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Some homework assignments are posted in the course page in the
my homepage. The first set is due next Friday, 01/26.

The slides of the first lecture is also posted in the course page.
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Example 1

Consider a set of n antennas, of which m are defective and n − m are
functional. Assume m ≤ n − m + 1. Assume also that all of the
defective ones are indistinguishable, and all the functional ones are
indistinguishable. How many linear orderings are there in which no 2
defectives ones are consecutive?

Imagine that the n − m functional antennas are lined up. Now if no 2
defectives ones are to be consecutive, then the spaces between the
functional antennas must contain at most 1 defective antenna. That is
in the n − m + 1 possible positions, we must select m of which to put
n the defective antennas. So the answer is(

n − m + 1
m

)
.
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Here is an illustration with n = 8 and m = 3.
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Here is a useful identity:(
n
r

)
=

(
n − 1
r − 1

)
+

(
n − 1

r

)
.

You can prove this by using the definition. But there is a very intuitive
way of seeing this.



General Info Combinations (cont) Multinomial Coefficients Number of integer solutions of equations

Here is a useful identity:(
n
r

)
=

(
n − 1
r − 1

)
+

(
n − 1

r

)
.

You can prove this by using the definition. But there is a very intuitive
way of seeing this.



General Info Combinations (cont) Multinomial Coefficients Number of integer solutions of equations

The values
(n

r

)
are often called the binomial coefficients. This is

because of

Binomial Theorem

(x + y)n =
n∑

k=0

(
n
k

)
xk yn−k .

As a consequence of the binomial theorem, we have

n∑
k=0

(
n
k

)
= 2n.
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You can prove the the binomial theorem using induction. Here I give a
combinatorial proof.

Proof of the Binomial Theorem
Consider the product:

(x1 + y1)(x2 + y2) · · · (xn + yn).

Its expansion is the sum of 2n terms, each term being the product of n
factors. Furthermore, each of the 2n terms in the sum will contain as
a factor either xi or yi for each i = 1, . . . ,n. How many of the the 2n

terms have as factors k of the xi ’s and (n − k) of the yi ’s? Answer:(n
k

)
. Thus, letting xi = x , yi = y , i = 1, . . . ,n, we get

(x + y)n =
n∑

k=0

(
n
k

)
xk yn−k .
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A set of n distinct items is to be divided into r distinct groups of sizes
n1, . . . ,nr , where ni ≥ 0, i = 1, . . . r and

∑r
i=1 ni = n. How many

different divisions are there?

Answer:(
n
n1

)(
n − n1

n2

)
· · ·

(
n − n1 − · · · − nr−1

nr

)
=

n!
n1!n2! · · · nr !

.

Notation: (
n

n1,n2, · · · ,nr

)
=

n!
n1!n2! · · · nr !

.
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The quantities above are often called the multinomial coefficients
because of the

Multinomia Theorem

(x1 + · · ·+ xr )
n =

∑
(n1,··· ,nr ):ni≥0,n1+···+nr=n

(
n

n1,n2, · · · ,nr

)
xn1

1 · · · xnr
r .

One can give a combinatorial proof of this, similar to the case of the
binomial theorem.
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Question: How many terms are there on the right hand side of the
multinomial theorem? We will come back to these a little later.

Example 2

Expanding (a + b + c + d)10 will take quite some time. What is the
coefficient of a2b3c4d?

(
10

2,3,4,1

)
.
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Example 3

The game of bridge is played by 4 players (East, West, North, South),
each of which is dealt 13 cards. How many bridge deals are possible?

(
52

13,13,13,13

)
.
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Suppose that we have n indistinguishable balls. How many ways can
we divide them into r distinct non-empty groups (distribute them into r
distinct boxes so that no box is empty)?

Line up the balls and choose the r − 1 division lines:(
n − 1
r − 1

)
.
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Another way of stating the result above is: There are
(n−1

r−1

)
integer-valued vectors (x1, . . . , xr ) satisfying

x1 + · · ·+ xr = n, and xi > 0, i = 1, . . . , r .

Now let’s change things a little bit. How many integer-valued vectors
(x1, . . . , xr ) are there such that

x1 + · · ·+ xr = n, and xi ≥ 0, i = 1, . . . , r? (1)

Answer: (
n + r − 1

r − 1

)
.
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The number of integer-valued vectors (x1, . . . , xr ) satisfying (1) is the
same as the number of integer-valued vectors (y1, . . . , yr ) satisfying

y1 + · · ·+ yr = n + r , and yi > 0, i = 1, . . . , r . (2)

(x1, . . . , xr ) satisfies (1) if and only if (x1 + 1, . . . , xr + 1) satisfies (2).

There are
(n+r−1

r−1

)
terms in the expansion of (x1 + · · ·+ xr )

n. In
particular, there are

(13
3

)
terms in the expansion of (a + b + c + d)10.
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