Math 461 Spring 2024

Renming Song
University of Illinois Urbana-Champaign

February 21, 2024

Outline

Outline

(1) General Info

2 5.2 Expectation \& Variance of Absolutely Continuous RVs

3 5.3 The Uniform Random Variable

4 5.4 Normal Random Variables

HW5 is due Friday, 02/23, before the end of class.

HW5 is due Friday, 02/23, before the end of class.

Solutions to HW4 is on my homepage.

Outline

(1) General Info

2 5.2 Expectation \& Variance of Absolutely Continuous RVs

3 5.3 The Uniform Random Variable

4 5.4 Normal Random Variables

Theorem

Suppose that X is an absolutely continuous random variable with density f and that ϕ is a function on \mathbb{R}. If

$$
\int_{-\infty}^{\infty}|\phi(x)| f(x) d x<\infty
$$

then the random variable $\phi(X)$ has finite expectation and

$$
E[\phi(X)]=\int_{-\infty}^{\infty} \phi(x) f(x) d x
$$

Theorem

Suppose that X is an absolutely continuous random variable with density f and that ϕ is a function on \mathbb{R}. If

$$
\int_{-\infty}^{\infty}|\phi(x)| f(x) d x<\infty
$$

then the random variable $\phi(X)$ has finite expectation and

$$
E[\phi(X)]=\int_{-\infty}^{\infty} \phi(x) f(x) d x
$$

Suppose X is an absolutely continuous random variable with finite expectation. For any $a, b \in \mathbb{R}$,

$$
E[a X+b]=a E[X]+b
$$

Example 4

Suppose that X is an absolutely continuous random variable with density

$$
f(x)= \begin{cases}1, & x \in(0,1) \\ 0, & \text { otherwise } .\end{cases}
$$

Find $E\left[e^{X}\right]$.

Example 4

Suppose that X is an absolutely continuous random variable with density

$$
f(x)= \begin{cases}1, & x \in(0,1) \\ 0, & \text { otherwise } .\end{cases}
$$

Find $E\left[e^{X}\right]$.

$$
E\left[e^{x}\right]=\int_{0}^{1} e^{x} d x=e-1
$$

Example 5

A stick of length 1 is split at a random point U with density

$$
f(u)= \begin{cases}1, & u \in(0,1) \\ 0, & \text { otherwise }\end{cases}
$$

Find the expected length of the piece that contains the point p, $p \in(0,1)$.

Example 5

A stick of length 1 is split at a random point U with density

$$
f(u)= \begin{cases}1, & u \in(0,1) \\ 0, & \text { otherwise }\end{cases}
$$

Find the expected length of the piece that contains the point p, $p \in(0,1)$.

The length of the piece containing the point p is

$$
L_{p}(U)= \begin{cases}1-U, & U \leq p \\ U, & U>p\end{cases}
$$

$$
\begin{aligned}
E\left[L_{p}(U)\right] & =\int_{0}^{1} L_{p}(u) d u=\int_{0}^{p}(1-u) d u+\int_{p}^{1} u d u \\
& =\frac{1}{2}+p(1-p) .
\end{aligned}
$$

$$
\begin{aligned}
E\left[L_{p}(U)\right] & =\int_{0}^{1} L_{p}(u) d u=\int_{0}^{p}(1-u) d u+\int_{p}^{1} u d u \\
& =\frac{1}{2}+p(1-p) .
\end{aligned}
$$

Definition

Suppose that X is an absolutely continuous random variable with finite expectation $\mu=E[X]$. The variance of X is defined to be

$$
\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right] .
$$

$$
\begin{aligned}
E\left[L_{p}(U)\right] & =\int_{0}^{1} L_{p}(u) d u=\int_{0}^{p}(1-u) d u+\int_{p}^{1} u d u \\
& =\frac{1}{2}+p(1-p) .
\end{aligned}
$$

Definition

Suppose that X is an absolutely continuous random variable with finite expectation $\mu=E[X]$. The variance of X is defined to be

$$
\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right] .
$$

One can easily check that

$$
\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}
$$

Let f be the density of X. Then

$$
\begin{aligned}
\operatorname{Var}(X) & =\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x=\int_{-\infty}^{\infty}\left(x^{2}-2 \mu x+\mu^{2}\right) f(x) d x \\
& =\int_{-\infty}^{\infty} x^{2} f(x) d x-2 \mu \int_{-\infty}^{\infty} x f(x) d x+\mu^{2} \int_{-\infty}^{\infty} f(x) d x \\
& =E\left[X^{2}\right]-2 \mu E[X]+\mu^{2}=E\left[X^{2}\right]-(E[X])^{2}
\end{aligned}
$$

Let f be the density of X. Then

$$
\begin{aligned}
\operatorname{Var}(X) & =\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x=\int_{-\infty}^{\infty}\left(x^{2}-2 \mu x+\mu^{2}\right) f(x) d x \\
& =\int_{-\infty}^{\infty} x^{2} f(x) d x-2 \mu \int_{-\infty}^{\infty} x f(x) d x+\mu^{2} \int_{-\infty}^{\infty} f(x) d x \\
& =E\left[X^{2}\right]-2 \mu E[X]+\mu^{2}=E\left[X^{2}\right]-(E[X])^{2}
\end{aligned}
$$

Suppose that X is an absolutely continuous random variable with finite variance, and a, b are real numbers. Then

$$
\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)
$$

Example 6

Suppose that X is an absolutely continuous random variable with density

$$
f(x)= \begin{cases}3 x^{2}, & x \in(0,1) \\ 0, & \text { otherwise } .\end{cases}
$$

Find $\operatorname{Var}(X)$.

