Math 461 Spring 2024

Renming Song
University of Illinois Urbana-Champaign

February 16, 2024

Outline

Outline

2 4.9 Expectation of Sums of Random Variables

3 5.1 Introduction

HW4 is due today, before the end of class.

HW4 is due today, before the end of class.

I will post solutions to HW4 this afternoon.

Outline

(1) General Info

2 4.9 Expectation of Sums of Random Variables

3 5.1 Introduction

Example 5

n balls are randomly distributed into r boxes (so that each ball is equally likely to go to any of the r boxes). Find the expected number of empty boxes.

Example 5

n balls are randomly distributed into r boxes (so that each ball is equally likely to go to any of the r boxes). Find the expected number of empty boxes.

Let X be the number of boxes. For $i=1, \ldots, r$, let $X_{i}=1$ if box number i is empty and $X_{i}=0$ otherwise. Then $X=X_{1}+\cdots+X_{r}$. Note that for $i=1, \ldots, r$,

$$
E\left[X_{i}\right]=P\left(X_{i}=1\right)=\left(\frac{r-1}{r}\right)^{n} .
$$

Thus

$$
E[X]=E\left[X_{1}\right]+\cdots+E\left[X_{r}\right]=r\left(\frac{r-1}{r}\right)^{n} .
$$

Example 6

Suppose that there are N types of coupons and each time one gets a coupon it is equally likely to be any one of the N types. (a) If you have just collected n coupons, what is the expected number of different types of coupons in your collection? (b) Find the expected number of coupons you need to amass in order to get a complete set.

Example 6

Suppose that there are N types of coupons and each time one gets a coupon it is equally likely to be any one of the N types. (a) If you have just collected n coupons, what is the expected number of different types of coupons in your collection? (b) Find the expected number of coupons you need to amass in order to get a complete set.

Let X be the number of different types in your collection of n coupons. For $i=1, \ldots, N$, let $X_{i}=1$ if there is at least one type i coupon in your collection and $X_{i}=0$ otherwise. Then $X=X_{1}+\cdots+X_{N}$. Note that, for $i=1, \ldots, N$,

$$
E\left[X_{i}\right]=P\left(X_{i}=1\right)=1-\left(\frac{N-1}{N}\right)^{n} .
$$

Thus

$$
E[X]=E\left[X_{1}\right]+\cdots+E\left[X_{N}\right]=N\left(1-\left(\frac{N-1}{N}\right)^{n}\right) .
$$

(b) Let Y be the number of coupons you need to amass in order to get a complete set. Let $Y_{1}=1$; let Y_{2} be the number of additional coupons needed in order to get a new type (i.e., different from the one you got); let Y_{3} be the number of additional coupons, after you have got two types, needed in order to get a new type (different from the two types you already got); \ldots, let Y_{N} be the number of additional coupons, after you have got $N-1$ types, to get the final type. Then $Y=Y_{1}+\cdots+Y_{N}$.
(b) Let Y be the number of coupons you need to amass in order to get a complete set. Let $Y_{1}=1$; let Y_{2} be the number of additional coupons needed in order to get a new type (i.e., different from the one you got); let Y_{3} be the number of additional coupons, after you have got two types, needed in order to get a new type (different from the two types you already got); \ldots. let Y_{N} be the number of additional coupons, after you have got $N-1$ types, to get the final type. Then $Y=Y_{1}+\cdots+Y_{N}$.
Y_{2} is a geometric random variable with parameter $\frac{N-1}{N} ; Y_{3}$ is a geometric random variable with parameter $\frac{N-2}{N}, \ldots, Y_{N}$ is a geometric random variable with parameter $\frac{N}{N}$. Thus

$$
E[Y]=E\left[Y_{1}\right]+\cdots+E\left[Y_{N}\right]=1+\frac{N}{N-1}+\cdots+N=N\left(1+\frac{1}{2}+\cdots+\frac{1}{N}\right) .
$$

Outline

(1) General Info

2 4.9 Expectation of Sums of Random Variables
(3) 5.1 Introduction

The distribution function F of a random variable X is defined by

$$
F(x)=P(X \leq x), \quad x \in \mathbb{R} .
$$

The distribution function F of any random variable X satisfies (i) F is non-decreasina: (ii) $\lim _{x \rightarrow \infty} F(x)=1$ and $\lim _{x \rightarrow-\infty} F(x)=0$; (iii) F is right-continuous, i.e., $F(x+)=F(x)$ for every $x \in \mathbb{R}$ We know that

The distribution function F of a random variable X is defined by

$$
F(x)=P(X \leq x), \quad x \in \mathbb{R} .
$$

The distribution function F of any random variable X satisfies
(i) F is non-decreasing;
(ii) $\lim _{x \rightarrow \infty} F(x)=1$ and $\lim _{x \rightarrow-\infty} F(x)=0$;
(iii) F is right-continuous, i.e., $F(x+)=F(x)$ for every $x \in \mathbb{R}$.

