Math 461 Spring 2024

Renming Song
University of Illinois Urbana-Champaign
Januaray 19, 2024

Outline

Outline

(2) Combinations (cont)

3 Multinomial Coefficients

4 Number of integer solutions of equations

Some homework assignments are posted in the course page in the my homepage. The first set is due next Friday, 01/26.

Some homework assignments are posted in the course page in the my homepage. The first set is due next Friday, 01/26.

The slides of the first lecture is also posted in the course page.

Outline

(1) General Info

2 Combinations (cont)

3 Multinomial Coefficients

4 Number of integer solutions of equations

Example 1

Consider a set of n antennas, of which m are defective and $n-m$ are functional. Assume $m \leq n-m+1$. Assume also that all of the defective ones are indistinguishable, and all the functional ones are indistinguishable. How many linear orderings are there in which no 2 defectives ones are consecutive?

Example 1

Consider a set of n antennas, of which m are defective and $n-m$ are functional. Assume $m \leq n-m+1$. Assume also that all of the defective ones are indistinguishable, and all the functional ones are indistinguishable. How many linear orderings are there in which no 2 defectives ones are consecutive?

Imagine that the $n-m$ functional antennas are lined up. Now if no 2 defectives ones are to be consecutive, then the spaces between the functional antennas must contain at most 1 defective antenna. That is in the $n-m+1$ possible positions, we must select m of which to put n the defective antennas. So the answer is

$$
\binom{n-m+1}{m}
$$

Here is an illustration with $n=8$ and $m=3$.

Here is an illustration with $n=8$ and $m=3$.

Here is a useful identity:

$$
\binom{n}{r}=\binom{n-1}{r-1}+\binom{n-1}{r}
$$

You can prove this by using the definition. But there is a very intuitive way of seeing this.

Here is a useful identity:

$$
\binom{n}{r}=\binom{n-1}{r-1}+\binom{n-1}{r} .
$$

You can prove this by using the definition. But there is a very intuitive way of seeing this.

The values $\binom{n}{r}$ are often called the binomial coefficients. This is because of

As a consequence of the binomial theorem, we have

The values $\binom{n}{r}$ are often called the binomial coefficients. This is because of

Binomial Theorem

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

As a consequence of the binomial theorem, we have

The values $\binom{n}{r}$ are often called the binomial coefficients. This is because of

Binomial Theorem

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

As a consequence of the binomial theorem, we have

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n} .
$$

You can prove the the binomial theorem using induction. Here I give a combinatorial proof.

Proof of the Binomial Theorem

 Consider the productYou can prove the the binomial theorem using induction. Here I give a combinatorial proof.

Proof of the Binomial Theorem

Consider the product:

$$
\left(x_{1}+y_{1}\right)\left(x_{2}+y_{2}\right) \cdots\left(x_{n}+y_{n}\right) .
$$

Its expansion is the sum of 2^{n} terms, each term being the product of n factors. Furthermore, each of the 2^{n} terms in the sum will contain as a factor either x_{i} or y_{i} for each $i=1, \ldots, n$. How many of the the 2^{n} terms have as factors k of the x_{i} 's and $(n-k)$ of the y_{i} 's? Answer:
$\binom{n}{k}$. Thus, letting $x_{i}=x, y_{i}=y, i=1, \ldots, n$, we get

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k} .
$$

Outline

1 General Info

(2) Combinations (cont)
(3) Multinomial Coefficients

4 Number of integer solutions of equations

A set of n distinct items is to be divided into r distinct groups of sizes n_{1}, \ldots, n_{r}, where $n_{i} \geq 0, i=1, \ldots r$ and $\sum_{i=1}^{r} n_{i}=n$. How many different divisions are there?

Answer

Notation:

A set of n distinct items is to be divided into r distinct groups of sizes n_{1}, \ldots, n_{r}, where $n_{i} \geq 0, i=1, \ldots r$ and $\sum_{i=1}^{r} n_{i}=n$. How many different divisions are there?

Answer:

$$
\binom{n}{n_{1}}\binom{n-n_{1}}{n_{2}} \cdots\binom{n-n_{1}-\cdots-n_{r-1}}{n_{r}}=\frac{n!}{n_{1}!n_{2}!\cdots n_{r}!} .
$$

A set of n distinct items is to be divided into r distinct groups of sizes n_{1}, \ldots, n_{r}, where $n_{i} \geq 0, i=1, \ldots r$ and $\sum_{i=1}^{r} n_{i}=n$. How many different divisions are there?

Answer:

$$
\binom{n}{n_{1}}\binom{n-n_{1}}{n_{2}} \cdots\binom{n-n_{1}-\cdots-n_{r-1}}{n_{r}}=\frac{n!}{n_{1}!n_{2}!\cdots n_{r}!} .
$$

Notation:

$$
\binom{n}{n_{1}, n_{2}, \cdots, n_{r}}=\frac{n!}{n_{1}!n_{2}!\cdots n_{r}!} .
$$

The quantities above are often called the multinomial coefficients because of the

Multinomia Theorem

One can give a combinatorial proof of this, similar to the case of the
binomial theorem

The quantities above are often called the multinomial coefficients because of the

Multinomia Theorem

$$
\left(x_{1}+\cdots+x_{r}\right)^{n}=\sum_{\left(n_{1}, \cdots, n_{r}\right): n_{i} \geq 0, n_{1}+\cdots+n_{r}=n}\binom{n}{n_{1}, n_{2}, \cdots, n_{r}} x_{1}^{n_{1}} \cdots x_{r}^{n_{r}}
$$

The quantities above are often called the multinomial coefficients because of the

Multinomia Theorem

$$
\left(x_{1}+\cdots+x_{r}\right)^{n}=\sum_{\left(n_{1}, \cdots, n_{r}\right): n_{i} \geq 0, n_{1}+\cdots+n_{r}=n}\binom{n}{n_{1}, n_{2}, \cdots, n_{r}} x_{1}^{n_{1}} \cdots x_{r}^{n_{r}}
$$

One can give a combinatorial proof of this, similar to the case of the binomial theorem.

