▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Math 461 Spring 2024

Renming Song

University of Illinois Urbana-Champaign

February 26, 2024

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Outline

Outline

2 5.4 Normal Random Variables

▲□▶▲圖▶▲≣▶▲≣▶ ■ ろくの

(日) (日) (日) (日) (日) (日) (日)

Test 1 is on Friday. There is no homework due on Friday. Topics covered in Test 1 include everything we covered in the first 4 Chapters. I will do a brief review on Wed and spend most of the lecture time Wed answering questions.

Solution to HW5 is on my homepage now.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Test 1 is on Friday. There is no homework due on Friday. Topics covered in Test 1 include everything we covered in the first 4 Chapters. I will do a brief review on Wed and spend most of the lecture time Wed answering questions.

Solution to HW5 is on my homepage now.

Outline

An important result in probability theory, known as the DeMoivre-Laplace central limit theorem, state that, when n is large, a binomial random variable with parameters (n, p) will have approximately the same distribution as a normal random variable with the same mean and variance.

DeMoivre-Laplace central limit theorem

If S_n denotes the number of successes that occur when n independent trials, each resulting in a success with probability p, are performed, then, for any a < b,

$$\lim_{n\to\infty} P\left(a \leq \frac{S_n - n\rho}{\sqrt{n\rho(1-\rho)}} \leq b\right) = \Phi(b) - \Phi(a).$$

An important result in probability theory, known as the DeMoivre-Laplace central limit theorem, state that, when n is large, a binomial random variable with parameters (n, p) will have approximately the same distribution as a normal random variable with the same mean and variance.

DeMoivre-Laplace central limit theorem

If S_n denotes the number of successes that occur when *n* independent trials, each resulting in a success with probability *p*, are performed, then, for any a < b,

$$\lim_{n\to\infty} P\left(a\leq \frac{S_n-np}{\sqrt{np(1-p)}}\leq b\right)=\Phi(b)-\Phi(a).$$

I will not prove this theorem now. I will give a proof of a more general result in Chapter 8.

The theorem above says that when *n* is large enough, the distribution of

$$\frac{S_n - np}{\sqrt{np(1-p)}}$$

is approximately standard normal. But how large is large enough?

In general, the normal approximation will very good for values of *n* satisfying $np(1-p) \ge 10$.

I will not prove this theorem now. I will give a proof of a more general result in Chapter 8.

The theorem above says that when *n* is large enough, the distribution of

$$\frac{S_n - np}{\sqrt{np(1-p)}}$$

is approximately standard normal. But how large is large enough?

In general, the normal approximation will very good for values of *n* satisfying $np(1-p) \ge 10$.

(日) (日) (日) (日) (日) (日) (日)

I will not prove this theorem now. I will give a proof of a more general result in Chapter 8.

The theorem above says that when *n* is large enough, the distribution of

$$\frac{S_n - np}{\sqrt{np(1-p)}}$$

is approximately standard normal. But how large is large enough?

In general, the normal approximation will very good for values of *n* satisfying $np(1-p) \ge 10$.

Let X be the number of times that a fair coin, flipped 40 times, lands Heads. Find the probability that X = 20. Use normal approximation and then compare it with the exact value.

$$P(X=20) = \binom{40}{20} (\frac{1}{2})^{40} \approx 0.1254.$$

Normal approximation (np(1 - p) = 10)

$$P(X = 20) = P(\frac{X - 20}{\sqrt{10}} = \frac{20 - 20}{\sqrt{10}}) = 0.$$

What is the problem?

We are using a continuous random variable to approximate an integer-valued random variable. We need "round" things up correctly!

Let X be the number of times that a fair coin, flipped 40 times, lands Heads. Find the probability that X = 20. Use normal approximation and then compare it with the exact value.

$$P(X = 20) = {40 \choose 20} (rac{1}{2})^{40} \approx 0.1254.$$

Normal approximation (np(1 - p) = 10)

$$P(X = 20) = P(\frac{X - 20}{\sqrt{10}} = \frac{20 - 20}{\sqrt{10}}) = 0.$$

What is the problem?

We are using a continuous random variable to approximate an integer-valued random variable. We need "round" things up correctly!

