Math 461 Spring 2024

Renming Song
University of Illinois Urbana-Champaign

February 07, 2024

Outline

Outline

(1) General Info

2 4.3 Expected Values

3 4.4 Expectation of a Function of a Discrete Random Variable

4 4.5 Variance

HW3 is due Friday, 02/09, before the end of class. Please submit your HW3 as ONE pdf file via the HW3 folder in the course Moodle page.

HW3 is due Friday, 02/09, before the end of class. Please submit your HW3 as ONE pdf file via the HW3 folder in the course Moodle page.

Solutions to HW2 is on my homepage.

Outline

(1) General Info

(2) 4.3 Expected Values

3 4.4 Expectation of a Function of a Discrete Random Variable

4 4.5 Variance

One of the most important concepts in probability theory is that of the expectation of a random variable.

then we say that X has finite expectation and we define

One of the most important concepts in probability theory is that of the expectation of a random variable.

Definition

Suppose X is a discrete random variable with mass function $p(\cdot)$. If

$$
\sum_{x: p(x)>0}|x| p(x)<\infty
$$

then we say that X has finite expectation and we define

$$
\mathrm{E}[\mathrm{X}]=\sum_{\mathrm{x}: \mathrm{p}(\mathrm{x})>0} \mathrm{xp}(\mathrm{x})
$$

to be the expectation of X. If $\sum_{x: p(x)>0}|x| p(x)=\infty$, the expectation of X is undefined.

Example 1

Suppose that A is an event and define

$$
I= \begin{cases}1 & \text { if } A \text { occurs } \\ 0 & \text { otherwise }\end{cases}
$$

Then $\mathrm{E}[\mathrm{I}]=0 \cdot \mathrm{P}\left(\mathrm{A}^{\mathrm{c}}\right)+1 \cdot \mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{A})$.

Example 1

Suppose that A is an event and define

$$
I= \begin{cases}1 & \text { if } A \text { occurs } \\ 0 & \text { otherwise }\end{cases}
$$

Then $\mathrm{E}[\mathrm{I}]=0 \cdot \mathrm{P}\left(\mathrm{A}^{\mathrm{c}}\right)+1 \cdot \mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{A})$.

Example 2

If X is the outcome when we roll a fair die, then

$$
p(1)=\cdots=p(6)=\frac{1}{6} .
$$

Thus $\mathrm{E}[\mathrm{X}]=\frac{7}{2}$.

Example 3

2 fair dice are rolled. Let X be the sum of the two dice. Then $\mathrm{E}[\mathrm{X}]=7$.

Example 3

2 fair dice are rolled. Let X be the sum of the two dice. Then $\mathrm{E}[\mathrm{X}]=7$.

Example 5

Suppose that

$$
P\left(X=2^{n-1}\right)=2^{-n}, \quad n=1,2, \ldots
$$

Since

$$
\sum_{n=1}^{\infty} 2^{n-1} 2^{-n}=\infty
$$

$\mathrm{E}[\mathrm{X}]$ is not defined.

Outline

(1) General Info

(2) 4.3 Expected Values

3 4.4 Expectation of a Function of a Discrete Random Variable

4 4.5 Variance

Suppose that X is a discrete random variable with mass function $p(\cdot)$. Suppose φ is a function on \mathbb{R}. Then $\varphi(X)$ is a discrete random variable. We want to find $\mathrm{E}[\varphi(\mathrm{X})]$. Before presenting the general theorem, let's looking at an example first.

Suppose that X is a discrete random variable with mass function $p(\cdot)$. Suppose φ is a function on \mathbb{R}. Then $\varphi(X)$ is a discrete random variable. We want to find $\mathrm{E}[\varphi(\mathrm{X})]$. Before presenting the general theorem, let's looking at an example first.

Example 1

Suppose that

$$
P(X=-1)=\frac{1}{5}, \quad P(X=0)=\frac{1}{2}, \quad P(X=1)=\frac{3}{10} .
$$

Find $E\left[X^{2}\right]$.

Suppose that X is a discrete random variable with mass function $p(\cdot)$. Suppose φ is a function on \mathbb{R}. Then $\varphi(X)$ is a discrete random variable. We want to find $\mathrm{E}[\varphi(\mathrm{X})]$. Before presenting the general theorem, let's looking at an example first.

Example 1

Suppose that

$$
P(X=-1)=\frac{1}{5}, \quad P(X=0)=\frac{1}{2}, \quad P(X=1)=\frac{3}{10} .
$$

Find $E\left[X^{2}\right]$.

Let $Y=X^{2}$. Then $P(Y=0)=P(Y=1)=\frac{1}{2}$. Thus $\mathrm{E}\left[\mathrm{X}^{2}\right]=\frac{1}{2}$.

