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HW4 is due Friday, 02/16, before the end of class. Please submit your
HW4 as ONE pdf file via the HW4 folder in the course Moodle page.

Solutions to HW3 is on my homepage.
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If n independent trials, each results in a success with probability p,
are performed, when n is big, p is small so that np is of moderate
size, the number of successes in the n trials is approximately a
Poisson random variable with parameter λ = np.

Examples

1 Number of misprints on a page of a book.
2 Number of people in a community over the age of 95.
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Example

A machine produces screws, 1% of which are defective. Find the
probability that in a box of 100 screws there are at most 3 defective
ones. Assume independence.

The number of defectives in the box is a binomial random variable
with parameters (100,0.01). So the exact answer is

P(X ≤ 3) =(0.99)100 + 100 · (0.01)(0.99)99

+

(
100

2

)
(0.01)2(0.99)98 +

(
100

3

)
(0.01)3(0.99)97.

X is approximately a Poisson random variable with parameter 1, so

P(X ≤ 3) ≈ e−1 + e−1 + e−1 1
2
+ e−1 1

6
.
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Poisson random variables also arise in situations where “incidents”
occur at certain points in time, like earthquakes, people entering a
certain establishment.

In a lot of situations, the following assumptions are (approximately)
satisfied: For some λ > 0, the following hold:

1 The probability of exactly 1 incident occurs in a given interval of
length h is λh + o(h),

2 The probability of 2 or more incidents occur in an interval of
length h is o(h).

3 For any integer n ≥ 1, any non-negative integers j1, . . . , jn, and
any set of n non-overlapping intervals, if Ei denotes the event
that exactly ji incidents occur in the i-th interval, i = 1, . . . ,n, then
E1, . . . ,En are independent.
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Under the assumptions above, the number of incidents occurring in
any interval of length t is a Poisson random variable with parameter
λt . It suffices to deal with the case when the interval is [0, t ].

Let N(t) be the number of incidents occurring in [0, t ]. For any n ≥ 1,
we divide [0, t ] into n sub-intervals of equal length:

The event {N(t) = k} can be written as the disjoint union of 2 events
A and B where



General Info 4.7 Poisson random variables 4.8 Other Discrete Probability Distributions

Under the assumptions above, the number of incidents occurring in
any interval of length t is a Poisson random variable with parameter
λt . It suffices to deal with the case when the interval is [0, t ].

Let N(t) be the number of incidents occurring in [0, t ]. For any n ≥ 1,
we divide [0, t ] into n sub-intervals of equal length:

The event {N(t) = k} can be written as the disjoint union of 2 events
A and B where



General Info 4.7 Poisson random variables 4.8 Other Discrete Probability Distributions

A is the event that “k of the n sub-intervals contains exactly 1 incident
each and the other n − k sub-intervals contains 0 incident”, and B is
the event that “N(t) = k and at least one of the sub-intervals contain
2 or more incidents”. Thus P(N(t) = k) = P(A) + P(B).

P(B) ≤ P(at least 1 subinterval contain 2 or more incidents)
= P(∪n

i=1{ the i-th subinterval contain 2 or more incidents)

≤
n∑

i=1

P( the i-th subinterval contain 2 or more incidents)

=
n∑

i=1

o(
t
n
) = n · o(

t
n
) → 0

as n → ∞.
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P(A) =
(

n
k

)(
λt
n

+ o(
λt
n
)

)k (
1 − λt

n
− o(

λt
n
)

)n−k

.

Since

n
(
λt
n

+ o(
λt
n
)

)
→ λt ,

we have

P(A) → e−λt (λt)k

k !
.

Thus

P(N(t) = k) = e−λt (λt)k

k !
.

Examples

(a) The number of earthquakes during some fixed time interval.
(b) The number of α-particles discharged from some radioactive

material in a fixed period of time.
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Suppose that independent trials, each results in a success with
probability p ∈ (0,1) and a failure with probability 1−p, are performed
until a success occurs. Let X be the number of trials need, then

P(X = n) = (1 − p)n−1p, n = 1,2, . . . .

Such a random variable is called a geometric random variable with
parameter p.

If X is a geometric random variable with parameter p, then for any
k ≥ 1,

P(X ≥ k) = (1 − p)k−1.
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Example 1

Cards are randomly selected from an ordinary deck, one at a time,
until a spade is obtained. If we assume that each card is returned to
the deck before the next one is selected, find the probability that (a)
exactly 10 cards are needed; (b) at least 10 cards are needed.

Solution
The number of cards needed is a geometric random variable with
parameter 1

4 . Thus (a) ( 3
4 )

9( 1
4 ); (b) ( 3

4 )
9.
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X is a geometric random variable with parameter p, then

E [X ] =
1
p
, Var(X ) =

1 − p
p2 .

Let q = 1 − p. Then

E [X ] =
∞∑

n=1

nqn−1p = p
∞∑

n=0

d
dq

(qn)

= p
d
dq

( ∞∑
n=0

qn

)
= p

d
dq

(
1

1 − q

)
=

p
(1 − q)2 =

1
p
.
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E [X 2] =
∞∑

n=1

n2qn−1p = p
∞∑

n=0

d
dq

(nqn)

= p
d
dq

( ∞∑
n=0

nqn

)
= p

d
dq

(
q

1 − q
E [X ]

)
= p

d
dq

(
q

(1 − q)2

)
=

2
p2 − 1

p
.

Thus
Var(X ) = E [X 2]− (E [X ])2 =

1 − p
p2 .
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