・ロト・日本・日本・日本・日本・日本

Let X be the number of times that a fair coin, flipped 40 times, lands Heads. Find the probability that X = 20. Use normal approximation and then compare it with the exact value.

$$P(X = 20) = {40 \choose 20} (rac{1}{2})^{40} \approx 0.1254.$$

Normal approximation (np(1-p) = 10)

$$P(X = 20) = P(\frac{X - 20}{\sqrt{10}} = \frac{20 - 20}{\sqrt{10}}) = 0.$$

What is the problem?

We are using a continuous random variable to approximate an integer-valued random variable. We need "round" things up correctly!

$$P(X = 20) = P(19.5 \le X < 20.5)$$

= $P(\frac{19.5 - 20}{\sqrt{10}} \le \frac{X - 20}{\sqrt{10}} < \frac{20.5 - 20}{\sqrt{10}})$
 $\approx P(-0.16 \le \frac{X - 20}{\sqrt{10}} \le 0.16) = \Phi(0.16) - \Phi(-0.16) = 0.1272.$

The approximation is pretty good!

Example 4

The ideal size of a first-year class in a particular college is 150 students. Past experience shows that, on average, 30% of those accepted for admission will eventually attend the college. The college uses a policy of accepting 450 students. Find the probability that more than 150 first-year students will attend the college.

$$P(X = 20) = P(19.5 \le X < 20.5)$$

= $P(\frac{19.5 - 20}{\sqrt{10}} \le \frac{X - 20}{\sqrt{10}} < \frac{20.5 - 20}{\sqrt{10}})$
 $\approx P(-0.16 \le \frac{X - 20}{\sqrt{10}} \le 0.16) = \Phi(0.16) - \Phi(-0.16) = 0.1272.$

The approximation is pretty good!

Example 4

The ideal size of a first-year class in a particular college is 150 students. Past experience shows that, on average, 30% of those accepted for admission will eventually attend the college. The college uses a policy of accepting 450 students. Find the probability that more than 150 first-year students will attend the college.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Let X be the number of first-year students attending the college. Then X is a binomial random variable with parameters (450, 0.3). Thus

$$\begin{split} & P(X > 150) = P(X \ge 150.5) \\ &= P(\frac{X - 450 \cdot 0.3}{\sqrt{450 \cdot 0.3 \cdot 0.7}} \ge \frac{150.5 - 450 \cdot 0.3}{\sqrt{450 \cdot 0.3 \cdot 0.7}}) \\ &\approx P(\frac{X - 135}{\sqrt{450 \cdot 0.3 \cdot 0.7}} \ge 1.59) \\ &= 1 - \Phi(1.59) \approx 0.0559. \end{split}$$

Now I am going to give an application of the normal approximation to polling.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Let X be the number of first-year students attending the college. Then X is a binomial random variable with parameters (450, 0.3). Thus

$$\begin{split} P(X > 150) &= P(X \ge 150.5) \\ &= P(\frac{X - 450 \cdot 0.3}{\sqrt{450 \cdot 0.3 \cdot 0.7}} \ge \frac{150.5 - 450 \cdot 0.3}{\sqrt{450 \cdot 0.3 \cdot 0.7}}) \\ &\approx P(\frac{X - 135}{\sqrt{450 \cdot 0.3 \cdot 0.7}} \ge 1.59) \\ &= 1 - \Phi(1.59) \approx 0.0559. \end{split}$$

Now I am going to give an application of the normal approximation to polling.

A sample of size *n* is taken to determine the percentage of the population planning to vote for a certain candidate in an upcoming election. Let $X_k = 1$ if the *k*-th person sampled plans to vote for the candidate and $X_k = 0$ otherwise. We assume that X_1, \ldots, X_k are independently and identically distributed with

$$P(X_1 = 1) = p, P(X_1 = 0) = 1 - p.$$

Assume that the election is not lopsided so that $\sqrt{p(1-p)}$ is close to 1/2. (If $p \in (0.3, 0.7)$, then $\sqrt{p(1-p)} \ge 0.458$.)

Let $S_n = X_1 + \cdots + X_n$. Then S_n/n denotes the fraction of the people sampled plan to vote for the candidate and can be used to estimate the true but unknown probability p.

