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I have setup a HW1 folder in the Moodle page. Please submit your
HW1 in ONE pdf file via that folder. Make sure the quality of your file
is good enough. The deadline for submitting HW1 is next Friday,
01/26, before the end of our lecture.
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There are lots of phenomena in nature whose outcome cannot be
predicted with certainty in advance, but the set of all the possible
outcomes is known. For instance, when you toss a coin, you do not
know whether “Heads” or “Tails” will appear, but you do know the
outcome will be either ‘Heads” or “Tails”. These are what we call
random phenomena or random experiments. Probability theory is
concerned with such random experiments.

Consider a random experiment. The set of all the possible outcomes
is called the sample space of the experiment. We usually denote the
sample space by S.
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Tossing a coin. S = {H,T}. H stands for “Heads”, and T stands for
“Tails”.

Tossing a (6-sided) die. S = {1,2,3,4,5,6}.

Tossing a coin twice: S = {HH,HT ,TH,TT}.

Tossing a (6-sided) die twice. S = {(i , j) : i , j = 1, . . . ,6}.
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Keeping on tossing a coin until an H appears.
S = {H,TH,TTH,TTTH, . . . }.

Measuring the lifetime of a light-bulb. S = [0,∞).

Any subset E of the sample space S is known as an event. Some
examples are
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Tossing a coin. E = {H}.

Tossing a (6-sided) die. E = {2,4,6}.

Tossing a coin twice: E = {HH,HT}.

Tossing a (6-sided) die twice. E = “the sum is 6”.
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Keeping on tossing a coin until an H appears.
E = {H,TH,TTH,TTTH}.

Measuring the lifetime of a light-bulb. E = [90,∞).

We say that an event E occurs if the outcome of the experiment
belongs to E .
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Events are simply subsets of the sample space, so we can talk about
various set theoretical operations of events.

Union: E ∪ F occurs if and only if E or F occurs.
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Intersection: E ∩ F occurs if and only if both E and F occur
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The complement of E , denoted as Ec , consists of all the elements of
S which are not in E .
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E \ F = E ∩ F c consists of elements which are in E but not in F .
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E ⊂ F if every element of E is an element of F .

If E ∩ F = ∅, then we say that E and F are disjoint, or mutually
exclusive.

Similarly, we can define the union and intersection of more than 2
events

∪n
i=1Ei , ∪∞

i=1Ei

and
∩n

i=1Ei , ∩∞
i=1Ei .
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Properties of set theoretical operations

Commutativity: E ∪ F = F ∪ E and E ∩ F = F ∩ E ;
Associativity: (E ∪ F ) ∪ G = E ∪ (F ∪ G) and
(E ∩ F ) ∩ G = E ∩ (F ∩ G)
Distributivity: (E ∪ F ) ∩ G = (E ∩ G) ∪ (F ∩ G) and
(E ∩ F ) ∪ G = (E ∪ G) ∩ (F ∪ G).

De Morgan’s law

(∪n
i=1Ei)

c
= ∩n

i=1Ec
i (∪∞

i=1Ei)
c = ∩∞

i=1Ec
i

(∩n
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c
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Consider a random experiment whose sample space is S. A
real-valued function P on the space of all events of the experiment is
called a probability (measure) if
(1) for all event E , 0 ≤ P(E) ≤ 1;
(2) P(S) = 1;
(3) for any sequence E1,E2, . . . of mutually disjoint events,

P(∪∞
i=1Ei) =

∞∑
i=1

P(Ei).

For any event E , P(E) is referred to as the probability of the event E .
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Tossing a fair coin. P(H) = P(T ) = 1
2 .

Tossing a coin for which Heads is twice likely as Tails. P(H) = 2
3 ,

P(T ) = 1
3 .

Tossing a fair die. P(1) = P(2) = · · · = P(6) = 1
6 .

Tossing a fair coin twice: P(HH) = P(HT ) = P(TH) = P(TT ) = 1
4 .
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Tossing a fair die twice. P((i , j)) = 1
36 , i , j = 1, . . . ,6.

Tossing a fair coin until an H appears. P(H) = 1
2 , P(TH) = 1

4 ,
P(TTH) = 1

8 , P(TTTH) = 1
16 , . . . .

Measuring the lifetime of a light-bulb. P(A) =
∫

A e−tdt for any subset
A of R+.

Measuring the lifetime of a light-bulb. P(A) =
∫

A λe−λtdt for any
subset A of R+, where λ > 0 is a constant.
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Properties of Probability Measures

Suppose that P is a probability measure. Then
(1) P(∅) = 0;
(2) if E1, . . . ,En are disjoint, then

P(∪n
i=1Ei) =

n∑
i=1

P(Ei);

(3) if E ⊂ F , the P(E) ≤ P(F );
(4) P(Ec) = 1 − P(E);
(5) P(∪n

i=1Ei) = 1 − P(∩n
i=1Ec

i );
(6) P(E ∪ F ) = P(E) + P(F )− P(E ∩ F ).
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Proof
(1) Take E1 = E2 = · · · = ∅, then

P(∅) = P(∪∞
i=1Ei) = P(∅) + P(∅) + · · · ,

so P(∅) = 0.
(2) Take En+1 = En+2 = · · · = ∅, then E1,E2, · · · is a sequence of
disjoint events, thus by countable additivity,

P(∪n
i=1Ei) = P(∪∞

i=1Ei) =
∞∑
i=1

P(Ei) =
n∑

i=1

P(Ei).

(3) P(F ) = P(E) + P(F \ E) ≥ P(E).
(4) 1 = P(E ∪ Ec) = P(E) + P(Ec).
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Proof (cont)

(5) Follows immediately from (4),
(6) Let I = E \ F , II = F \ E and III = E ∩ F . Then
P(E ∪ F ) = P(I ∪ II ∪ III) = P(I) + P(II) + P(III) and
P(E) = P(I) + P(III), P(F ) = P(II) + P(III) and P(E ∩ F ) = P(III).
Thus P(E ∪ F ) = P(E) + P(F )− P(E ∩ F ).

Example

A fair die is tossed 100 times. Find the probability that there is at least
one 5.

The complement of “at least one 5” is “there is no 5”. So the answer is

1 −
(

5
6

)100

.
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Example

Suppose P(E) = 1
2 , P(F ) = 1

3 and P(E ∩ F ) = 1
4 . Find (a) P(E ∪ F );

(b) P(E ∩ F c); (c) P(Ec ∩ F ); (d) P(Ec ∩ F c);(e) P(Ec ∪ F c).

(a) P(E ∪ F ) = P(E) + P(F )− P(E ∩ F );
(b) P(E ∩ F c) = P(E)− P(E ∩ F );
(c) P(Ec ∩ F ) = P(F )− P(E ∩ F );
(d) P(Ec ∩ F c) = 1 − P(E ∪ F );
(e) P(Ec ∪ F c) = 1 − P(E ∩ F ).
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A generalization of (6) to the case of the union of n events is the
following inclusion-exclusion formula, which can be proved by
induction.

Inclusion-exclusion formula
If E1,E2, . . . ,En are events, then

P(∪n
i=1Ei) =

n∑
i=1

P(Ei)−
∑
i1<i2

P(Ei1 ∩ Ei2) +
∑

i1<i2<i3

P(Ei1 ∩ Ei2 ∩ Ei3)

+ · · ·+ (−1)k+1
∑

i1<···<ik

P(∩k
j=1Eij )

+ · · ·+ (−1)n+1P(∩n
i=1Ei).
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