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Solutions to HW1 are available on my hmepage.

HW2 is due this Friday at the end of the class.
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General Info 3.2 Conditional Probabilities 3.3 Bayes’ Formula

Definition
If P(F ) > 0, we define

P(E |F ) =
P(E ∩ F )

P(F )
.

If P(F ) = 0, P(E |F ) is undefined.

Using the definition of conditional probability, one can easily check

P(E ∩ F ) = P(F )P(E |F ).

More generally, we have

P(∩n
i=1Ei) = P(E1)P(E2|E1) · · ·P(En| ∩n−1

i=1 Ei).

These formulas are very useful in finding the probability of
intersections.



General Info 3.2 Conditional Probabilities 3.3 Bayes’ Formula

Definition
If P(F ) > 0, we define

P(E |F ) =
P(E ∩ F )

P(F )
.

If P(F ) = 0, P(E |F ) is undefined.

Using the definition of conditional probability, one can easily check

P(E ∩ F ) = P(F )P(E |F ).

More generally, we have

P(∩n
i=1Ei) = P(E1)P(E2|E1) · · ·P(En| ∩n−1

i=1 Ei).

These formulas are very useful in finding the probability of
intersections.



General Info 3.2 Conditional Probabilities 3.3 Bayes’ Formula

Definition
If P(F ) > 0, we define

P(E |F ) =
P(E ∩ F )

P(F )
.

If P(F ) = 0, P(E |F ) is undefined.

Using the definition of conditional probability, one can easily check

P(E ∩ F ) = P(F )P(E |F ).

More generally, we have

P(∩n
i=1Ei) = P(E1)P(E2|E1) · · ·P(En| ∩n−1

i=1 Ei).

These formulas are very useful in finding the probability of
intersections.



General Info 3.2 Conditional Probabilities 3.3 Bayes’ Formula

Definition
If P(F ) > 0, we define

P(E |F ) =
P(E ∩ F )

P(F )
.

If P(F ) = 0, P(E |F ) is undefined.

Using the definition of conditional probability, one can easily check

P(E ∩ F ) = P(F )P(E |F ).

More generally, we have

P(∩n
i=1Ei) = P(E1)P(E2|E1) · · ·P(En| ∩n−1

i=1 Ei).

These formulas are very useful in finding the probability of
intersections.



General Info 3.2 Conditional Probabilities 3.3 Bayes’ Formula

Example 3

Suppose that a box contains 8 red balls and 4 white balls. We
randomly draw two balls from the box without replacement. Find the
probability that (a) both balls are red; (b) the second ball is red.

(a) Using the obvious notation,

P(R1 ∩ R2) = P(R1)P(R2|R1) =
8
12

7
11

.

P(R2) = P(R1 ∩ R2) + P(W1 ∩ R2) =
8

12
7

11
+

4
12

8
11

.



General Info 3.2 Conditional Probabilities 3.3 Bayes’ Formula

Example 3

Suppose that a box contains 8 red balls and 4 white balls. We
randomly draw two balls from the box without replacement. Find the
probability that (a) both balls are red; (b) the second ball is red.

(a) Using the obvious notation,

P(R1 ∩ R2) = P(R1)P(R2|R1) =
8
12

7
11

.

P(R2) = P(R1 ∩ R2) + P(W1 ∩ R2) =
8

12
7

11
+

4
12

8
11

.



General Info 3.2 Conditional Probabilities 3.3 Bayes’ Formula

Example 3

Suppose that a box contains 8 red balls and 4 white balls. We
randomly draw two balls from the box without replacement. Find the
probability that (a) both balls are red; (b) the second ball is red.

(a) Using the obvious notation,

P(R1 ∩ R2) = P(R1)P(R2|R1) =
8
12

7
11

.

P(R2) = P(R1 ∩ R2) + P(W1 ∩ R2) =
8

12
7

11
+

4
12

8
11

.



General Info 3.2 Conditional Probabilities 3.3 Bayes’ Formula

Example 3

Suppose that in the previous example. 3 balls are randomly selected
from the box without replacement. Find the probability that all 3 are
red.

P(R1 ∩ R2 ∩ R3) = P(R1)P(R2|R1)P(R3|R1 ∩ R2)

=
8
12

7
11

6
10

.
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Example 4

An ordinary deck of 52 cards is randomly divided into 4 distinct piles
of 13 each. Find the probability that each pile has exactly 1 ace.

Solution. From an example in Section 2.5, we know that the answer is

4!
( 48

12,12,12,12

)( 52
13,13,13,13

)
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Solution by conditional probability. For i = 1,2,3,4, let Ei be the
event that the i-th pile has exactly 1 ace. Then

P(E1) =
4
(48

12

)(52
13

) , P(E2|E1) =
3
(36

12

)(39
13

) ,

P(E3|E1 ∩ E2) =
2
(24

12

)(26
13

) , P(E4|E1 ∩ E2 ∩ E3) =

(12
12

)(13
13

) = 1.