What we did in the previous example was: first find the mass function of $\varphi(X)$ and then use the definition of expectation. We could also the following proposition

What we did in the previous example was: first find the mass function of $\varphi(X)$ and then use the definition of expectation. We could also the following proposition

Proposition

Suppose that X is a discrete random variable with mass function $p(\cdot)$ and that φ is a function on \mathbb{R}. If

$$
\sum_{x}|\varphi(x)| p(x)<\infty
$$

then $\varphi(X)$ has finite expectation and

$$
\mathrm{E}[\varphi(\mathrm{X})]=\sum_{\mathrm{x}} \varphi(\mathrm{x}) \mathrm{p}(\mathrm{x}) .
$$

I am not going to give a proof of the above proposition. Let's apply this proposition to the previous example:

$$
\mathrm{E}\left[\mathrm{X}^{2}\right]=(-1)^{2} \cdot \frac{1}{5}+0^{2} \cdot \frac{1}{2}+1^{2} \cdot \frac{3}{10}=\frac{1}{2},
$$

which coincides with the answer we found before.
\square
A coin is tossed 4 times. Suppose that the probability of Heads is on each toss. Let X be the total number of Heads. Find $\mathrm{E}[\sin ($

I am not going to give a proof of the above proposition. Let's apply this proposition to the previous example:

$$
\mathrm{E}\left[\mathrm{X}^{2}\right]=(-1)^{2} \cdot \frac{1}{5}+0^{2} \cdot \frac{1}{2}+1^{2} \cdot \frac{3}{10}=\frac{1}{2},
$$

which coincides with the answer we found before.

Example 2

A coin is tossed 4 times. Suppose that the probability of Heads is $\frac{2}{3}$ on each toss. Let X be the total number of Heads. Find $\mathrm{E}\left[\sin \left(\frac{\pi \mathrm{X}}{2}\right)\right]$.

I am not going to give a proof of the above proposition. Let's apply this proposition to the previous example:

$$
\mathrm{E}\left[\mathrm{X}^{2}\right]=(-1)^{2} \cdot \frac{1}{5}+0^{2} \cdot \frac{1}{2}+1^{2} \cdot \frac{3}{10}=\frac{1}{2}
$$

which coincides with the answer we found before.

Example 2

A coin is tossed 4 times. Suppose that the probability of Heads is $\frac{2}{3}$ on each toss. Let X be the total number of Heads. Find $\mathrm{E}\left[\sin \left(\frac{\pi \mathrm{X}}{2}\right)\right]$.

$$
\begin{aligned}
\mathrm{E}\left[\sin \left(\frac{\pi \mathrm{X}}{2}\right)\right] & =\sum_{k=0}^{4} \sin \left(\frac{k \pi}{2}\right)\binom{4}{k}\left(\frac{2}{3}\right)^{k}\left(\frac{1}{3}\right)^{4-k} \\
& =4 \cdot \frac{2}{3} \cdot\left(\frac{1}{3}\right)^{3}-4 \cdot\left(\frac{2}{3}\right)^{3} \cdot \frac{1}{3}
\end{aligned}
$$

Corollary

If X is a discrete random variable, and a, b are constants, then

$$
\mathrm{E}[\mathrm{aX}+\mathrm{b}]=\mathrm{aE}[\mathrm{X}]+\mathrm{b} .
$$

This corollary follows immediately from the proposition. Let $p(\cdot)$ be the mass function of X. Then
\square any integer $n \geq 1, \mathrm{E}\left[\mathrm{X}^{\mathrm{n}}\right]$, if exists, is called the n-th moment of X. If X is a discrete random variable with mass function $p(\cdot)$, then

Corollary

If X is a discrete random variable, and a, b are constants, then

$$
\mathrm{E}[\mathrm{aX}+\mathrm{b}]=\mathrm{aE}[\mathrm{X}]+\mathrm{b} .
$$

This corollary follows immediately from the proposition. Let $p(\cdot)$ be the mass function of X. Then

$$
\begin{aligned}
\mathrm{E}[\mathrm{aX}+\mathrm{b}] & =\sum_{x}(a x+b) p(x)=a \sum_{x} x p(x)+b \sum_{x} p(x) \\
& =\mathrm{aE}[\mathrm{X}]+\mathrm{b} .
\end{aligned}
$$

Corollary

If X is a discrete random variable, and a, b are constants, then

$$
\mathrm{E}[\mathrm{aX}+\mathrm{b}]=\mathrm{aE}[\mathrm{X}]+\mathrm{b} .
$$

This corollary follows immediately from the proposition. Let $p(\cdot)$ be the mass function of X. Then

$$
\begin{aligned}
\mathrm{E}[\mathrm{aX}+\mathrm{b}] & =\sum_{x}(a x+b) p(x)=a \sum_{x} x p(x)+b \sum_{x} p(x) \\
& =\mathrm{aE}[\mathrm{X}]+\mathrm{b} .
\end{aligned}
$$

