

$$
g(s+t)=g(s) g(t), \quad s, t>0
$$

then there exists $\lambda>0$ such that

$$
g(t)=e^{-\lambda t}, \quad t>0
$$

It can be shown that if g is a non-negative right continuous function on $(0, \infty)$ taking values in $(0,1)$ such that

$$
g(s+t)=g(s) g(t), \quad s, t>0
$$

then there exists $\lambda>0$ such that

$$
g(t)=e^{-\lambda t}, \quad t>0
$$

Thus if a random variable satisfies the memoryless property, it must be an exponential random variable. Thus exponential random variables are very important in applications.

If the lifetime of a certain object, like a light bulb or computer chip, has the memoryless property, then we can use the exponential distribution to model the lifetime. The lifetime of a car usually does not satisfy the memoryless property, thus it is not reasonable to use an exponential random variable to model the lifetime of a car.

If the lifetime of a certain object, like a light bulb or computer chip, has the memoryless property, then we can use the exponential distribution to model the lifetime. The lifetime of a car usually does not satisfy the memoryless property, thus it is not reasonable to use an exponential random variable to model the lifetime of a car.

Example 2

Suppose that X an exponential random variable with parameter $\lambda>0$. Define a new random variable Y as follows: $Y=n$ when $X \in(n-1, n], n=1,2, \ldots$. Find the mass function of Y.

For $n=1,2, \ldots$,

$$
\begin{aligned}
P(Y=n) & =P(n-1<X \leq n)=e^{-\lambda(n-1)}-e^{-\lambda n} \\
& =e^{-\lambda(n-1)}\left(1-e^{-\lambda}\right) .
\end{aligned}
$$

Thus Y is a geometric random variable with parameter $p=1-e^{-\lambda}$.

Geometric random variables are the discrete counterpart of exponential random variables. Exponential random variables a the continuous counterpart of geometric random variables.

For $n=1,2, \ldots$,

$$
\begin{aligned}
P(Y=n) & =P(n-1<X \leq n)=e^{-\lambda(n-1)}-e^{-\lambda n} \\
& =e^{-\lambda(n-1)}\left(1-e^{-\lambda}\right) .
\end{aligned}
$$

Thus Y is a geometric random variable with parameter $p=1-e^{-\lambda}$.

Geometric random variables are the discrete counterpart of exponential random variables. Exponential random variables are the continuous counterpart of geometric random variables.

Example 3

Suppose that the lifetime X of a light bulb in months is an exponential random variable with parameter $\lambda=1 / 12$. If the light bulb has been working for 12 months, find the probability that it will work for another 12 months.

By the meomoryless property

Example 3

Suppose that the lifetime X of a light bulb in months is an exponential random variable with parameter $\lambda=1 / 12$. If the light bulb has been working for 12 months, find the probability that it will work for another 12 months.

By the meomoryless property

$$
P(X>24 \mid X>12)=P(X>12)=e^{-1} .
$$

Outline

(1) General Info

2 5.5 Exponential Random Variables

3 5.6 Other Absolutely Continuous Random Variables

For any $\alpha>0$, we define

$$
\Gamma(\alpha)=\int_{0}^{\infty} y^{\alpha-1} e^{-y} d y
$$

For any $\alpha>0, \Gamma(\alpha) \in(0, \infty)$. But we do not know the value of $\Gamma(\alpha)$ in general. We do know that $\Gamma(1)=1$.

For any $\alpha>0$, we define

$$
\Gamma(\alpha)=\int_{0}^{\infty} y^{\alpha-1} e^{-y} d y
$$

For any $\alpha>0, \Gamma(\alpha) \in(0, \infty)$. But we do not know the value of $\Gamma(\alpha)$ in general. We do know that $\Gamma(1)=1$.

We claim that, for any $\alpha>0, \Gamma(\alpha+1)=\alpha \Gamma(\alpha)$. Combining this with $\Gamma(1)=1$, we immediately get $\Gamma(n)=(n-1)$! for all $n \geq 1$.

$$
\begin{aligned}
\Gamma(\alpha+1) & =\int_{0}^{\infty} y^{\alpha} e^{-y} d y=\int_{0}^{\infty} y^{\alpha} d\left(-e^{-y}\right) \\
& =-\left.y^{\alpha} e^{-y}\right|_{0} ^{\infty}+\int_{0}^{\infty} \alpha y^{\alpha-1} e^{-y} d y \\
& =\alpha \Gamma(\alpha) .
\end{aligned}
$$

By using a simple change of variables, one can check that, for any $\alpha>0$ and $\lambda>0$, the function

$$
\begin{aligned}
\Gamma(\alpha+1) & =\int_{0}^{\infty} y^{\alpha} e^{-y} d y=\int_{0}^{\infty} y^{\alpha} d\left(-e^{-y}\right) \\
& =-\left.y^{\alpha} e^{-y}\right|_{0} ^{\infty}+\int_{0}^{\infty} \alpha y^{\alpha-1} e^{-y} d y \\
& =\alpha \Gamma(\alpha) .
\end{aligned}
$$

By using a simple change of variables, one can check that, for any $\alpha>0$ and $\lambda>0$, the function

$$
f(x)= \begin{cases}\frac{1}{\Gamma(\alpha)}(\lambda x)^{\alpha-1} \lambda e^{-\lambda x}, & x \geq 0 \\ 0, & x<0\end{cases}
$$

is a probability density. It is called a Gamma density with parameters (α, λ).

