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HW6 is due Friday, 03/08, before the end of the class.

Solution to Test 1 is on my homepage. The distribution of the score of
Test 1 is available on my homepage.
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For any λ > 0, the function

f (x) =

{
λe−λx , x ≥ 0
0, x < 0,

is a probability density. It is called an exponential density with
parameter λ.

A random variable X is called an exponential random variable with
parameter λ > 0 if it is an absolutely continuous random variable
whose density is an exponential density with parameter λ.
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If X is an exponential random variable with parameter λ > 0, then for
any x ≥ 0,

P(X ≤ x) =
∫ x

0
λe−λtdt = 1 − e−λx ,

P(X > x) = e−λx .

Thus the distribution function of X is

F (x) =

{
1 − e−λx , x ≥ 0
0, x < 0.

If X is an exponential random variable with parameter λ > 0, then

E [X ] =
1
λ
, Var(X ) =

1
λ2 .
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E [X ] =

∫ ∞

0
xλe−λxdx =

∫ ∞

0
xd(−e−λx)

=− xe−λx
∣∣∞
0 +

∫ ∞

0
e−λxdx

=0 − 1
λ

e−λx
∣∣∞
0 =

1
λ
,

For n > 1,

E [X n] =

∫ ∞

0
xnλe−λxdx =

∫ ∞

0
xnd(−e−λx)

=− xne−λx
∣∣∞
0 +

∫ ∞

0
nxn−1e−λxdx

=
n
λ

∫ ∞

0
xn−1λe−λxdx =

n
λ

E [X n−1].
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Example

Suppose that the length X of a phone call in minutes is an
exponential random variable with parameter λ = 1/5. Find the
probability that the phone call will (a) last more than 5 minutes; (b)
last between 5 and 10 minutes.

P(X > 5) =
∫ ∞

5

1
5

e−x/5dx = e−1.

P(5 ≤ X ≤ 10) =
∫ 10

5

1
5

e−x/5dx = e−1 − e−2.
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Suppose X is an exponential random variable with parameter λ > 0.
For any s, t > 0,

P(X > s + t |X > t) =
P(X > s + t)

P(X > t)

=
e−λ(s+t)

e−λt = e−λs = P(X > s).

This property is called the memoryless property. Any exponential
random variable satisfies the memoryless property.

The memoryless property is equivalent to

P(X > s + t) = P(X > s)P(X > t), s, t > 0.
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It can be shown that if g is a non-negative right continuous function
on (0,∞) taking values in (0,1) such that

g(s + t) = g(s)g(t), s, t > 0,

then there exists λ > 0 such that

g(t) = e−λt , t > 0.

Thus if a random variable satisfies the memoryless property, it must
be an exponential random variable. Thus exponential random
variables are very important in applications.
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If the lifetime of a certain object, like a light bulb or computer chip, has
the memoryless property, then we can use the exponential
distribution to model the lifetime. The lifetime of a car usually does
not satisfy the memoryless property, thus it is not reasonable to use
an exponential random variable to model the lifetime of a car.

Example 2

Suppose that X an exponential random variable with parameter
λ > 0. Define a new random variable Y as follows: Y = n when
X ∈ (n − 1,n], n = 1,2, . . . . Find the mass function of Y .
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For n = 1,2, . . . ,

P(Y = n) =P(n − 1 < X ≤ n) = e−λ(n−1) − e−λn

=e−λ(n−1)(1 − e−λ).

Thus Y is a geometric random variable with parameter p = 1 − e−λ.

Geometric random variables are the discrete counterpart of
exponential random variables. Exponential random variables are the
continuous counterpart of geometric random variables.
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Example 3

Suppose that the lifetime X of a light bulb in months is an exponential
random variable with parameter λ = 1/12. If the light bulb has been
working for 12 months, find the probability that it will work for another
12 months.

By the meomoryless property

P(X > 24|X > 12) = P(X > 12) = e−1.
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For any α > 0, we define

Γ(α) =

∫ ∞

0
yα−1e−y dy .

For any α > 0, Γ(α) ∈ (0,∞). But we do not know the value of Γ(α) in
general. We do know that Γ(1) = 1.

We claim that, for any α > 0, Γ(α+ 1) = αΓ(α). Combining this with
Γ(1) = 1, we immediately get Γ(n) = (n − 1)! for all n ≥ 1.
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Γ(α+ 1) =
∫ ∞

0
yαe−y dy =

∫ ∞

0
yαd(−e−y )

=− yαe−y
∣∣∞
0 +

∫ ∞

0
αyα−1e−y dy

=αΓ(α).

By using a simple change of variables, one can check that, for any
α > 0 and λ > 0, the function

f (x) =

{
1

Γ(α) (λx)α−1λe−λx , x ≥ 0
0, x < 0,

is a probability density. It is called a Gamma density with parameters
(α, λ).
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