So the answer is
4
(48

12

)(52
13

) 3
(36

12

)(39
13

) 2
(24

12

)(26
13

) (12
12

)(13
13

) .

The 2 answers are the same. See the book for yet another solution
via conditional probability.
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Example 1

A certain blood test is 95% effective in detecting a certain disease
when it is in fact present. However, the test also yields a “false
positive” result for 1% of the healthy people tested. If 0.5% of the
population has the disease, what is the probability that a person has
the disease given that the person’s test result is positive?

Solution. Let E be the event that the person has the disease, and F
the event that the person’s test result is positive. We are looking for
P(E |F ), which is equal to

P(E ∩ F )

P(F )
.
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We are given
P(E) = 0.005, P(Ec) = 0.995

and
P(F |E) = .95 P(F |Ec) = .01.

Thus
P(E ∩ F ) = P(E)P(F |E) = (0.005) · (0.95)

and

P(F ) = P(E ∩ F ) + P(Ec ∩ F ) = P(E)P(F |E) + P(Ec)P(F |Ec)

= (0.005) · (0.95) + (0.995) · (0.01).

The answer is

(0.005) · (0.95)
(0.005) · (0.95) + (0.995) · (0.01)

≈ 0.323.
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The example above is a special case of the following general
situation. Suppose A1,A2, . . . ,An are n disjoint events with their union
being the whole sample space and with P(Ai) > 0 for each
i = 1, . . . ,n. Let B be an event with P(B) > 0. Suppose that
P(Ai),P(B|Ai), i = 1, . . . ,n are given. Find P(Ai |B).

B = B ∩
(
∪n

j=1Aj
)
= ∪n

j=1(B ∩ Aj).

So

P(B) =
n∑

j=1

P(Aj)P(B|Aj).

Thus
P(Ai |B) =

P(Ai ∩ B)

P(B)
=

P(Ai)P(B|Ai)∑n
j=1 P(Aj)P(B|Aj)

.
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The formula above is known as the Bayes’ formula. You do not need
to memorize this formula. It is much easier to remember the short
derivation of it.

Example 2

In answering a certain multiple choice question with 5 possible
answers, a student either knows the answer or guesses. Assume that
a student knows the answer with probability 0.8. Assume that, when
not knowing the answer, the student guesses the 5 answers with
equal probability. Find the probability that the student knows the
answer given that the student answered it correctly.
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Solution. Let K be the event that the student knows the answer, and
C the event that the student answered it correctly. Then

P(K ) = 0.8, P(K c) = 0.2

and
P(C|K ) = 1 P(C|K c) = 0.2.

So

P(K |C) =
P(K ∩ C)

P(C)
=

P(K )P(C|K )

P(K )P(C|K ) + P(K c)P(C|K c)

=
(0.8) · 1

(0.8) · 1 + (0.2) · (0.2)
.
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Example 3

Suppose that there are 3 chests of drawers and each chest has 2
drawers. The first chest has a gold coin in each drawer; the second
chest has a gold in one drawer and a silver coin in the other; the third
chest has a silver coin in each drawer. A chest is chosen at random
and a drawer is randomly opened. If the drawer has a gold coin, what
is the probability that the other drawer also has a glod coin?

Solution. For i = 1,2,3, let Ei be the event that the i-th chest is
chosen, and let G be the event that the drawer opened has a gold
coin. We are looking for P(E1|G).
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P(E1) = P(E2) = P(E3) =
1
3
;

and
P(G|E1) = 1, P(G|E2) =

1
2
, P(G|E3) = 0.

So

P(E1|G) =
P(E1 ∩ G)

P(E1 ∩ G) + P(E2 ∩ G) + P(E3 ∩ G)

=
P(E1)P(G|E1)

P(E1)P(G|E1) + P(E2)P(G|E2) + P(E3)P(G|E3)

=
1
3

1
3 + 1

3
1
2

=
2
3
.
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A plane is missing, and it is presumed that it is equally likely to have
gone down in any of 3 possible regions. Let 1 − βi be the probability
that the plane will be found upon a search of the region when the
plane is, in fact, in that region, i =,2,3. Find the probability that the
plane is in the i-th region given that a search of region 1 did not
locate the plane.

Solution. For i = 1,2,3, let Ei be the event that the plane is the i-th
region. Let F be the event that a search of region 1 did not locate the
plane. We are looking for P(E1|F ), P(E2|F ) and P(E3|F ).

P(E1) = P(E2) = P(E3) =
1
3
,

and
P(F |E1) = β1, P(F |E2) = P(F |E3) = 1.
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So

P(E1|F ) =
P(E1 ∩ F )

P(E1 ∩ F ) + P(E2 ∩ F ) + P(E3 ∩ F )

=
P(E1)P(F |E1)

P(E1)P(F |E1) + P(E2)P(F |E2) + P(E3)P(F |E3)

=
β1

β1 + 2
.

Similarly,

P(E2|F ) = P(E3|F ) =
1

β1 + 2
.
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