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General Info 5.4 Normal Random Variables

Test 1 is on Friday. There is no homework due on Friday. Topics
covered in Test 1 include everything we covered in the first 4
Chapters. I will do a brief review on Wed and spend most of the
lecture time Wed answering questions.

Solution to HW5 is on my homepage now.
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General Info 5.4 Normal Random Variables

An important result in probability theory, known as the
DeMoivre-Laplace central limit theorem, state that, when n is large, a
binomial random variable with parameters (n,p) will have
approximately the same distribution as a normal random variable with
the same mean and variance.

DeMoivre-Laplace central limit theorem

If Sn denotes the number of successes that occur when n
independent trials, each resulting in a success with probability p, are
performed, then, for any a < b,

lim
n→∞

P

(
a ≤ Sn − np√

np(1 − p)
≤ b

)
= Φ(b)− Φ(a).
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I will not prove this theorem now. I will give a proof of a more general
result in Chapter 8.

The theorem above says that when n is large enough, the distribution
of

Sn − np√
np(1 − p)

is approximately standard normal. But how large is large enough?

In general, the normal approximation will very good for values of n
satisfying np(1 − p) ≥ 10.
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Example 3

Let X be the number of times that a fair coin, flipped 40 times, lands
Heads. Find the probability that X = 20. Use normal approximation
and then compare it with the exact value.

P(X = 20) =
(

40
20

)
(
1
2
)40 ≈ 0.1254.

Normal approximation (np(1 − p) = 10)

P(X = 20) = P(
X − 20√

10
=

20 − 20√
10

) = 0.

What is the problem?

We are using a continuous random variable to approximate an
integer-valued random variable. We need “round” things up correctly!
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P(X = 20) = P(19.5 ≤ X < 20.5)

=P(
19.5 − 20√

10
≤ X − 20√

10
<

20.5 − 20√
10

)

≈P(−0.16 ≤ X − 20√
10

≤ 0.16) = Φ(0.16)− Φ(−0.16) = 0.1272.

The approximation is pretty good!

Example 4

The ideal size of a first-year class in a particular college is 150
students. Past experience shows that, on average, 30% of those
accepted for admission will eventually attend the college. The college
uses a policy of accepting 450 students. Find the probability that
more than 150 first-year students will attend the college.
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Let X be the number of first-year students attending the college. Then
X is a binomial random variable with parameters (450,0.3). Thus

P(X > 150) = P(X ≥ 150.5)

=P(
X − 450 · 0.3√
450 · 0.3 · 0.7

≥ 150.5 − 450 · 0.3√
450 · 0.3 · 0.7

)

≈P(
X − 135√

450 · 0.3 · 0.7
≥ 1.59)

=1 − Φ(1.59) ≈ 0.0559.

Now I am going to give an application of the normal approximation to
polling.
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Example 5

A sample of size n is taken to determine the percentage of the
population planning to vote for a certain candidate in an upcoming
election. Let Xk = 1 if the k -th person sampled plans to vote for the
candidate and Xk = 0 otherwise. We assume that X1, . . . ,Xk are
independently and identically distributed with

P(X1 = 1) = p, P(X1 = 0) = 1 − p.

Assume that the election is not lopsided so that
√

p(1 − p) is close to
1/2. (If p ∈ (0.3,0.7), then

√
p(1 − p) ≥ 0.458.)

Let Sn = X1 + · · ·+ Xn. Then Sn/n denotes the fraction of the people
sampled plan to vote for the candidate and can be used to estimate
the true but unknown probability p.
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(a) Suppose n = 900. Find P(|Sn
n − p| ≥ 0.025). (b) Suppose

n = 900. Find c so that P((|Sn
n − p| ≥ c) = 0.01). (c) Find n such that

P((|Sn
n − p| ≥ 0.025) = 0.01.

P(|Sn

n
− p| ≥ c)

=P(Sn ≤ np − cn) + P(Sn ≥ np + cn)

=P(
Sn − np√
np(1 − p)

≤ − cn√
np(1 − p)

) + P(
Sn − np√
np(1 − p)

≥ cn√
np(1 − p)

)

≈P(Z < −2c
√

n) + P(Z > 2c
√

n)

= 2(1 − Φ(2c
√

n)).
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(a)

P(|S900

900
− p| ≥ 0.025) ≈ 2(1 − Φ(1.5)) ≈ 0.134.

(b) Since

P(|S900

900
− p| ≥ c) ≈ 2(1 − Φ(60c)),

in order for
P(|S900

900
− p| ≥ c) = 0.01,

we must have
2(1 − Φ(60c)) = 0.01.

That is
Φ(60c) = 0.995.

Thus 60c = 2.58 and hence c = 0.043.
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Since
P(|Sn

n
− p| ≥ 0.025) ≈ 2(1 − Φ(0.05

√
n)),

in order for
P(|Sn

n
− p| ≥ 0.025) = 0.01,

we must have
2(1 − Φ(0.05

√
n)) = 0.01.

So
0.05

√
n = 2.58

and
n = 2663.
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