# Math 461 Spring 2024 

Renming Song<br>University of Illinois Urbana-Champaign

February 09, 2024

## Outline

## Outline

2 4.6 Bernoulli and binomial random variables

3 4.7 Poisson random variables

HW3 is due today, before the end of class.

## I will post solutions to HW3 this afternoon.

HW3 is due today, before the end of class.

## I will post solutions to HW3 this afternoon.

## Outline

## (9) General Info

## 2 4.6 Bernoulli and binomial random variables

## 3 4.7 Poisson random variables

## A random variable $X$ is said to be a Bernoulli random variable with parameter $p \in(0,1)$ if $P(X=1)=p$ and $P(X=0)=1-p$.



A random variable $X$ is said to be a Bernoulli random variable with parameter $p \in(0,1)$ if $P(X=1)=p$ and $P(X=0)=1-p$.

Suppose that an experiment whose outcome can be classified as either success or failure is performed. If we let $X=1$ when the outcome is a success and $X=0$ when it is failure, then $X$ is a Bernoulli random variable and the parameter is the probability of success.

A random variable $X$ is said to be a Bernoulli random variable with parameter $p \in(0,1)$ if $P(X=1)=p$ and $P(X=0)=1-p$.

Suppose that an experiment whose outcome can be classified as either success or failure is performed. If we let $X=1$ when the outcome is a success and $X=0$ when it is failure, then $X$ is a Bernoulli random variable and the parameter is the probability of success.

If $X$ is a Bernoulli random variable with parameter $p$, then $E[X]=E\left[X^{2}\right]=p$ and $\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}=p(1-p)$.

Suppose that independent trials, each results in a success with probability $p$ and a failure with probability $1-p$, are performed $n$ times. Let $X$ be the total number of successes, then $X$ is said to be a binomial random variable with parameters ( $n, p$ ). A Bernoulli random variable with parameter $p$ is a binomial random variable with parameters (1, $p$ ).

Suppose that independent trials, each results in a success with probability $p$ and a failure with probability $1-p$, are performed $n$ times. Let $X$ be the total number of successes, then $X$ is said to be a binomial random variable with parameters ( $n, p$ ). A Bernoulli random variable with parameter $p$ is a binomial random variable with parameters ( $1, p$ ).

If $X$ is a binomial random variable with parameters $(n, p)$, then

$$
P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad k=0,1, \ldots, n .
$$

## Example 1

It is known that screws produced by a certain company will be defective with probability 0.01 , independent of each other. The company sells the screws in packages of 10 and offers a money back guarantee that at most 1 of the 10 screws will be defective. What is the proportion of sold packages must the company give the money back?

Let $X$ be the number of defectives in a package. random variable with parameters $(10,0.01)$.

## Example 1

It is known that screws produced by a certain company will be defective with probability 0.01 , independent of each other. The company sells the screws in packages of 10 and offers a money back guarantee that at most 1 of the 10 screws will be defective. What is the proportion of sold packages must the company give the money back?

Let $X$ be the number of defectives in a package. Then $X$ is a binomial random variable with parameters $(10,0.01)$.

$$
\begin{aligned}
P(X \geq 2) & =1-P(X=0)-P(X=1) \\
& =1-(0.99)^{10}-10 \cdot(0.01)(0.99)^{9} \\
& \approx 0.004 .
\end{aligned}
$$

## Example 2

A communication system consists of $n$ components, each of which will, independently, function with probability $p$. The total system will be able to operate effectively if at least one half of its components function. For what values of $p$ is a 5-component system more likely to operate effectively than a 3-component system?

## Example 2

A communication system consists of $n$ components, each of which will, independently, function with probability $p$. The total system will be able to operate effectively if at least one half of its components function. For what values of $p$ is a 5 -component system more likely to operate effectively than a 3-component system?