The distribution function F of a random variable X is defined by

$$
F(x)=P(X \leq x), \quad x \in \mathbb{R} .
$$

The distribution function F of any random variable X satisfies
(i) F is non-decreasing;
(ii) $\lim _{x \rightarrow \infty} F(x)=1$ and $\lim _{x \rightarrow-\infty} F(x)=0$;
(iii) F is right-continuous, i.e., $F(x+)=F(x)$ for every $x \in \mathbb{R}$.

We know that

$$
P(X<b)=F(b-)
$$

In general, the distribution function F of a random variable is not continuous.

A random variable X is said to be continuous if its distribution function is continuous, or equivalently,

If X is a continuous random variable, then for any $a \in \mathbb{R}$

In general, the distribution function F of a random variable is not continuous.

A random variable X is said to be continuous if its distribution function is continuous, or equivalently,

$$
P(X=x)=0, \quad \text { for every } x \in \mathbb{R} .
$$

In general, the distribution function F of a random variable is not continuous.

A random variable X is said to be continuous if its distribution function is continuous, or equivalently,

$$
P(X=x)=0, \quad \text { for every } x \in \mathbb{R}
$$

If X is a continuous random variable, then for any $a \in \mathbb{R}$,

$$
P(X<a)=P(X \leq a) .
$$

So computations will be a lot easier for continuous random variables.

General random variables can be classified as discrete random variables; continuous random variables; or neither discrete nor continuous.

The random variables with distribution function

General random variables can be classified as discrete random variables; continuous random variables; or neither discrete nor continuous.

The random variables with distribution function

$$
F(x)= \begin{cases}0, & x<0 \\ x / 3, & 0 \leq x<1 \\ x / 2, & 1 \leq x<2 \\ 1, & x \geq 2\end{cases}
$$

is neither discrete nor continuous.

General random variables can be classified as discrete random variables; continuous random variables; or neither discrete nor continuous.

The random variables with distribution function

$$
F(x)= \begin{cases}0, & x<0 \\ x / 3, & 0 \leq x<1 \\ x / 2, & 1 \leq x<2 \\ 1, & x \geq 2\end{cases}
$$

is neither discrete nor continuous.

In Chapter 4, we learned about discrete random variables. In this chapter, we will concentrate on continuous random variables.

In fact, we will concentrate on a subclass of continuous random variables - the so-called absolutely continuous random variables.

Definition
 \square

If f is a probability density function, then the function F defined by
\square

In fact, we will concentrate on a subclass of continuous random variables - the so-called absolutely continuous random variables.

Definition

A non-negative function f on \mathbb{R} is called a probability density function if

$$
\int_{-\infty}^{\infty} f(x) d x=1
$$

If f is a probability density function, then the function F defined by

In fact, we will concentrate on a subclass of continuous random variables - the so-called absolutely continuous random variables.

Definition

A non-negative function f on \mathbb{R} is called a probability density function if

$$
\int_{-\infty}^{\infty} f(x) d x=1
$$

If f is a probability density function, then the function F defined by

$$
\begin{equation*}
F(x)=\int_{-\infty}^{x} f(t) d t, \quad x \in \mathbb{R} \tag{1}
\end{equation*}
$$

is a continuous distribution function.

Definition

A random variable X is said to be absolutely continuous if there is a non-negative function f on \mathbb{R} such that

$$
P(X \leq x)=\int_{-\infty}^{x} f(t) d t, \quad x \in \mathbb{R}
$$

f must be a probability density and it is called the density of X.

Definition

A random variable X is said to be absolutely continuous if there is a non-negative function f on \mathbb{R} such that

$$
P(X \leq x)=\int_{-\infty}^{x} f(t) d t, \quad x \in \mathbb{R}
$$

f must be a probability density and it is called the density of X.

The density function of an absolutely continuous random variable X contains all the statistical info about X. If we know the density f, we can get the distribution F of X via (1). If we know the the distribution F of an absolutely continuous random variable X, we can simply differentiate F to get the density f. For points where F is not differentiable, we simply let f equal 0 there.

If we know the density f of an absolutely continuous random variable X, then

$$
P(a<X<b)=P(a \leq X \leq b)=\int_{a}^{b} f(x) d x .
$$

If we know the density f of an absolutely continuous random variable X, then

$$
P(a<X<b)=P(a \leq X \leq b)=\int_{a}^{b} f(x) d x
$$

There exists continuous random variables that are not absolutely continuous. But we are not going to deal with these type of "pathological" random variables in this course.

Example 1

Choose a point at random from the disk $B(0,1)$. Let X be the distance between the chosen point and the origin.

Thus the distribution function of X is

Example 1

Choose a point at random from the disk $B(0,1)$. Let X be the distance between the chosen point and the origin.

For any $x \in[0,1]$,

$$
P(X \leq x)=\frac{\pi x^{2}}{\pi}=x^{2}
$$

Thus the distribution function of X is

$$
F(x)= \begin{cases}0, & x \leq 0 \\ x^{2}, & 0 \leq x \leq 1 \\ 1, & x>1\end{cases}
$$

The density of X is

$$
f(x)= \begin{cases}2 x, & 0<x<1 \\ 0, & \text { otherwise }\end{cases}
$$