Question: How many terms are there on the right hand side of the multinomial theorem? We will come back to these a little later.

Question: How many terms are there on the right hand side of the multinomial theorem? We will come back to these a little later.

Example 2

Expanding $(a+b+c+d)^{10}$ will take quite some time. What is the coefficient of $a^{2} b^{3} c^{4} d$?

Question: How many terms are there on the right hand side of the multinomial theorem? We will come back to these a little later.

Example 2

Expanding $(a+b+c+d)^{10}$ will take quite some time. What is the coefficient of $a^{2} b^{3} c^{4} d$?

$$
\binom{10}{2,3,4,1} .
$$

Example 3

The game of bridge is played by 4 players (East, West, North, South), each of which is dealt 13 cards. How many bridge deals are possible?

Example 3

The game of bridge is played by 4 players (East, West, North, South), each of which is dealt 13 cards. How many bridge deals are possible?
$\binom{52}{13,13,13,13}$.

Outline

1 General Info

2 Combinations (cont)

3 Multinomial Coefficients

4 Number of integer solutions of equations

Suppose that we have n indistinguishable balls. How many ways can we divide them into r distinct nonempty groups (distribute them into r distinct boxes so that no box is empty)?

Line up the balls and choose the $r-1$ division lines:

Suppose that we have n indistinguishable balls. How many ways can we divide them into r distinct nonempty groups (distribute them into r distinct boxes so that no box is empty)?

Line up the balls and choose the $r-1$ division lines:

$$
\binom{n-1}{r-1}
$$

Suppose that we have n indistinguishable balls. How many ways can we divide them into r distinct nonempty groups (distribute them into r distinct boxes so that no box is empty)?

Line up the balls and choose the $r-1$ division lines:

$$
\binom{n-1}{r-1}
$$

Another way of stating the result above is: There are $\binom{n-1}{r-1}$ integer-valued vectors $\left(x_{1}, \ldots, x_{r}\right)$ satisfying

$$
x_{1}+\cdots+x_{r}=n, \text { and } x_{i}>0, i=1, \ldots, r .
$$

Now let's change things a little bit. How many integer-valued vectors $\left(x_{1}, \ldots, x_{r}\right)$ are there such that

Answer:

Another way of stating the result above is: There are $\binom{n-1}{r-1}$ integer-valued vectors $\left(x_{1}, \ldots, x_{r}\right)$ satisfying

$$
x_{1}+\cdots+x_{r}=n, \text { and } x_{i}>0, i=1, \ldots, r .
$$

Now let's change things a little bit. How many integer-valued vectors $\left(x_{1}, \ldots, x_{r}\right)$ are there such that

$$
\begin{equation*}
x_{1}+\cdots+x_{r}=n, \text { and } x_{i} \geq 0, i=1, \ldots, r ? \tag{1}
\end{equation*}
$$

Another way of stating the result above is: There are $\binom{n-1}{r-1}$ integer-valued vectors $\left(x_{1}, \ldots, x_{r}\right)$ satisfying

$$
x_{1}+\cdots+x_{r}=n, \text { and } x_{i}>0, i=1, \ldots, r .
$$

Now let's change things a little bit. How many integer-valued vectors $\left(x_{1}, \ldots, x_{r}\right)$ are there such that

$$
\begin{equation*}
x_{1}+\cdots+x_{r}=n, \text { and } x_{i} \geq 0, i=1, \ldots, r ? \tag{1}
\end{equation*}
$$

Answer:

$$
\binom{n+r-1}{r-1}
$$

The number of integer-valued vectors $\left(x_{1}, \ldots, x_{r}\right)$ satisfying (1) is the same as the number of integer-valued vectors $\left(y_{1}, \ldots, y_{r}\right)$ satisfying

$$
\begin{equation*}
y_{1}+\cdots+y_{r}=n+r, \text { and } y_{i}>0, i=1, \ldots, r . \tag{2}
\end{equation*}
$$

The number of integer-valued vectors $\left(x_{1}, \ldots, x_{r}\right)$ satisfying (1) is the same as the number of integer-valued vectors $\left(y_{1}, \ldots, y_{r}\right)$ satisfying

$$
\begin{equation*}
y_{1}+\cdots+y_{r}=n+r, \text { and } y_{i}>0, i=1, \ldots, r . \tag{2}
\end{equation*}
$$

$\left(x_{1}, \ldots, x_{r}\right)$ satisfies (1) if and only if ($x_{1}+1, \ldots, x_{r}+1$) satisfies (2).

The number of integer-valued vectors $\left(x_{1}, \ldots, x_{r}\right)$ satisfying (1) is the same as the number of integer-valued vectors $\left(y_{1}, \ldots, y_{r}\right)$ satisfying

$$
\begin{equation*}
y_{1}+\cdots+y_{r}=n+r, \text { and } y_{i}>0, i=1, \ldots, r . \tag{2}
\end{equation*}
$$

$\left(x_{1}, \ldots, x_{r}\right)$ satisfies (1) if and only if $\left(x_{1}+1, \ldots, x_{r}+1\right)$ satisfies (2).

There are $\binom{n+r-1}{r-1}$ terms in the expansion of $\left(x_{1}+\cdots+x_{r}\right)^{n}$. In particular, there are $\binom{13}{3}$ terms in the expansion of $(a+b+c+d)^{10}$.