The probability that a 5-component system operates effectively is

$$
\binom{5}{3} p^{3}(1-p)^{2}+\binom{5}{4} p^{4}(1-p)+p^{5} .
$$

The probability that a 3-component system operates effectively is

$$
\binom{3}{2} p^{2}(1-p)+p^{3} .
$$

## Solving the inequality

$$
\binom{5}{3} p^{3}(1-p)^{2}+\binom{5}{4} p^{4}(1-p)+p^{5}>\binom{3}{2} p^{2}(1-p)+p^{3}
$$

we get $p>\frac{1}{2}$.

## If $X$ is a binomial random variable with parameters $(n, p)$, then

Solving the inequality

$$
\binom{5}{3} p^{3}(1-p)^{2}+\binom{5}{4} p^{4}(1-p)+p^{5}>\binom{3}{2} p^{2}(1-p)+p^{3}
$$

we get $p>\frac{1}{2}$.

If $X$ is a binomial random variable with parameters $(n, p)$, then

$$
E[X]=n p, \quad \operatorname{Var}(X)=n p(1-p) .
$$

$$
\begin{aligned}
E[X] & =\sum_{k=0}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k}=\sum_{k=1}^{n} \frac{n!}{(k-1)!(n-k)!} p^{k}(1-p)^{n-k} \\
& =n p \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)!(n-k)!} p^{k-1}(1-p)^{n-k} \\
& =n p \sum_{j=0}^{n-1} \frac{(n-1)!}{j!(n-1-j)!} p^{j}(1-p)^{n-1-j}=n p .
\end{aligned}
$$

$$
\begin{aligned}
E[X] & =\sum_{k=0}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k}=\sum_{k=1}^{n} \frac{n!}{(k-1)!(n-k)!} p^{k}(1-p)^{n-k} \\
& =n p \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)!(n-k)!} p^{k-1}(1-p)^{n-k} \\
& =n p \sum_{j=0}^{n-1} \frac{(n-1)!}{j!(n-1-j)!} p^{j}(1-p)^{n-1-j}=n p .
\end{aligned}
$$

Similarly, we can find that

$$
E\left[X^{2}\right]=n(n-1) p^{2}+n p .
$$

Thus

$$
\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}=n p(1-p) .
$$

## Proposition

If $X$ is a binomial random variable with parameters $(n, p)$, then as $k$ goes from 0 to $n, P(X=k)$ first increases and then decreases, reaching its largest value when $k$ is the largest integer less than or equal to $(n+1) p$.

## Proposition

If $X$ is a binomial random variable with parameters $(n, p)$, then as $k$ goes from 0 to $n, P(X=k)$ first increases and then decreases, reaching its largest value when $k$ is the largest integer less than or equal to $(n+1) p$.

$$
\begin{aligned}
\frac{P(X=k)}{P(X=k-1)} & =\frac{\binom{n}{k} p^{k}(1-p)^{n-k}}{\binom{n}{k-1} p^{k-1}(1-p)^{n-k+1}} \\
& =\frac{(n-k+1) p}{k(1-p)}
\end{aligned}
$$

which is $\geq 1$ iff $(n-k+1) p \geq k(1-p)$ iff $k \leq(n+1) p$.

## Outline

## (9) General Info

2 4.6 Bernoulli and binomial random variables

3 4.7 Poisson random variables

Let $\lambda>0$ be a constant. A non-negative integer-valued random variable $X$ is said to be a Poisson random variable with parameter $\lambda$ if

$$
p(x)=P(X=x)= \begin{cases}e^{-\lambda \frac{\lambda^{x}}{x!}}, & x=0,1, \ldots \\ 0, & \text { otherwise } .\end{cases}
$$

It is indeed a probability mass function since

Let $\lambda>0$ be a constant. A non-negative integer-valued random variable $X$ is said to be a Poisson random variable with parameter $\lambda$ if

$$
p(x)=P(X=x)= \begin{cases}e^{-\lambda \frac{\lambda^{x}}{x!}} & x=0,1, \ldots \\ 0, & \text { otherwise. }\end{cases}
$$

