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HW4 is due today, before the end of class.

I will post solutions to HW4 this afternoon.
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Example 5

n balls are randomly distributed into r boxes (so that each ball is
equally likely to go to any of the r boxes). Find the expected number
of empty boxes.

Let X be the number of boxes. For i = 1, . . . , r , let Xi = 1 if box
number i is empty and Xi = 0 otherwise. Then X = X1 + · · ·+ Xr .
Note that for i = 1, . . . , r ,

E [Xi ] = P(Xi = 1) =
(

r − 1
r

)n

.

Thus

E [X ] = E [X1] + · · ·+ E [Xr ] = r
(

r − 1
r

)n

.
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Example 6

Suppose that there are N types of coupons and each time one gets a
coupon it is equally likely to be any one of the N types. (a) If you have
just collected n coupons, what is the expected number of different
types of coupons in your collection? (b) Find the expected number of
coupons you need to amass in order to get a complete set.

Let X be the number of different types in your collection of n coupons.
For i = 1, . . . ,N, let Xi = 1 if there is at least one type i coupon in
your collection and Xi = 0 otherwise. Then X = X1 + · · ·+ XN . Note
that, for i = 1, . . . ,N,

E [Xi ] = P(Xi = 1) = 1 −
(

N − 1
N

)n

.

Thus

E [X ] = E [X1] + · · ·+ E [XN ] = N
(

1 −
(

N − 1
N

)n)
.
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(b) Let Y be the number of coupons you need to amass in order to
get a complete set. Let Y1 = 1; let Y2 be the number of additional
coupons needed in order to get a new type (i.e., different from the
one you got); let Y3 be the number of additional coupons, after you
have got two types, needed in order to get a new type (different from
the two types you already got); . . . , let YN be the number of additional
coupons, after you have got N − 1 types, to get the final type. Then
Y = Y1 + · · ·+ YN .

Y2 is a geometric random variable with parameter N−1
N ; Y3 is a

geometric random variable with parameter N−2
N , . . . , YN is a

geometric random variable with parameter 1
N . Thus

E [Y ] = E [Y1]+ · · ·+E [YN ] = 1+
N

N − 1
+ · · ·+N = N(1+

1
2
+ · · ·+ 1

N
).
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The distribution function F of a random variable X is defined by

F (x) = P(X ≤ x), x ∈ R.

The distribution function F of any random variable X satisfies
(i) F is non-decreasing;

(ii) limx→∞ F (x) = 1 and limx→−∞ F (x) = 0;
(iii) F is right-continuous, i.e., F (x+) = F (x) for every x ∈ R.

We know that
P(X < b) = F (b−).
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In general, the distribution function F of a random variable is not
continuous.

A random variable X is said to be continuous if its distribution function
is continuous, or equivalently,

P(X = x) = 0, for every x ∈ R.

If X is a continuous random variable, then for any a ∈ R,

P(X < a) = P(X ≤ a).

So computations will be a lot easier for continuous random variables.
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General random variables can be classified as discrete random
variables; continuous random variables; or neither discrete nor
continuous.

The random variables with distribution function

F (x) =


0, x < 0,
x/3, 0 ≤ x < 1,
x/2, 1 ≤ x < 2,
1, x ≥ 2.

is neither discrete nor continuous.

In Chapter 4, we learned about discrete random variables. In this
chapter, we will concentrate on continuous random variables.
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In fact, we will concentrate on a subclass of continuous random
variables – the so-called absolutely continuous random variables.

Definition
A non-negative function f on R is called a probability density function
if ∫ ∞

−∞
f (x)dx = 1.

If f is a probability density function, then the function F defined by

F (x) =
∫ x

−∞
f (t)dt , x ∈ R (1)

is a continuous distribution function.
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Definition
A random variable X is said to be absolutely continuous if there is a
non-negative function f on R such that

P(X ≤ x) =
∫ x

−∞
f (t)dt , x ∈ R.

f must be a probability density and it is called the density of X .

The density function of an absolutely continuous random variable X
contains all the statistical info about X . If we know the density f , we
can get the distribution F of X via (1). If we know the the distribution
F of an absolutely continuous random variable X , we can simply
differentiate F to get the density f . For points where F is not
differentiable, we simply let f equal 0 there.
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If we know the density f of an absolutely continuous random variable
X , then

P(a < X < b) = P(a ≤ X ≤ b) =
∫ b

a
f (x)dx .

There exists continuous random variables that are not absolutely
continuous. But we are not going to deal with these type of
“pathological” random variables in this course.
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Example 1

Choose a point at random from the disk B(0,1). Let X be the
distance between the chosen point and the origin.

For any x ∈ [0,1],

P(X ≤ x) =
πx2

π
= x2.

Thus the distribution function of X is

F (x) =


0, x ≤ 0,
x2, 0 ≤ x ≤ 1,
1, x > 1.

The density of X is

f (x) =

{
2x , 0 < x < 1,
0, otherwise.
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