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HWS5 is due Friday, 02/23, before the end of class. J
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HWS5 is due Friday, 02/23, before the end of class. J

Solutions to HW4 is on my homepage. )
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Suppose that X is an absolutely continuous random variable with
density f and that ¢ is a function on R. If

/ " 160 F(x)dx < o,

— 00

then the random variable ¢(X) has finite expectation and

Ebo0l = [ " o(0)(x)ak.
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Suppose that X is an absolutely continuous random variable with
density f and that ¢ is a function on R. If

/ " 160 F(x)dx < o,

— 00

then the random variable ¢(X) has finite expectation and

Ebo0l = [ T p(0)f(x)dx.

Suppose X is an absolutely continuous random variable with finite
expectation. For any a, b € R,

ElaX + b] = aE[X] + b.
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Example 4

Suppose that X is an absolutely continuous random variable with
density
f < {1 €@
0, otherwise.
Find E[eX].
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Example 4

Suppose that X is an absolutely continuous random variable with
density
f < {1 €@
0, otherwise.
Find E[eX].
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A stick of length 1 is split at a random point U with density

) = {1, ue(0,1)

0, otherwise.

Find the expected length of the piece that contains the point p,
p e (0,1).




5.2 Expectation & Variance of Absolutely Continuous RVs
0008000

A stick of length 1 is split at a random point U with density

“m_?,ue@n

0, otherwise.

Find the expected length of the piece that contains the point p,
p e (0,1).

The length of the piece containing the point p is

1-U, U<
L“w:{u U>Z
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ElLy(U)] = /01 Ly(u)du = /Op(1 — u)du + /}O1 udu

]
= §+P(1 - p).
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ElLy(U)] = /01 Ly(u)du = /Op(1 — u)du + /}O1 udu

]
= §+P(1 - p).

Definition

Suppose that X is an absolutely continuous random variable with
finite expectation © = E[X]. The variance of X is defined to be

Var(X) = E[(X - w)?).
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ElLy(U)] = /01 Ly(u)du = /Op(1 — u)du + /}O1 udu

]
= §+P(1 - p).

Definition

Suppose that X is an absolutely continuous random variable with
finite expectation © = E[X]. The variance of X is defined to be

Var(X) = E[(X - w)?).

One can easily check that

Var(X) = E[X?] — (E[X])2.
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Let f be the density of X. Then

o0 oo

Var(X) = /_ (x — p)?f(x)dx = / (x® —2ux + p®)f(x)dx

—00

_ /0; XR(xX)dx — 2p1 /oo XF(X)0x + 12 /Oo F(x)dx

— 00 — 00

= E[X?] - 2pE[X] + u* = E[X?] - (E[X])*.
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Let f be the density of X. Then

o0 oo

Var(X) = /_ (x — p)?f(x)dx = / (x® —2ux + p®)f(x)dx

—00

_ /0; XR(xX)dx — 2p1 /oo XF(X)0x + 12 /Oo F(x)dx

— 00 — 00

= E[X?] - 2pE[X] + u* = E[X?] - (E[X])*.

Suppose that X is an absolutely continuous random variable with
finite variance, and a, b are real numbers. Then

Var(aX + b) = & Var(X).




5.2 Expectation & Variance of Absolutely Continuous RVs
000000@

Example 6
Suppose that X is an absolutely continuous random variable with
density

(x) = {3x2, x € (0,1)

0, otherwise.

Find Var(X).
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Example 6

Suppose that X is an absolutely continuous random variable with
density
2
fx) = 4% x€(0.1)
0, otherwise.
Find Var(X).
1 3 1 4
E[X] = / x3x%dx ==, E[X? = / x23x2dx — .
0 4 0 5
So 3
Var(X) = 5~ (2)2
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Definition
A random variable X is said to be uniformly distributed over the
interval (a, b) if its density is given by

(x) = {[)13, x € (a,b)

0, otherwise.
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Definition
A random variable X is said to be uniformly distributed over the
interval (a, b) if its density is given by

(x) = {[)13, x € (a,b)

0, otherwise.

If X is uniformly distributed in (a, b), then

by a+b
EX:/X ax =
X] a b—a 2

and
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Buses arrive at a specified bus stop at 15 minute intervals starting at
7 am. If a passenger arrives at the stop at a time that is uniformly
distributed between 7 an 7:30, find the probability that he waits (a)
less than 5 minutes; (b) more than 10 minutes.




5.3 The Uniform Random Variable
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Buses arrive at a specified bus stop at 15 minute intervals starting at
7 am. If a passenger arrives at the stop at a time that is uniformly
distributed between 7 an 7:30, find the probability that he waits (a)
less than 5 minutes; (b) more than 10 minutes.

Let X be the passenger’s arrival time in minutes, after 7 am. Then the
answer for (a) is

'
P(10 < X < 15) + P(25 < X <30) = 7.

The answer for (b) is

P(O<X§5)+P(15<X§20):%.
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A point is chosen at random on a line segment of length L. Find the
probability that the ratio of the shorter to the longer segment is less
than 1.
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A point is chosen at random on a line segment of length L. Find the
probability that the ratio of the shorter to the longer segment is less
than 1.

Imagine that the line segment is the interval (0, L). Let X the
coordinate of the random chosen point. Then X is uniformly
distributed in (0, L). The answer is

. X L-X 1 L 41 2




5.4 Normal Random Variables
000

Outline

o 5.4 Normal Random Variables



5.4 Normal Random Variables
oeo

Before we introduce the concept of normal random variables, let us
look at the function
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Before we introduce the concept of normal random variables, let us
look at the function

The function g is strictly positive, and goes to zero very fast near co

and —co, and so
c:/ g(x)dx:/ e % dx

is finite and positive. What is the value of ¢?




ooe
5 < e < 2
C e zdx e zdy
—0o0 — 00

I
I
g g 8
P
39 3

D

|
V\):N

8

<




5.4 Normal Random Variables
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2 £ 2
o[ ) ([ %)
/ / e dxdy
2:0 0o 2
/ / e 2rdrd0 27r/ re”zdr = 2m.
o Jo 0

Thus ¢ = V27 and hence the function

1 X
o(x) = Ee‘;, xR

is a density function. It is called the standard normal density.
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