Math 461 Spring 2024

Renming Song
University of Illinois Urbana-Champaign

February 12, 2024

Outline

Outline

2 4.7 Poisson random variables

3 4.8 Other Discrete Probability Distributions

HW4 is due Friday, 02/16, before the end of class. Please submit your HW4 as ONE pdf file via the HW4 folder in the course Moodle page.

HW4 is due Friday, 02/16, before the end of class. Please submit your HW4 as ONE pdf file via the HW4 folder in the course Moodle page.

Solutions to HW3 is on my homepage.

Outline

(1) General Info

2 4.7 Poisson random variables

3 4.8 Other Discrete Probability Distributions

If n independent trials, each results in a success with probability p, are performed, when n is big, p is small so that $n p$ is of moderate size, the number of successes in the n trials is approximately a Poisson random variable with parameter $\lambda=n p$.

If n independent trials, each results in a success with probability p, are performed, when n is big, p is small so that $n p$ is of moderate size, the number of successes in the n trials is approximately a Poisson random variable with parameter $\lambda=n p$.

Examples

1 Number of misprints on a page of a book.
2 Number of people in a community over the age of 95 .

Example

A machine produces screws, 1% of which are defective. Find the probability that in a box of 100 screws there are at most 3 defective ones. Assume independence.

The number of defectives in the box is a binomial random variable

 with parameters $(100,0.01)$. So the exact answer isX is approximately a Poisson random variable with parameter 1, so

Example

A machine produces screws, 1% of which are defective. Find the probability that in a box of 100 screws there are at most 3 defective ones. Assume independence.

The number of defectives in the box is a binomial random variable with parameters $(100,0.01)$. So the exact answer is

$$
\begin{aligned}
P(X \leq 3)= & (0.99)^{100}+100 \cdot(0.01)(0.99)^{99} \\
& +\binom{100}{2}(0.01)^{2}(0.99)^{98}+\binom{100}{3}(0.01)^{3}(0.99)^{97} .
\end{aligned}
$$

X is approximately a Poisson random variable with parameter 1 , so

$$
P(X \leq 3) \approx e^{-1}+e^{-1}+e^{-1} \frac{1}{2}+e^{-1} \frac{1}{6} .
$$

Poisson random variables also arise in situations where "incidents" occur at certain points in time, like earthquakes, people entering a certain establishment.

Poisson random variables also arise in situations where "incidents" occur at certain points in time, like earthquakes, people entering a certain establishment.

In a lot of situations, the following assumptions are (approximately) satisfied: For some $\lambda>0$, the following hold:

1 The probability of exactly 1 incident occurs in a given interval of length h is $\lambda h+o(h)$,
2 The probability of 2 or more incidents occur in an interval of length h is $o(h)$.
3 For any integer $n \geq 1$, any non-negative integers j_{1}, \ldots, j_{n}, and any set of n non-overlapping intervals, if E_{i} denotes the event that exactly j_{i} incidents occur in the i-th interval, $i=1, \ldots, n$, then E_{1}, \ldots, E_{n} are independent.

Under the assumptions above, the number of incidents occurring in any interval of length t is a Poisson random variable with parameter λt. It suffices to deal with the case when the interval is $[0, t]$.

The event $\{N(t)=k\}$ can be written as the disjoint union of 2 events
\square

Under the assumptions above, the number of incidents occurring in any interval of length t is a Poisson random variable with parameter λt. It suffices to deal with the case when the interval is $[0, t]$.

Let $N(t)$ be the number of incidents occurring in $[0, t]$. For any $n \geq 1$, we divide $[0, t]$ into n sub-intervals of equal length:

The event $\{N(t)=k\}$ can be written as the disjoint union of 2 events A and B where
A is the event that " k of the n sub-intervals contains exactly 1 incident each and the other $n-k$ sub-intervals contains 0 incident", and B is the event that " $N(t)=k$ and at least one of the sub-intervals contain 2 or more incidents". Thus $P(N(t)=k)=P(A)+P(B)$.
A is the event that " k of the n sub-intervals contains exactly 1 incident each and the other $n-k$ sub-intervals contains 0 incident", and B is the event that " $N(t)=k$ and at least one of the sub-intervals contain 2 or more incidents". Thus $P(N(t)=k)=P(A)+P(B)$.

$$
\begin{aligned}
P(B) & \leq P(\text { at least } 1 \text { subinterval contain } 2 \text { or more incidents }) \\
& =P\left(\cup_{i=1}^{n}\{\text { the } i \text {-th subinterval contain } 2 \text { or more incidents })\right. \\
& \leq \sum_{i=1}^{n} P(\text { the } i \text {-th subinterval contain } 2 \text { or more incidents }) \\
& =\sum_{i=1}^{n} o\left(\frac{t}{n}\right)=n \cdot o\left(\frac{t}{n}\right) \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$.

$$
P(A)=\binom{n}{k}\left(\frac{\lambda t}{n}+o\left(\frac{\lambda t}{n}\right)\right)^{k}\left(1-\frac{\lambda t}{n}-o\left(\frac{\lambda t}{n}\right)\right)^{n-k} .
$$

