
General Info 5.4 Normal Random Variables

Math 461 Spring 2024

Renming Song

University of Illinois Urbana-Champaign

February 23, 2024



General Info 5.4 Normal Random Variables

Outline



General Info 5.4 Normal Random Variables

Outline

1 General Info

2 5.4 Normal Random Variables



General Info 5.4 Normal Random Variables

HW5 is due today before the end of class.

Test 1 is next Friday. There is no homework due next Friday. Topics
covered in Test 1 include everything we covered in the first 4
Chapters.

I will do a brief review next Wed and spend most of the lecture time
next Wed answering questions.
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The function
ϕ(x) =

1√
2π

e− x2
2 , x ∈ R

is a probability density. It is called the standard normal density.

A random variable is called a standard normal random variable if it is
an absolutely continuous random variable with density given by the
function ϕ above.

The distribution function of a standard normal random variable is
given by

Φ(x) =
∫ x

−∞
ϕ(t)dt =

1√
2π

∫ x

−∞
e− t2

2 dt ,

and there is no explicit expression for this function Φ.
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To get the value of Φ, you can either use a calculator or the table in
the book. The table in the book only gives the values of Φ(x) for
some positive x . To get the value of Φ(x) for negative x , we can use
the formula

Φ(−x) = 1 − Φ(x), x ∈ R,

which is due to the symmetry of the density ϕ.

1 − Φ(x) =
1√
2π

∫ ∞

x
e− t2

2 dt =
1√
2π

∫ −x

−∞
e− s2

2 ds = Φ(−x).
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If X is a standard normal random variable, then

E [X ] = 0, Var(X ) = 1.

E [X ] =
1√
2π

∫ ∞

−∞
xe− x2

2 dx = 0.

Var(X ) = E [X 2] =
1√
2π

∫ ∞

−∞
x2e− x2

2 dx =
1√
2π

∫ ∞

−∞
xd(−e− x2

2 )

=
1√
2π

(
−xe− x2

2

) ∣∣∣∞
−∞

+
1√
2π

∫ ∞

−∞
e− x2

2 dx = 1.
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Suppose X is a standard normal random variable, µ and σ > 0 are
constants. Let Y = µ+ σX . Y is an absolutely continuous random
variable with density given by

f (y) =
1

σ
√

2π
e− (y−µ)2

2σ2 , y ∈ R.

The distribution of Y is given by

FY (y) = P(Y ≤ y) = P(µ+ σX ≤ y) = P(X ≤ y − µ

σ
)

=
1√
2π

∫ (y−µ)/σ

−∞
e− x2

2 dx .

Differentiating wrt y , we get the density of Y given above.
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The function
f (x) =

1
σ
√

2π
e− (x−µ)2

2σ2 , x ∈ R

is called a normal density with parameters (µ, σ2).

A random variable is called a normal random variable with
parameters (µ, σ2) if it is an absolutely continuous random variable
with density given by the function f above.

If X is a normal random variable with parameters (µ, σ2), then the
random variable

Z =
X − µ

σ

is a standard normal random variable.
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Thus any normal random variable X with parameters (µ, σ2) can be
written as

X = µ+ σZ

with Z being a standard normal random variable.

If X is a normal random variable with parameters (µ, σ2), then

E [X ] = µ, Var(X ) = σ2.



General Info 5.4 Normal Random Variables

Thus any normal random variable X with parameters (µ, σ2) can be
written as

X = µ+ σZ

with Z being a standard normal random variable.

If X is a normal random variable with parameters (µ, σ2), then

E [X ] = µ, Var(X ) = σ2.



General Info 5.4 Normal Random Variables

Example 1

Suppose X is a normal random variable with parameters (3,9). Find
(a) P(2 < X < 5); (b) P(X > 0); (c) P(|X − 3| > 6).

Let Z = (X − 3)/3. Then Z is a standard normal random variable.
(a)

P(2 < X < 5) = P(
2 − 3

3
<

X − 3
3

<
5 − 3

3
)

= P(−1
3
< Z <

2
3
) = Φ(

2
3
)− Φ(−1

3
)

= Φ(
2
3
)− (1 − Φ(

1
3
)) ≈ 0.3779.
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(b)

P(X > 0) = P(
X − 3

3
>

0 − 3
3

) = P(Z > −1)

= 1 − Φ(−1) = Φ(1) ≈ 0.8413.

(c)

P(|X − 3| > 6) = P(|X − 3
3

| > 2) = P(|Z | > 2)

= P(Z > 2) + P(Z < −2) = 2P(Z > 2)
= 2(1 − Φ(2)) ≈ 0.0456.
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Example 2

A test is often regarded as being good if the test scores can be
approximated by a normal distribution. The instructor often uses the
test scores to get the mean µ and variance σ2. Then the instructor
assigns the grade A those whose score is greater than µ+ σ; B to
those whose score is between µ and µ+ σ; C to those whose score is
between µ− σ and µ; D to those whose score is between µ− 2σ and
µ− σ; and F to those whose score is below µ− 2σ.

Let X be the score of a randomly chosen student in the course. Then

P(X > µ+ σ) = P(
X − µ

σ
> 1) = 1 − Φ(1) ≈ 0.1587

P(µ < X < µ+ σ) = P(0 <
X − µ

σ
< 1)

= Φ(1)− Φ(0) ≈ 0.3413
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P(µ− σ < X < µ) = P(−1 <
X − µ

σ
< 0)

= Φ(0)− Φ(−1) ≈ 0.3413

P(µ− 2σ < X < µ− σ) = P(−2 <
X − µ

σ
< −1)

= Φ(−1)− Φ(−2) = Φ(2)− Φ(1) ≈ 0.1359

P(X < µ− 2σ) = P(
X − µ

σ
< −2) = Φ(−2) = 1 − Φ(2) ≈ 0.0228.
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