It is indeed a probability mass function since

$$
\sum_{x=0}^{\infty} e^{-\lambda} \frac{\lambda^{x}}{x!}=e^{-\lambda} \sum_{x=0}^{\infty} \frac{\lambda^{x}}{x!}=e^{-\lambda} e^{\lambda}=1 .
$$

If $X$ is a Poisson random variable with parameter $\lambda$, then

$$
E[X]=\operatorname{Var}(X)=\lambda .
$$



If $X$ is a Poisson random variable with parameter $\lambda$, then

$$
E[X]=\operatorname{Var}(X)=\lambda .
$$

$$
\begin{aligned}
E[X] & =\sum_{x=0}^{\infty} x e^{-\lambda} \frac{\lambda^{x}}{x!}=\lambda e^{-\lambda} \sum_{x=1}^{\infty} \frac{\lambda^{x-1}}{(x-1)!} \\
& =\lambda e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!}=\lambda .
\end{aligned}
$$

Similarly, we get $E\left[X^{2}\right]=\lambda(\lambda+1)$. Thus $\operatorname{Var}(X)=\lambda$.

Poisson random variables are widely used in applications since they may be used as approximations of binomial random variables with parameters $(n, p)$ when $n$ is big, $p$ is small so $n p$ is of moderate size.


Poisson random variables are widely used in applications since they may be used as approximations of binomial random variables with parameters $(n, p)$ when $n$ is big, $p$ is small so $n p$ is of moderate size.

Suppose $X$ is a binomial random variable with parameters $(n, p)$, where $n$ is big, $p$ is small so that $n p$ is of moderate size. Let $\lambda=n p$.

$$
\begin{aligned}
P(X=k) & =\frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k}=\frac{n!}{k!(n-k)!}\left(\frac{\lambda}{n}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n-k} \\
& =\frac{n(n-1) \cdots(n-k+1)}{n^{k}} \frac{\lambda^{k}}{k!} \frac{\left(1-\frac{\lambda}{n}\right)^{n}}{\left(1-\frac{\lambda}{n}\right)^{k}} \approx e^{-\lambda} \frac{\lambda^{k}}{k!} .
\end{aligned}
$$

Therefore, if $n$ independent trials, each results in a success with probability $p$, are performed, when $n$ is big, $p$ is small so that $n p$ is of moderate size, the number of successes in the $n$ trials is approximately a Poisson random variable with parameter $\lambda=n p$.

Therefore, if $n$ independent trials, each results in a success with probability $p$, are performed, when $n$ is big, $p$ is small so that $n p$ is of moderate size, the number of successes in the $n$ trials is approximately a Poisson random variable with parameter $\lambda=n p$.

## Examples

1 Number of misprints on a page of a book.
2 Number of people in a community over the age of 90 .

## Example

A machine produces screws, $1 \%$ of which are defective. Find the probability that in a box of 100 screws there are at most 3 defective ones. Assume independence.

## The number of defectives in the box is a binomial random variable

 with parameters $(100,0.01)$. So the exact answer is$X$ is approximately a Poisson random variable with parameter 1, so

## Example

A machine produces screws, $1 \%$ of which are defective. Find the probability that in a box of 100 screws there are at most 3 defective ones. Assume independence.

The number of defectives in the box is a binomial random variable with parameters $(100,0.01)$. So the exact answer is

$$
\begin{aligned}
P(X \leq 3)= & (0.99)^{100}+100 \cdot(0.01)(0.99)^{99} \\
& +\binom{100}{2}(0.01)^{2}(0.99)^{98}+\binom{100}{3}(0.01)^{3}(0.99)^{97} .
\end{aligned}
$$

$X$ is approximately a Poisson random variable with parameter 1 , so

$$
P(X \leq 3) \approx e^{-1}+e^{-1}+e^{-1} \frac{1}{2}+e^{-1} \frac{1}{6} .
$$