Since

$$
n\left(\frac{\lambda t}{n}+o\left(\frac{\lambda t}{n}\right)\right) \rightarrow \lambda t
$$

we have

$$
P(A) \rightarrow e^{-\lambda t} \frac{(\lambda t)^{k}}{k!}
$$

Thus

$$
P(N(t)=k)=e^{-\lambda t} \frac{(\lambda t)^{k}}{k!}
$$

Examples

(a) The number of earthquakes during some fixed time interval.
\qquad material in a fixed period of time.

$$
P(A)=\binom{n}{k}\left(\frac{\lambda t}{n}+o\left(\frac{\lambda t}{n}\right)\right)^{k}\left(1-\frac{\lambda t}{n}-o\left(\frac{\lambda t}{n}\right)\right)^{n-k}
$$

Since

$$
n\left(\frac{\lambda t}{n}+o\left(\frac{\lambda t}{n}\right)\right) \rightarrow \lambda t
$$

we have

$$
P(A) \rightarrow e^{-\lambda t} \frac{(\lambda t)^{k}}{k!}
$$

Thus

$$
P(N(t)=k)=e^{-\lambda t} \frac{(\lambda t)^{k}}{k!}
$$

Examples

(a) The number of earthquakes during some fixed time interval.
(b) The number of α-particles discharged from some radioactive material in a fixed period of time.

Outline

(1) General Info

2 4.7 Poisson random variables

3 4.8 Other Discrete Probability Distributions

Suppose that independent trials, each results in a success with probability $p \in(0,1)$ and a failure with probability $1-p$, are performed until a success occurs. Let X be the number of trials need, then

$$
P(X=n)=(1-p)^{n-1} p, \quad n=1,2, \ldots
$$

Such a random variable is called a geometric random variable with parameter p.

Suppose that independent trials, each results in a success with probability $p \in(0,1)$ and a failure with probability $1-p$, are performed until a success occurs. Let X be the number of trials need, then

$$
P(X=n)=(1-p)^{n-1} p, \quad n=1,2, \ldots
$$

Such a random variable is called a geometric random variable with parameter p.

If X is a geometric random variable with parameter p, then for any $k \geq 1$,

$$
P(X \geq k)=(1-p)^{k-1} .
$$

Example 1

Cards are randomly selected from an ordinary deck, one at a time, until a spade is obtained. If we assume that each card is returned to the deck before the next one is selected, find the probability that (a) exactly 10 cards are needed; (b) at least 10 cards are needed.

Example 1

Cards are randomly selected from an ordinary deck, one at a time, until a spade is obtained. If we assume that each card is returned to the deck before the next one is selected, find the probability that (a) exactly 10 cards are needed; (b) at least 10 cards are needed.

Solution

The number of cards needed is a geometric random variable with parameter $\frac{1}{4}$. Thus (a) $\left(\frac{3}{4}\right)^{9}\left(\frac{1}{4}\right)$; (b) $\left(\frac{3}{4}\right)^{9}$.
X is a geometric random variable with parameter p, then

$$
E[X]=\frac{1}{p}, \quad \operatorname{Var}(X)=\frac{1-p}{p^{2}} .
$$

X is a geometric random variable with parameter p, then

$$
E[X]=\frac{1}{p}, \quad \operatorname{Var}(X)=\frac{1-p}{p^{2}} .
$$

Let $q=1-p$. Then

$$
\begin{aligned}
E[X] & =\sum_{n=1}^{\infty} n q^{n-1} p=p \sum_{n=0}^{\infty} \frac{d}{d q}\left(q^{n}\right) \\
& =p \frac{d}{d q}\left(\sum_{n=0}^{\infty} q^{n}\right)=p \frac{d}{d q}\left(\frac{1}{1-q}\right) \\
& =\frac{p}{(1-q)^{2}}=\frac{1}{p} .
\end{aligned}
$$

$$
\begin{aligned}
E\left[X^{2}\right] & =\sum_{n=1}^{\infty} n^{2} q^{n-1} p=p \sum_{n=0}^{\infty} \frac{d}{d q}\left(n q^{n}\right) \\
& =p \frac{d}{d q}\left(\sum_{n=0}^{\infty} n q^{n}\right)=p \frac{d}{d q}\left(\frac{q}{1-q} E[X]\right) \\
& =p \frac{d}{d q}\left(\frac{q}{(1-q)^{2}}\right)=\frac{2}{p^{2}}-\frac{1}{p} .
\end{aligned}
$$

$$
\begin{aligned}
E\left[X^{2}\right] & =\sum_{n=1}^{\infty} n^{2} q^{n-1} p=p \sum_{n=0}^{\infty} \frac{d}{d q}\left(n q^{n}\right) \\
& =p \frac{d}{d q}\left(\sum_{n=0}^{\infty} n q^{n}\right)=p \frac{d}{d q}\left(\frac{q}{1-q} E[X]\right) \\
& =p \frac{d}{d q}\left(\frac{q}{(1-q)^{2}}\right)=\frac{2}{p^{2}}-\frac{1}{p} .
\end{aligned}
$$

Thus

$$
\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}=\frac{1-p}{p^{2}}
$$