A sample of size *n* is taken to determine the percentage of the population planning to vote for a certain candidate in an upcoming election. Let $X_k = 1$ if the *k*-th person sampled plans to vote for the candidate and $X_k = 0$ otherwise. We assume that X_1, \ldots, X_k are independently and identically distributed with

$$P(X_1 = 1) = p, P(X_1 = 0) = 1 - p.$$

Assume that the election is not lopsided so that $\sqrt{p(1-p)}$ is close to 1/2. (If $p \in (0.3, 0.7)$, then $\sqrt{p(1-p)} \ge 0.458$.)

Let $S_n = X_1 + \cdots + X_n$. Then S_n/n denotes the fraction of the people sampled plan to vote for the candidate and can be used to estimate the true but unknown probability p.

(a) Suppose n = 900. Find $P(|\frac{S_n}{n} - p| \ge 0.025)$. (b) Suppose n = 900. Find c so that $P((|\frac{S_n}{n} - p| \ge c) = 0.01)$. (c) Find n such that $P((|\frac{S_n}{n} - p| \ge 0.025) = 0.01$.

$$P(|\frac{S_n}{n} - p| \ge c)$$

= $P(S_n \le np - cn) + P(S_n \ge np + cn)$
= $P(\frac{S_n - np}{\sqrt{np(1-p)}} \le -\frac{cn}{\sqrt{np(1-p)}}) + P(\frac{S_n - np}{\sqrt{np(1-p)}} \ge \frac{cn}{\sqrt{np(1-p)}})$
 $\approx P(Z < -2c\sqrt{n}) + P(Z > 2c\sqrt{n})$
= $2(1 - \Phi(2c\sqrt{n})).$

(日) (日) (日) (日) (日) (日) (日)

(a) Suppose n = 900. Find $P(|\frac{S_n}{n} - p| \ge 0.025)$. (b) Suppose n = 900. Find c so that $P((|\frac{S_n}{n} - p| \ge c) = 0.01)$. (c) Find n such that $P((|\frac{S_n}{n} - p| \ge 0.025) = 0.01$.

$$\begin{split} & P(|\frac{S_n}{n} - p| \ge c) \\ = & P(S_n \le np - cn) + P(S_n \ge np + cn) \\ = & P(\frac{S_n - np}{\sqrt{np(1-p)}} \le -\frac{cn}{\sqrt{np(1-p)}}) + P(\frac{S_n - np}{\sqrt{np(1-p)}} \ge \frac{cn}{\sqrt{np(1-p)}}) \\ \approx & P(Z < -2c\sqrt{n}) + P(Z > 2c\sqrt{n}) \\ = & 2(1 - \Phi(2c\sqrt{n})). \end{split}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

(a)
$$P(|rac{S_{900}}{900}-p|\geq 0.025)pprox 2(1-\Phi(1.5))pprox 0.134.$$

(b) Since

$$P(|\frac{S_{900}}{900} - p| \ge c) \approx 2(1 - \Phi(60c)),$$
in order for

$$P(|\frac{S_{900}}{900} - p| \ge c) = 0.01,$$
we must have

$$2(1 - \Phi(60c)) = 0.01.$$
That is

$$\Phi(60c) = 0.995.$$
Thus $60c = 2.58$ and hence $c = 0.043.$

ia)
$$P(|rac{S_{900}}{900}-p|\geq 0.025)pprox 2(1-\Phi(1.5))pprox 0.134.$$

$$P(|rac{S_{900}}{900}-p|\geq c)pprox 2(1-\Phi(60c)),$$

in order for

(b) Since

$${\cal P}(|rac{S_{900}}{900}-{m
ho}|\geq c)=0.01,$$

we must have

$$2(1 - \Phi(60c)) = 0.01.$$

That is

 $\Phi(60c) = 0.995.$

Thus 60c = 2.58 and hence c = 0.043.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ○ ○ ○ ○ ○

Since

$$P(|\frac{S_n}{n} - p| \ge 0.025) \approx 2(1 - \Phi(0.05\sqrt{n})),$$

in order for

$$P(|\frac{S_n}{n}-p| \ge 0.025) = 0.01,$$

we must have

$$2(1 - \Phi(0.05\sqrt{n})) = 0.01.$$

So

$$0.05\sqrt{n} = 2.58$$

and

n = 2663.