The expectation of $X, \mathrm{E}[\mathrm{X}]$, is also called the first moment of X. For any integer $n \geq 1, \mathrm{E}\left[\mathrm{X}^{\mathrm{n}}\right]$, if exists, is called the n-th moment of X. If X is a discrete random variable with mass function $p(\cdot)$, then

$$
\mathrm{E}\left[\mathrm{X}^{\mathrm{n}}\right]=\sum_{\mathrm{x}} \mathrm{x}^{\mathrm{n}} \mathrm{p}(\mathrm{x})
$$

Outline

(1) General Info

2 4.3 Expected Values

3 4.4 Expectation of a Function of a Discrete Random Variable
4. 4.5 Variance

Definition

Suppose that X is a discrete random variable with finite $\mathrm{E}[\mathrm{X}]=\mu$. If $\mathrm{E}\left[(\mathrm{X}-\mu)^{2}\right]$ exists, we call it the variance of the random variable X :

$$
\operatorname{Var}(X)=\mathrm{E}\left[(\mathrm{X}-\mu)^{2}\right] .
$$

The square root of $\operatorname{Var}(X)$ is called the standard deviation of X :

$$
\mathrm{SD}(X)=\sqrt{\operatorname{Var}(X)}
$$

Definition

Suppose that X is a discrete random variable with finite $\mathrm{E}[\mathrm{X}]=\mu$. If $\mathrm{E}\left[(\mathrm{X}-\mu)^{2}\right]$ exists, we call it the variance of the random variable X :

$$
\operatorname{Var}(X)=\mathrm{E}\left[(\mathrm{X}-\mu)^{2}\right] .
$$

The square root of $\operatorname{Var}(X)$ is called the standard deviation of X :

$$
\mathrm{SD}(X)=\sqrt{\operatorname{Var}(X)}
$$

$\operatorname{Var}(X)$ is always non-negative. It measures how spread-out the random variable X is from its mean. If $\operatorname{Var}(X)=0$, then X is deterministic.

Here is another formula for $\operatorname{Var}(X)$:

$$
\operatorname{Var}(X)=\mathrm{E}\left[\mathrm{X}^{2}\right]-(\mathrm{E}[\mathrm{X}])^{2}
$$

Here is another formula for $\operatorname{Var}(X)$:

$$
\operatorname{Var}(X)=\mathrm{E}\left[\mathrm{X}^{2}\right]-(\mathrm{E}[\mathrm{X}])^{2} .
$$

Here is a derivation. Let $p(\cdot)$ be the mass function of X.

$$
\begin{aligned}
\operatorname{Var}(X) & =\mathrm{E}\left[(\mathrm{X}-\mu)^{2}\right]=\sum_{\mathrm{x}}(\mathrm{x}-\mu)^{2} \mathrm{p}(\mathrm{x}) \\
& =\sum_{x}\left(x^{2}-2 \mu x+\mu^{2}\right) p(x) \\
& =\sum_{x} x^{2} p(x)-2 \mu \sum_{x} x p(x)+\mu^{2} \sum_{x} p(x) \\
& =\mathrm{E}\left[\mathrm{X}^{2}\right]-2 \mu \cdot \mu+\mu^{2}=\mathrm{E}\left[\mathrm{X}^{2}\right]-\mu^{2} \\
& =\mathrm{E}\left[\mathrm{X}^{2}\right]-(\mathrm{E}[\mathrm{X}])^{2} .
\end{aligned}
$$

Proposition

Suppose that X is a discrete random variable with finite variance. Then for any real numbers a and b,

$$
\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)
$$

In particular,

$$
\operatorname{Var}(-X)=\operatorname{Var}(X)
$$

Proposition

Suppose that X is a discrete random variable with finite variance. Then for any real numbers a and b,

$$
\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)
$$

In particular,

$$
\operatorname{Var}(-X)=\operatorname{Var}(X)
$$

Example

Suppose that X is a randomly chosen number from $\{1,2, \ldots, 10\}$. Find $\operatorname{Var}(X)$.

$$
\begin{gathered}
p(1)=p(2)=\cdots=p(10)=\frac{1}{10} . \\
\mathrm{E}[\mathrm{X}]=\frac{1}{10} \sum_{\mathrm{k}=1}^{10} \mathrm{k}=\frac{55}{10}=\frac{11}{2} . \\
\mathrm{E}\left[\mathrm{X}^{2}\right]=\frac{1}{10} \sum_{\mathrm{k}=1}^{10} \mathrm{k}^{2}=\frac{1}{10} \frac{10 \cdot 11 \cdot 21}{6}=\frac{77}{2} . \\
\operatorname{Var}(X)=\frac{77}{2}-\left(\frac{11}{2}\right)^{2} .
\end{gathered}
$$