Example 6

Suppose that X is an absolutely continuous random variable with density

$$
f(x)= \begin{cases}3 x^{2}, & x \in(0,1) \\ 0, & \text { otherwise } .\end{cases}
$$

Find $\operatorname{Var}(X)$.

$$
E[X]=\int_{0}^{1} x 3 x^{2} d x=\frac{3}{4}, \quad E\left[X^{2}\right]=\int_{0}^{1} x^{2} 3 x^{2} d x=\frac{4}{5} .
$$

So

$$
\operatorname{Var}(X)=\frac{4}{5}-\left(\frac{3}{4}\right)^{2}
$$

Outline

1 General Info

2) 5.2 Expectation \& Variance of Absolutely Continuous RVs

3 5.3 The Uniform Random Variable

4 5.4 Normal Random Variables

Definition

A random variable X is said to be uniformly distributed over the interval (a, b) if its density is given by

$$
f(x)= \begin{cases}\frac{1}{b-a}, & x \in(a, b) \\ 0, & \text { otherwise } .\end{cases}
$$

If X is uniformly distributed in (a, b), then
and

Definition

A random variable X is said to be uniformly distributed over the interval (a, b) if its density is given by

$$
f(x)= \begin{cases}\frac{1}{b-a}, & x \in(a, b) \\ 0, & \text { otherwise } .\end{cases}
$$

If X is uniformly distributed in (a, b), then

$$
E[X]=\int_{a}^{b} x \frac{1}{b-a} d x=\frac{a+b}{2}
$$

and

$$
\begin{gathered}
E\left[X^{2}\right]=\int_{a}^{b} x^{2} \frac{1}{b-a} d x=\frac{b^{2}+a b+a^{2}}{3} \\
\operatorname{Var}(X)=\frac{(b-a)^{2}}{12} .
\end{gathered}
$$

Example 1

Buses arrive at a specified bus stop at 15 minute intervals starting at 7 am . If a passenger arrives at the stop at a time that is uniformly distributed between 7 an 7:30, find the probability that he waits (a) less than 5 minutes; (b) more than 10 minutes.

Example 1

Buses arrive at a specified bus stop at 15 minute intervals starting at 7 am . If a passenger arrives at the stop at a time that is uniformly distributed between 7 an 7:30, find the probability that he waits (a) less than 5 minutes; (b) more than 10 minutes.

Let X be the passenger's arrival time in minutes, after 7 am . Then the answer for (a) is

$$
P(10<X \leq 15)+P(25<X \leq 30)=\frac{1}{3} .
$$

The answer for (b) is

$$
P(0<X \leq 5)+P(15<X \leq 20)=\frac{1}{3} .
$$

Example 2

A point is chosen at random on a line segment of length L. Find the probability that the ratio of the shorter to the longer segment is less than $\frac{1}{4}$.

Imagine that the line segment is the interval $(0, L)$. Let X the coordinate of the random chosen point. Then X is uniformly distributed in (0,L). The answer is

Example 2

A point is chosen at random on a line segment of length L. Find the probability that the ratio of the shorter to the longer segment is less than $\frac{1}{4}$.

Imagine that the line segment is the interval $(0, L)$. Let X the coordinate of the random chosen point. Then X is uniformly distributed in $(0, L)$. The answer is

$$
P\left(\min \left(\frac{X}{L-X}, \frac{L-X}{X}\right)<\frac{1}{4}\right)=1-P\left(\frac{L}{5}<X<\frac{4 L}{5}\right)=\frac{2}{5} .
$$

Outline

(1) General Info

2 5.2 Expectation \& Variance of Absolutely Continuous RVs

3 5.3 The Uniform Random Variable

4 5.4 Normal Random Variables

Before we introduce the concept of normal random variables, let us look at the function

$$
g(x)=e^{-\frac{x^{2}}{2}}, \quad x \in \mathbb{R} .
$$

Before we introduce the concept of normal random variables, let us look at the function

$$
g(x)=e^{-\frac{x^{2}}{2}}, \quad x \in \mathbb{R} .
$$

The function g is strictly positive, and goes to zero very fast near ∞ and $-\infty$, and so

$$
c=\int_{-\infty}^{\infty} g(x) d x=\int_{-\infty}^{\infty} e^{-\frac{x^{2}}{2}} d x
$$

is finite and positive. What is the value of c ?

$$
\begin{aligned}
c^{2} & =\left(\int_{-\infty}^{\infty} e^{-\frac{x^{2}}{2}} d x\right)\left(\int_{-\infty}^{\infty} e^{-\frac{y^{2}}{2}} d y\right) \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{x^{2}+y^{2}}{2}} d x d y \\
& =\int_{0}^{\infty} \int_{0}^{2 \pi} e^{-\frac{r^{2}}{2}} r d r d \theta=2 \pi \int_{0}^{\infty} r e^{-\frac{r^{2}}{2}} d r=2 \pi
\end{aligned}
$$

Thus $c=\sqrt{2 \pi}$ and hence the function

$$
\begin{aligned}
c^{2} & =\left(\int_{-\infty}^{\infty} e^{-\frac{x^{2}}{2}} d x\right)\left(\int_{-\infty}^{\infty} e^{-\frac{y^{2}}{2}} d y\right) \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{x^{2}+y^{2}}{2}} d x d y \\
& =\int_{0}^{\infty} \int_{0}^{2 \pi} e^{-\frac{r^{2}}{2}} r d r d \theta=2 \pi \int_{0}^{\infty} r e^{-\frac{r^{2}}{2}} d r=2 \pi
\end{aligned}
$$

Thus $c=\sqrt{2 \pi}$ and hence the function

$$
\phi(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}, \quad x \in \mathbb{R}
$$

is a density function. It is called the standard normal density.

