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HW3 is due Friday, 02/09, before the end of class. Please submit your
HW3 as ONE pdf file via the HW3 folder in the course Moodle page.

Solutions to HW2 is on my homepage.
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One of the most important concepts in probability theory is that of the
expectation of a random variable.

Definition
Suppose X is a discrete random variable with mass function p(·). If∑

x :p(x)>0

|x |p(x) < ∞

then we say that X has finite expectation and we define

E[X] =
∑

x:p(x)>0

xp(x)

to be the expectation of X . If
∑

x :p(x)>0 |x |p(x) = ∞, the expectation
of X is undefined.
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Example 1

Suppose that A is an event and define

I =

{
1 if A occurs
0 otherwise.

Then E[I] = 0 · P(Ac) + 1 · P(A) = P(A).

Example 2

If X is the outcome when we roll a fair die, then

p(1) = · · · = p(6) =
1
6
.

Thus E[X] = 7
2 .
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Example 3

2 fair dice are rolled. Let X be the sum of the two dice. Then E[X] = 7.

Example 5

Suppose that

P(X = 2n−1) = 2−n, n = 1,2, . . . .

Since
∞∑

n=1

2n−12−n = ∞,

E[X] is not defined.
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Suppose that X is a discrete random variable with mass function p(·).
Suppose φ is a function on R. Then φ(X ) is a discrete random
variable. We want to find E[φ(X)]. Before presenting the general
theorem, let’s looking at an example first.

Example 1

Suppose that

P(X = −1) =
1
5
, P(X = 0) =

1
2
, P(X = 1) =

3
10

.

Find E[X2].

Let Y = X 2. Then P(Y = 0) = P(Y = 1) = 1
2 . Thus E[X2] = 1

2 .
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What we did in the previous example was: first find the mass function
of φ(X ) and then use the definition of expectation. We could also the
following proposition

Proposition

Suppose that X is a discrete random variable with mass function p(·)
and that φ is a function on R. If∑

x

|φ(x)|p(x) < ∞,

then φ(X ) has finite expectation and

E[φ(X)] =
∑

x

φ(x)p(x).
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I am not going to give a proof of the above proposition. Let’s apply
this proposition to the previous example:

E[X2] = (−1)2 · 1
5
+ 02 · 1

2
+ 12 · 3

10
=

1
2
,

which coincides with the answer we found before.

Example 2

A coin is tossed 4 times. Suppose that the probability of Heads is 2
3

on each toss. Let X be the total number of Heads. Find E[sin(πX
2 )].

E[sin(
πX
2

)] =
4∑

k=0

sin(
kπ
2

)

(
4
k

)
(
2
3
)k (

1
3
)4−k

= 4 · 2
3
· (1

3
)3 − 4 · (2

3
)3 · 1

3
.
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Corollary

If X is a discrete random variable, and a,b are constants, then

E[aX + b] = aE[X] + b.

This corollary follows immediately from the proposition. Let p(·) be
the mass function of X . Then

E[aX + b] =
∑

x

(ax + b)p(x) = a
∑

x

xp(x) + b
∑

x

p(x)

= aE[X] + b.

The expectation of X , E[X], is also called the first moment of X . For
any integer n ≥ 1, E[Xn], if exists, is called the n-th moment of X . If X
is a discrete random variable with mass function p(·), then

E[Xn] =
∑

x

xnp(x).
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Definition
Suppose that X is a discrete random variable with finite E[X] = µ. If
E[(X − µ)2] exists, we call it the variance of the random variable X :

Var(X ) = E[(X − µ)2].

The square root of Var(X ) is called the standard deviation of X :

SD(X ) =
√

Var(X ).

Var(X ) is always non-negative. It measures how spread-out the
random variable X is from its mean. If Var(X ) = 0, then X is
deterministic.
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Here is another formula for Var(X ):

Var(X ) = E[X2]− (E[X])2.

Here is a derivation. Let p(·) be the mass function of X .

Var(X ) = E[(X − µ)2] =
∑

x

(x − µ)2p(x)

=
∑

x

(x2 − 2µx + µ2)p(x)

=
∑

x

x2p(x)− 2µ
∑

x

xp(x) + µ2
∑

x

p(x)

= E[X2]− 2µ · µ+ µ2 = E[X2]− µ2

= E[X2]− (E[X])2.
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Proposition

Suppose that X is a discrete random variable with finite variance.
Then for any real numbers a and b,

Var(aX + b) = a2Var(X ).

In particular,
Var(−X ) = Var(X ).

Example

Suppose that X is a randomly chosen number from {1,2, . . . ,10}.
Find Var(X ).
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p(1) = p(2) = · · · = p(10) =
1

10
.

E[X] =
1

10

10∑
k=1

k =
55
10

=
11
2
.

E[X2] =
1

10

10∑
k=1

k2 =
1

10
10 · 11 · 21

6
=

77
2
.

Var(X ) =
77
2

− (
11
2
)2.
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